ANALISIS ANTRIAN UNTUK SMSC (SHORT MESSAGE SERVICE CENTRE) PADA GSM DI PT. TELKOMSEL OLEH : NAMA NIM : MUHAMMAD FERI : 020402040 DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2007 Muhammad Feri : Analisis Antrian Untuk SMSC Pada GSM di PT Telkomsel, 2007 USU Repository © 2008 ANALISIS ANTRIAN UNTUK SMSC (SHORT MESSAGE SERVICE CENTRE) PADA GSM DI PT. TELKOMEL Oleh : MUHAMMAD FERI NIM. 020402040 Tugas Akhir ini diajukan untuk melengkapi salah satu syarat Untuk memperoleh gelar sarjana Teknik Elektro Disetujui oleh : Dosen Pembimbing, RAHMAD FAUZI, ST. MT NIP. 132 161 239 Diketahui oleh : Ketua Departemen Teknik Elektro FT USU, Prof.Dr.Ir. USMAN S.BAAFAI NIP. 130 365 322 DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2007 2 ABSTRAK Sebagian besar kita, dalam aktifitas sehari-hari, ditemani sebuah perangkat komunikasi bergerak zaman ini yang disebut telepon seluler. Trend komunikasi bergerak seluler berbasis teknologi digital yang sangat berkembang sekarang ini dikenal dengan nama GSM. GSM pada awalnya adalah singkatan dari Groupe Speciale Mobile. Setelah menjadi standard internasional, akhirnya menjadi sebagai Global System for Mobile Communication. Pengembangan GSM dimulai pada tahun 1982 dengan anggota 26 perusahaan nasional telepon Eropa. Salah satu layanan tambahan GSM adalah SMS (short message service), yaitu fasilitas pengiriman message diantara pelanggan GSM. Ada tiga input yang diproses di SMSC (short message service centre), yaitu MOC-MTC, notifikasi dan broadcast. Proses pengiriman message dilakukan melalui kanal pensinyalan yang terpisah dari kanal voice, yang dikenal dengan nama SS7 (Signalling System No. 7). Saat pengiriman, message dipancarkan ke BTS (Base Transceiver Station), kemudian diteruskan ke BSC (Base Station Subsystem), dari BSC ke MSC (Mobile Switching Centre), dan masuk ke SMSC (Short Message Service Centre). Apabila message yang datang banyak sedangkan kapasitas server SMS terbatas sehingga message yang masuk diantrikan. Pola kedatangan message mengikuti distribusi Poisson, distribusi pelayanan deterministic dengan kecepatan 10 message per detik. Dalam system ini diamati waktu tunggu rata-rata dalam antrian. Faktor-faktor yang mempengaruhi waktu tunggu rata-rata dalam antrian adalah jumlah pelanggan,tingkat broadcast. Tingkat broadcast sebesar 30 % sudah sangat membebani server, jumlah notifikasi dan waktu pengiriman broadcast yang berhubungan dengan rata-rata jumlah pelanggan yang aktif. 3 KATA PENGANTAR Aku berlindung kepada Allah dari godaan syetan yang terkutuk. Dengan menyebut nama Allah Yang Maha Pengasih Lagi Maha Penyayang. Segala puji dan syukur hanya milik Rabb sekalian alam Allah Subhanahu wa Ta’ala yang mana atas Rahmat dan Hidayah-Nya penulis dapat menyelesaikan tugas akhir ini, dengan judul “Analisis Antrian Untuk SMSC(Short Message Service Centre) Pada GSM di PT. TELKOMSEL“ . Penulisan tugas akhir ini merupakan salah satu syarat untuk memperoleh gelar Sarjana Teknik di Departemen Teknik Elektro, Fakultas Teknik, Universitas Sumatera Utara. Selama masa kuliah sampai penyelesaian tugas akhir ini, penulis banyak menerima bimbingan dan bantuan dari berbagai pihak. Untuk itu dengan penuh ketulusan hati, penulis menghaturkan terima kasih kepada : a. Ayahanda Adnan, dan Ibunda Murni, yang tidak terhitung cinta dan kasih sayangnya, yang tidak pernah bosan-bosanya mengasuh, mendidik dan membimbing penulis semenjak kecil hingga sekarang ini. Adinda Marina yang selalu menjadi tempat berbagi, bercanda dan bermain dalam suka maupun duka. b. Bapak Rahmad Fauzi ST. MT, selaku dosen pembimbing penulis yang telah banyak meluangkan waktu dan memberikan ide-ide brilian dalam penyusunan Tugas Akhir ini. 4 c. Bapak Prof. DR. Ir. Usman Baafai dan Bapak Drs. Hasdari Helmi, MT, selaku Ketua dan Sekretaris Departemen Teknik Elektro, Fakultas Teknik, Universitas Sumatera Utara. d. Bapak Ir. Hendra Zulkarnaen, selaku Dosen Wali penulis, yang senantiasa memberikan bimbingannya selama perkuliahan. e. Teman-teman satu stambuk 2002, Rahmat, Iqbal Ali, Agus, Fahri, IndraAse, Edo,ST, Syahrul, Rivaldi, Novri, Ronia, Setiawan, Hasyim, Adi, Satria, Berry, Rinaldi, Riyan, Maulana, Irham, Iper, Ade, Wati, dan teman-teman yang belum disebut namanya, yang selama ini menjadi teman diskusi, belajar dan bekerja sama dalam kegiatan kampus. f. Seluruh Stap Pengajar dan Pegawai Departemen Teknik Elektro, Kak Ani, Bang Ridho, Bang Ponijan, Bang Marthin, yang telah mendidik dan membantu penulis selama perkuliahan sampai dengan selesai. Penulis menyadari bahwa Tugas Akhir ini belum sempurna, karena masih terdapat kekurangan baik dari segi isi maupun susunan bahasanya. Saran dan kritik dari pembaca dengan tujuan menyempurnakan dan mengembangkan kajian dalam bidang ini sangat penulis harapkan. Akhir kata kesempurnaan hanya milik Allah Subhanahu wa Ta’ala dan kesalahan semata-mata dari penulis. Semoga Tugas Akhir ini berguna dan memberikan ilmu pengetahuan bagi kita semua. Medan, Penulis, Agustus 2007 Muhammad Feri Nim : 0204020 5 DAFTAR ISI KATA PENGANTAR............................................................................................. ABSTRAK ............................................................................................................... DAFTAR ISI............................................................................................................ BAB I PENDAHULUAN I.1 Latar Belakang Masalah.......................................................................... I.2 Tujuan Penulisan..................................................................................... I.3 Batasan Masalah ..................................................................................... I.4 Metodologi Penulisan ............................................................................. I.5 Sistematika Penulisan ............................................................................. BAB II TELEPATH SMSC PADA GSM II.1 Umum II.2 Arsitektur Jaringan GSM ........................................................................ II.2.1 NSS (Network Switching Subsystem) ....................................... II.2.2 Sub System Terminal Pangkalan (Base Station Subsystem) ...... II.2.3 OMS (Operation And Maintenance Subsystem)......................... II.2.4 MSS (Mobile Station Subsystem)............................................... II.3 Arsitektur Dan Tekhnologi Sms.............................................................. II.3.1 Aplikasi Sms Diera Gprs Dan 3g ................................................ II.4 Implementasi Signalling System Nomor 7 Pada Gsm ............................ II.4.1 Message Transfer Part (MTP)..................................................... II.4.2 Signalling Connection Control Part (SCCP)............................... II.4.3 Transaction Capabilities Application Part (Tcap)....................... 6 II.4.4 Mobile Application Part (Map)................................................... II.5 Arsitektur Telepath SMSC...................................................................... II.5.1 Sms Platform .......................................................................................... II.5.2 Protokol Dan Arsitektur Protokol........................................................... II.5.3 Prosedur Hubungan Moc-Mtc, Notifikasi Dan Broadcast ..................... BAB III TEORI DASAR SISTEM ANTRIAN III.1 Pendahuluan ............................................................................................ III.2 Struktur Dasar Sistem Antrian ................................................................ III.3 Pola Kedatangan (Pattern Of Arrival)..................................................... III.3.1 Regular Arrival............................................................................ III.3.2 Random Arrival........................................................................... III.4 Distribusi Waktu Pelayanan Dan Kecepatan Pelayanan......................... III.5 Disiplin Antrian....................................................................................... III.6 Rumus Little............................................................................................ III.7 Sistem Antrian M/M1 ............................................................................. III.8 Sistem Antrian M/G/1 ............................................................................. BAB IV ANALISIS ANTRIAN IV.1 Umum...................................................................................................... IV.2 Strategi Pengiriman Message.................................................................. IV.3 Pengiriman Message Kembali................................................................. IV.3.1 Identifikasi Message ................................................................... IV.3.2 Antrian Message.......................................................................... IV.4 Deskripsi Model ...................................................................................... IV.5 Analisis Waktu Tunggu Rata-Rata Dalam Antrian................................. 7 IV.5.1 Perhitungan Jumlah Pelanggan ............................................................. IV.5.2Waktu Tunggu Rata-Rata Pada Sistem Antrian , Broadcast Dan Notifikasi Tetap.................................................................................... IV.5.3 Waktu Tunggu Rata-Rata Dalam Antrian SMSC................................. BAB V PENUTUP V.1 Kesimpulan ............................................................................................ V.2 Saran 8 DAFTAR SINGKATAN Auc : Authentication Centre BSC : Base Station Controller BSS : Base Station Subsystem BTS : Base Transceiver Station CDR : Call Detail Record EIR : Equipment Identity Register GSM : Global System for Mobile Communication HLR : Home Location Register IMEI : International Mobile Equipment Identity IMSI : International Mobile Subscriber Identity MAP : Mobile Application Part MOC : Mobile Originated Call MTC : Mobile Terminated Call MN-AIM : Mobile Network Application Interface Module MS : Mobile Station MSC : Mobile Switching Centre MSS : Mobile Station Subsystem MSISDN : Mobile Station Integrated Service Digital Network MSRN : Mobile Subscriber Roaming Number MTP : Message Transfer Part NSS : Network Switching System OMS : Operation and Maintenance Subsystem PDU : Protocol Data Unit 9 RDMS : Relation Database Management System SC : Service Centre SCCP : Signalling Connection Control Part SMR : Short Message Relay SMS : Short Message Service SMSC : Short Message Service Centre SS7 : Signalling System No. 7 SMS-GMSC : SMS-Gateway Mobile Switching Centre SMS-IWMSC : SMS-Interworking Mobile Switching Centre SM-TL : Short Message Transfer Layer TPCAI : Telepath Administration Interface TCAP : Transaction Capabilities Application Part TPCust : Telepath Customer message entry TPSMT : Telepath System Terminal VMS : Voice Mailbox System VLR : Visitor Location Register 10 BAB I PENDAHULUAN 1.1 LATAR BELAKANG MASALAH Perkembangan teknologi telekomunikasi yang sangat cepat saat ini telah mendorong timbulnya komunikasi bergerak (mobile communication). Trend sekarang sekarang yaitu komunikasi bergerak selluler berbasis teknologi digital yang dikenal dengan nama GSM (Global System for Mobile Communication). Penggunaan GSM tidak terbatas pada komunikasi suara saja tapi bisa juga digunakan untuk komunikasi data, yang biasa disebut telepath SMSC. Komunikasi data ini tidak menggunakan kanal suara. Pertukaran informasi dilakukan dengan memanfaatkan kanal khusus untuk keperluan signalling dari transfer data, ini yang dikenal sebagai SS7 (Signalling System No. 7). Dengan transfer data melalui kanal khusus pensinyalan terdapat beberapa keuntungan antara lain : a. Mampu menangani trafik yang tinggi. b. Mempunyai fleksibilitas yang tinggi untuk aplikasi service baru. c. Status link signalling tidak terganggu pada status call, karena link signalling terpisah dari link voice. d. Kecepatan transmisi sinyal yang tinggi sebesar 64 Kbps. Terdapat dua tipe SMS yaitu SMS point to point dan SMS cell broadcast. SMS point to point adalah fasilitas yang dimiliki pelanggan untuk mengirim message ke pelanggan lain dengan alamat tertentu. SMS cell broadcast merupakan 11 kemampuan server SMS untuk mengirim message ke semua pelanggan yang aktif di area pelayanannya. SMS point to point mampu menangani tiga input yaitu : 1. MOC-MTC 2. Notifikasi 3. Broadcast MOC-MTC merupakan komunikasi point to point antar pelanggan. Notifikasi merupakan fasilitas Voice Mailbox System (VMS), yang dimiliki sebagian pelanggan. Jika pelanggan yang dihubungi non-aktif maka voice itu akan disimpan di VMS-nya. Untuk implementasi layanan SMS, operator menyediakan apa yang disebut sebagai SMS Center (SMSC). Secara fisik SMSC dapat berwujud sebuah PC biasa yang mempunyai interkonektivitas dengan jaringan GSM. 1.2 TUJUAN PENULISAN Tujuan penulisan tugas akhir ini adalah : 1. Untuk mengetahui cara kerja dari telepath SMSC pada GSM 2. Menganalisis antrian yang terjadi dalam telepath SMSC pada GSM 12 1.3 RUMUSAN MASALAH Telepath SMSC pada GSM merupakan transfer data melalui kanal pensinyalan SS7. SMS ini terdiri dari 176 karakter, 16 karakter merupakan header dan 160 karakter message. Dengan adanya tiga macam input dan jumlah panggilan yang masuk besar sedangkan kapasitas system terbatas maka akan terjadi antrian. Yang menjadi pertanyaan dalam penulisan ini adalah bagaimana proses penanganan antrian yang terjadi pada SMSC, dan parameter apa saja yang mempengaruhi antrian. 1.4 BATASAN MASALAH Untuk menghindari pembahasan yang terlalu meluas, maka penulis akan membatasi pembahasan tugas akhir ini. Adapun yang menjadi pembatasan masalah adalah sebagai berikut : 1. Pembahasan masalah dibatasi khusus untuk SMS point to point. Panggilan masuk dari pelanggan dipancarkan ke BTS (Base Transceiver Station) kemudian diteruskanke BSC (Base Station Controller) selanjutnya masuk ke MSC (Mobile Switching Centre), kemudian ke SMS Server. SMSC berfungsi untuk mengendalikan antrian yang terjadi. 2. Menjelaskan penggunaan SMSC dalam jaringan seluler GSM . 3. Hanya membahas kinerja SMSC saat ini dari area yang telah ditentukan dan pada salah satu provider Telekomunikasi (Telkomsel) . 13 4. Tidak membahas keterkaitan jaringan seluler lain yang berada disekitar jaringan yang dibahas, jadi tidak membahas interkoneksi ke jaringan lain. 5. Hanya membahas kamunikasi data dalam hal ini SMS antar pelanggan. 6. Hanya membahas cara kerja SMSC. 1.5 METODE PENULISAN Metode penulisan yaang digunakan dalam Tugas Akhir ini adalah: 1. Mempelajari literatur yang berkaitan dengan Tugas Akhir ini, seperti bukubuku, jurnal, artikel-artikel diinternet dan juga diskusi dengan dosen serta teman-teman penulis. 2. Melakukan riset untuk mendapatkan data-data yang diperlukan pada provider GSM dikota Medan yakni Telkomsel. 3. Pendekatan analisis dari sistem antrian untuk telepath SMSC. 1.6 SISTEMATIKA PENULISAN Penulisan tugas akhir ini disajikan dengan sistematika penulisan sebagai berikut : BAB I : PENDAHULUAN Bab ini berisi tentang latar belakang masalah, tujuan penulisan, batasan masalah, metodologi penulisan dan sistematika penulisan. BAB II : TELEPATH SMSC PADA GSM Berisi tentang Arsitektur GSM dan Operasi GSM, konfigurasi SMSC dan sygnalling System No. 7 14 BAB III : TEORI DASAR SISTEM ANTRIAN Berisi tentang struktur dasar sistem antrian, pola kedatangan, distribusi waktu pelayanan dan kecepatan pelayanan, disiplin antrian, hukum little. BAB IV : ANALISIS ANTRIAN UNTUK SMSC PADA GSM Bab ini berisi tentang analisis antrian untuk SMSC pada GSM. BAB V : PENUTUP Bab ini berisi tentang kesimpulan dan saran. 15 BAB II TELEPATH SMSC PADA GSM 2.1 UMUM Penggunaan GSM tidak terbatas pada komunikasi suara saja tapi bisa juga digunakan untuk komunikasi data, yang biasa disebut telepath SMSC. Komunikasi data ini tidak menggunakan kanal suara. Pertukaran informasi dilakukan dengan memanfaatkan kanal khusus untuk keperluan signalling dari transfer data terpisah dari kanal voice, ini yang dikenal sebagai SS7 (Signalling System No. 7). Layanan SMS dibangun dari berbagai entitas yang saling terkait dan mempunyai fungsi dan tugas masing-masing tidak ada satupun dalam sistem SMS yang dapat bekerja secara parsial. Terdapat dua tipe SMS yaitu SMS point to point dan SMS cell broadcast. SMS point to point adalah fasilitas yang dimiliki pelanggan untuk mengirim message ke pelanggan lain dengan alamat tertentu. SMS cell broadcast merupakan kemampuan server SMS untuk mengirim message ke semua pelanggan yang aktif di area pelayanannya. Dalam sistem SMS, mekanisme utama yang dilakukan dalam sistem adalah melakukan pengiriman short message dari satu terminal pelanggan ke terminal yang lain. Hal ini dapat dilakukan berkat adanya sebuah entitas dalam sistem SMS yang bernama Short Message Service Centre (SMSC), disebut juga Message Centre (MC). SMSC merupakan sebuah perangkat yang melakukan tugas store and forward trafik short message. Di dalamnya termasuk penentuan atau pencarian rute tujuan akhir dari short message. Sebuah SMSC biasanya didesain untuk dapat menangani short message dari berbagai sumber seperti Voice MailSystem (VMS), Web-based messaging, Email Integration, 16 External Short Messaging Entities (ESME),dan lain-lain. Dalam interkoneksi dengan entitas dalam jaringan komunikasi wireless seperti Home Location Register (HLR) dan Mobile Switching Centre (MSC). Saat pengiriman, message dipancarkan ke BTS (Base Transceiver Station), kemudian diteruskan ke BSC (Base Station Subsystem), dari BSC ke MSC (Mobile Switching Centre), dan masuk ke SMSC (Short Message Service Centre). 2.2 ARSITEKTUR JARINGAN GSM GSM (Global System For Mobile Telecommunication) merupakan system telekomunikasi yang menggunakan system selular digital dengan menggunakan sinyal digital dalam transmisi datanya sehingga membuat kualitas data maupun bit rate yang dihasilkan menjadi lebih baik dibandingkan dengan system analog. GSM terbagi menjadi dua bagian yaitu : 1. Sistem Telekomunikasi Bergerak (STB) Non Selular,yatu system telekomunikasi bergerak yang memiliki daerah cakupan yang sangat luas dengan menggunakan teknik pendirian sebuah menara yang dilengkapi dengan seperangkat antena yang berfungsi sebagai pemancar sekaligus sebagai penerima dan didirikan ditengah-tengah area cakupannya. 2. Sistem Telekomunikasi Bergerak (STB) Selular. Daerah cakupan dari STB Selular terbagi dari daerah-daerah yang lebih kecil (sel) dan masing-masing sel tersebut menggunakan stasiun tersendiri yang dinamakan BTS (Base Transceiver System). Hubungan antar BTS diatur oleh sentral telepon bergerak itu sendiri. Alokasi frekwensi GSM adalah : 17 • Transmit : 935 MHz – 960 MHz • Receiver : 890 MHz – 915 MHz Modulasi : TDMA Caarier spacing : 200 KHz untuk 8 kanal Jaringan GSM selular, terdiri atas : • MSC (Mobile Switching Center), sebagai switching system • BSS (Base Station Subsystem), sebagai pengirim dan penerima sinyal radio dari dan ke pelanggan • OS (Out Station), sebagai terminal pelanggan yang bersifat bergerak. Keistimewaan dari GSM yang tidak terdapat pada sistem analog maupun pada American Digital Cellular (ADC) adalah adanya standardisasi interface antar masing-masing sub sistem. Dengan demikian, GSM menjanjikan suatu sistem yang tidak harus dimonopoli oleh satu merek. Dalam arti bahwa Switching, Base Station, dan Out Station dapat berasal dari merek/pemasok yang berbeda. Kondisi ini jelas sangat menguntungkan pihak operator, karena tidak ada ketergantungan sama sekali terhadap satu supplier. Arsitektur dari jaringan GSM dapat dilihat pada gambar 2.1 dibawah ini. EIR HLR BSC VLR AuC MSC OMS PSTN Gambar 2.1 Arsitektur Jaringan GSM 18 Jaringan GSM terdiri dari empat bagian utama yaitu : 1. NSS (Network Switching Subsystem) 2. BSS (Base Station Subsystem) 3. OMS (Operation and Maintenance Subsystem) 4. MSS (Mobile Station Subsystem) 2.2.1 NSS (NETWORK SWITCHING SUBSYSTEM) Ada lima komponen utama dalam NSS yaitu : MSC (Mobile Service Switching Centre),HLR (Home Location Register), VLR (Visitor Location Register), EIR (Equipment Identity Register), dan AuC (Authentication Centre). Komponen jaringan dari subsystem secara fungsional dihubungkan dengan pensinyalan yang berhubungan dengan panggilan dari pelanggan bergerak.Simpul jaringan membentuk komponen jaringan dari subsystem switching. Satu atau lebih komponen jaringan dapat ditempatkan pada satu simpul jaringan. a. MSC (Mobile Switching Centre) MSC merupakan inti dari jaringan GSM selular, dimana MSC berperan untuk interkoneksi hubungan pembicaraan, baik antar pelanggan selular maupun antar selular dengan jaringan telepon kabel PSTN, ataupun dengan jaringan data. MSC memberikan pelayanan kepada pelanggan meliputi : *Bearer Services : o 3,1 KHz telephony o Synchronous data 0,3 Kbit/s - 2,4 Kbit/s o PAD Services o Alternated speech/data 19 *Teleservices : • Telephony • Emergency calls • Telefax • Short message services *Supplementary services : • Call forwading • Charging services • Call bearing services • Closed user group MSC juga menyelenggarakan semua fungsi switching yang diperlukan untuk MS yang berada dalam MSC service area dan bertanggung jawab untuk routing dan switching bagi semua panggilan dari originator ke destinator. Dalam penanganan penerimaan panggilan MSC dapat mengakses informasi dari ketiga basis data yaitu HLR, VLR dan AuC. Setelah menggunakan ketiga basis data tersebut MSC akan mengupdate ketiga basis data tersebut sesuai dengan informasi terakhir dari status panggilan dan posisi panggilan. MSC juga melakukan proses handover sambungan yang ada diantara subsistem base station atau ke MSC lain untuk menjaga penyambungan tetap berlangsung pada saat MS mengadakan roaming. b. HLR (Home Location Register) HLR berfungsi untuk penyimpanan semua data dan informasi mengenai pelanggan yang tersimpan secara permanen, dalam arti tidak tergantung pada posisi 20 pelanggan. HLR bertindak sebagai pusat informasi pelanggan yang setiap waktu akan diperlukan oleh VLR untuk merealisasi terjadinya komunikasi Untuk memberikan layanan bagi pelanggan bergerak digunakan basis data seperti HLR. Dengan adanya fasilitas automatic call routing untuk pelanggan bergerak menyebabkan dibutuhkannya suatu data base yang menyimpan data posisi/lokasi yang aktual dari pelanggan. MSC menggunakan data itu untuk meroutekan panggilan yang datang ke pelanggan yang dipanggil. HLR disebut juga sebagai basis data statis. Ada dua jenis data yang disimpan dalam HLR yaitu : 1. Informasi subscriber seperti data tentang teleservices atau data tentang bearer service, suplementary service dan lain-lain. Seluruh pelanggan tersebut tercatat pada HLR. 2. Informasi lokasi, khusus untuk melayani permintaan dari VLR tentang alamat dari pelanggan yang dianggap baru. Pemberitahuan tentang lokasi pelanggan ini digunakan agar dapat mengaktifkan sinyal yang akan menghubungi alamat pelanggan yang dituju. Nomor-nomor identitas yang disimpan dalam HLR adalah : 1. IMSI (international mobile subscriber identity), merupakan nomor identitas yang unik dari subscriber pada jaringan seluler. 2. MSISDN (mobile station ISDN number), merupakan nomor identitas yang unik dari subscriber pada PSTN/ISDN. 3. MSRN (mobile subscriber roaming number), merupakan sistem penomoran sementara yang digunakan untuk me-routing suatu panggilan yang berada dalam area pelayanan tertentu. 21 c. VLR (Visitor Location Register) VLR menyimpan informasi tentang pesawat pelanggan yang memasuki are pelayanannya. VLR dapat dianggap basis data pelanggan yang dinamis yang secara intensif bertukar data dengan HLR. Hubungan kedua basis data ini memungkinkan MSC mensetup panggilan yang masuk dan keluar dalam area pelayanan MSC tersebut. Dengan adanya struktur dua layer basis data yaitu HLR dan VLR, jaringan mendefinisikan bahwa HLR hanya menyimpan informasi secara kasar (misalnya hanya berupa alamat dari VLR yang dikunjungi), sedangkan VLR menyimpan informasi secara detail misalnya area lokasi yang digunakan untuk memanggil ke pelanggan yang ada di wilayahnya dan juga mempunyai kemampuan untuk mengetahui apakah pelanggan pada saat itu dapat dihubungi atau tidak. Bila ada pelanggan yang roaming ke MSC area yang baru make VLR dari area yang baru yang dimasuki oleh pelanggan akan menanyakan data-data tentang pelanggan tersebut pada HLRnya. Selanjutnya HLR akan mendaftarkan alamat yang baru dari pelanggan tersebut sesuai dengan alamat baru pada VLR. Selanjutnya VLR baru akan melaksanakan permintaan pelanggan. VLR berisi data-data yang lebih lengkap tentang lokasi pelanggan yang berada pada area pelayanan MSC. d. EIR (Equipment Identity Register) Setiap peralatan pelanggan dikenal dengan IMEI sedangkan identitas pelanggan sendiri dikenal dengan IMSI. Untuk menghindari penggunaan pelanggan yang tidak diakui 'proven' maka EIR dihubungkan dengan MSC. IMEI (international mobile equipment identity) dari pelanggan dapat dicek menjadi daftar yang berhak (white list) dan yang tidak berhak (black list), misalnya karena kecurian yang 22 disimpan (daftar IMEI yang hilang atau dicuri) pada EIR. Selain itu ada juga daftar abu-abu (gray list) yaitu daftar bagi pesawat yang sedang diamati karena dicurigai. e. AuC (Authentication Centre) Merupakan proteksi informasi pesawat pelanggan terhadap gangguan pada media transmisi udara. Karena rentannya pengamanan dari media udara, spesifikasi CDMA memasukkan pengukuran untuk otoritas pelanggan dan kunci rahasia yang disimpan di AuC yang berupa Ki, IMSI dan algoritma A3 dan A8. Basis data dalam AuC juga diproteksi terhadap mekanisme akses yang tidak berhak. AuC terhubung dengan HLR, menyampaikan parameter autentik dan ciphering keys atas dasar nomor pelanggan yang diberikan. 2.2.2 SUB SISTEM TERMINAL PANGKALAN (BASE STATION SUBSYSTEM) Base station subsystem terdiri dari dua bagian fungsional yaitu BSC (base station controller) dan BTS (base transceiver station) serta ditambah dengan Microwave radio link (R/L) sebagai pengintegrasi seluruh peralatan. Akses melalui radio diperlukan untuk mendukung mobilitas. Akan tetapi demi efisiensi pemakaian spektrum yang disediakan, akses tersebut sekaligus membatasi laju arus bit dalam. a. Base Station Controller (BSC) MSC pada sistem switching bertugas mengamati satu atau beberapa BSC dan selanjutnya BSC akan bertugas secara langsung untuk mengendalikan beberapa BTS di bawah jaringannya. Jumlah BTS yang dikendalikannya tergantung pada jenis, tipe sistem dan kapasitas trafiknya di daerah tersebut. BSC mempunyai kapasitas switch 23 yang besar dan bertanggung jawab untuk hubungan radio sepeti fungsi handover, manajemen dari 'radio network resources' dan "cell configuration data". b. Base Transceiver Station (BTS) Berfungsi sebagai radio site covering untuk satu sel atau lebih dengan pita frekuensi tertentu. Setiap sel yang berdekatan menggunakan frekuensi yang berbeda untuk menghindari interferensi. BTS menyediakan transmitter dan receiver yang memancarkan dan menerima gelombang radio yang digunakan untuk berkomunikasi oleh MS. 2.2.3 OMS (OPERATION AND MAINTENANCE SUBSYSTEM) Seluruh fungsi dari OMS dilaksanakan melalui jaringan operator. Operator dapat memonitor danmengatur seluruh sistem secara detail dan bagaimana pelaksanaan fungsi-fungsi dari pengoperasian dan pemeliharaan ada pada CDMA technical specifications. 2.2.4 MSS (MOBILE STATION SUBSYSTEM) Setiap MS mempunyai nomor identitas yang unik biasa disebut IMEI (international mobile equipment identity). Pada kartu SiM (subscriber identity module) berisi nomor khusus dari pelanggan yang disebut IMSI ( international mobile subscriber identity) 2.3 ARSITEKTUR DAN TEKHNOLOGI SMS SMS atau Short Message Service pada awal diciptakan adalah bagian dari layanan pada sistem GSM. SMS semula hanyalah merupakan layanan yang bersifat 24 komplementer terhadap dua layanan utama sistem GSM (atau sistem 2G pada umumnya) yaitu layanan voice dan switched data. Namun karena keberhasilan SMS yang tidak terduga, dengan ledakan pelanggan yang mempergunakannya, menjadikan SMS sebagai bagian integral dari layanan sistem. Dalam forum studi dan diskusi dan pembicaraan mengenai standar 3G, SMS (atau disebut layanan messaging) tetap disebut sebagai layanan penting yang diperlukan dan menjadi bagian dari standar 3G. Dalam standar 3G - IMT 2000, tersebut 4 layanan utama 3G, yaitu: a. Voice Layanan voice tetap merupakan layanan utama 3G, yang diharapkan akan menyamai kualitas layanan voice pada jaringan PSTN. b. Messaging Layanan messaging SMS pada 3G akan dikembangkan menjadi EMS (Enhanced Messaging Service) yang mampu e-mail attachment serta merupakan bagian dari layanan Unified Messaging, dan kemudian MMS (Multimedia Messaging Service) yang merupakan messaging dengan kemampuan image attachment. c. Packet Data Teknologi switched data pada 2G akan ditinggalkan dan iganti menjadi teknologi paket data yang lebih cepat dan efisien. Teknologi paket data ini menjadi dipercaya menjadi teknologi yang kan menjadi pembuka perkembangan internet bergerak (mobile internet). d. Streaming Multimedia Seiring dengan diperkenalkannya standar 3G mengenai teknologi paket data dan peningkatan efisiensi jaringan, maka kecepatan data (data rate) pada jaringan 25 wireless dapat mencapai 2 Mbps yang akan memungkinkan streaming data multimedia yang akan menjadi bagian dari layanan videoconferencing/ videophones dan telepresence. Sebagai bagian dari sistem GSM, SMS adalah layanan yang sebenarnya merupakan bearer sevice atau packet pengirim dari data GSM. Bearer service ini bekerja pada layer fisik yang merupakan layer terbawah dari protokol aplikasi data GSM. Elemen jaringan dan Arsitektur SMS itu sendiri adalah terlihat seperti gambar 2.2 dibawah ini. Gambar 2.2 Elemen Jaringan dan Arsitektur SMS SMS merupakan layanan messaging yang pada umumnya terdapat pada setiap sistem jaringan wireless digital. SMS adalah layanan untuk mengirim dan menerima pesan tertulis (teks) dari maupun kepada perangkat bergerak (mobile device). Pesan teks yang dimaksud tersusun dari huruf, angka, atau karakter alfanumerik. Pesan teks dikemas dalam satu paket/ frame yang berkapasitas maksimal 160 byte yang dapat direpresentasikan berupa160 karakter huruf latin atau 70 karakter alfabet non-latin seperti alfabet Arab atau Cina. 26 SMS adalah data tipe asynchoronous message yang pengiriman datanya dilakukan dengan mekanisme protokol store and forward. Hal ini berarti bahwa pengirim dan penerima SMS tidak perlu berada dalam status berhubungan (connected/ online) satu sama lain ketika akan saling bertukar pesan SMS. Pengiriman pesan SMS secara store and forward berarti pengirim pesan SMS menuliskan pesan dan nomor telepon tujuan dan kemudian mengirimkannya (store) ke server SMS (SMS-Center) yang kemudian bertanggung jawab untuk mengirimkan pesan tersebut (forward) ke nomor telepon tujuan Proses ini terlihat pada gambar 2.3 dibawah ini. Hal ini mirip dengan mekanisme store and forward pada protokol SMTP yang digunakan dalam pengiriman e-mail internet. Keuntungan mekanisme store and forward pada SMS adalah, penerima tidak perlu dalam status online ketika ada pengirim yang bermaksud mengirimkan pesan kepadanya, karena pesan akan dikirim oleh pengirim ke SMSC yang kemudian dapat menunggu untuk meneruskan pesan tersebut ke penerima ketika ia siap dan dalam status online di lain waktu. Ketika pesan SMS telah terkirim dan diterima oleh SMSC, pengirim akan menerima pesan singkat (konfirmasi) bahwa pesan telah terkirim (message sent). Hal-hal inilah yang menjadi kelebihan SMS dan populer sebagai layanan praktis dari sistem telekomunikasi bergerak. Gambar 2.3 Mekanisme store and forward pada pengiriman pesan SMS 27 Keterbatasan SMS adalah pada ukuran pesan yang dapat dikirimkan, yaitu maksimal sebesar 160 byte. Keterbatasan ini disebabkan karena mekanisme transmisi SMS itu sendiri. SMS pada awalnya adalah layanan yang ditambahkan pada sistem GSM yang digunakan untuk mengirimkan data mengenai konfigurasi dari handset pelanggan GSM. SMS dikirmkan menggunakan signalling frame pada kanal frekuensi atau time slot frame GSM yang biasanya digunakan untuk mengirimkan pesan untuk kontrol dan sinyal setup panggilan telepon, seperti pesan singkat tentang kesibukan jaringan atau pesan CLI (Caller Line indentification). Frame ini bersifat khusus dan ada pada setiap panggilan telepon serta tidak dapat digunakan untuk membawa voice atau data dari pelanggan. Ukuran frame pada sistem GSM sendiri adalah sebesar 1250 bit (kurang lebih sama dengan 160 byte) Seperti terlihat pada gambar 2.3. Karena hanya menggunakan satu frame inilah pengiriman pesan SMS menjadi sangat murah, karena beban biaya hanya dihitung dari penggunaan satu frame melalui kanal rekuensi. Pengiriman SMS menggunakan frame pada kanal frekuensi adalah berarti SMS dikirim oleh pengirim ke nomor telepon tertentu yang bertindak sebagai SMSC (SMS-Center) dan kemudian SMSC bertugas untuk meneruskannya ke penerima. Pengiriman SMS berlangsung cepat karena, SMSC selain terhubung ke LAN aplikasi juga terhubung ke MSC (Mobile Switching Network) melalui SS7 (Signaling System 7) yang merupakan jaringan khusus untuk menangkap frame kontrol dan sinyal. Mekanisme pengiriman pesan singkat SMS yang serupa juga ditemukan dalam sistem jaringan lain seperti TDMA, PDC, dan cdmaOne. Beda antara sistem jaringan satu dengan yang lainnya adalah ukuran dari pesan SMS itu sendiri yang bergantung pada ukuran frame yang digunakan pada masing-masing sistem. Pada sistem TDMA dan PDC ukuran pesan SMS sama 28 dengan sistem GSM, yaitu 160 byte, dan pada cdma-One ukuran pesan SMS sebesar 256 byte. Pada gambar 2.4 terlihat struktur time slot dan frame pada system GSM. Gambar 2.4 Struktur time slot dan frame pada system GSM Pada akhirnya SMS menjadi layanan messaging yang populer dan digemari oleh pelanggan telepon seluler. Layanan SMS dapat diintegrasikan dengan layanan GSM yang lain seperti voice, data, dan fax, dan karena itu pesan SMS selain digunakan untuk pengiriman pesan person to person juga digunakan untuk notifikasi voice dan fax mail yang datang kepada pelanggan. Selain itu SMS juga berharga murah, bersifat simpel dan personal, serta dalam pengoperasiannya tidak terlalu mengganggu kesibukan pemakainya, karena mereka dapat mengirim atau menerima pesan pada waktu yang mereka kehendaki. 2.3.1 APLIKASI SMS DIERA GPRS DAN 3G Kehadiran General Packet Radio Service (GPRS) telah memberikan lompatan besar kepada kemajuan teknologi dan layanan jaringan wireless di dunia. GPRS diperkenalkan sebagai teknologi overlay (antara) dari teknologi GSM untuk melompat ke teknologi generasi 3 (3G). Sebagai teknologi paket data, GPRS merupakan teknologi ideal untuk internet bergerak. Namun demikian keberhasilan sebuah teknologi pada umumnya 29 ditentukan oleh banyaknya pengguna yang menggunakan layanan di dalamnya. Sebelum diperkenalkan GPRS, telah terdapat teknologi (semi) paket data, bearer service yang berharga murah dengan layanan yang efektif, dan memiliki volume penggunaan paling besar, yaitu SMS. Di era GPRS SMS diyakini akan tetap eksis, bahkan akan tampil dengan kecepatan, kualitas, dan layanan data yang semakin meningkat. Kehadiran GPRS, tidak membuat SMS ditinggalkan. Para pengamat mengatakan bahwa layanan SMS akan tetap dicari dan digunakan secara luas oleh pelanggannya dan bahkan dengan menggunakan fitur-fitur kelebihan GPRS akan dapat meningkatkan kualitas layanannya. Hal tersebut adalah dengan beberapa alasan, yaitu : a. SMS telah digunakan oleh pelanggan dalam jumlah besar dengan rata-rata penggunaan sebesar rata 23 milyar kiriman per bulan, dan hal ini tidak dapat diabaikan karena pengguna sudah terlanjur terbiasa menggunakannya b. GPRS akan mengurangi kelemahan SMS yang ada sebelumnya, seperti delay, kecepatan transmisi data, efisiensi frekuensi, dan mampu menghantar SMS sebagai data paket c. GPRS bersama dengan jaringan penangkap sinyal dalam sistem GSM, dalam satu transaksi akan dapat menyediakan layanan internet bergerak dan SMS secara bersamaan d. Pesan melalui SMS masih tetap akan banyak dipakai untuk notifikasi dan pemberitahuan dari beberapa layanan seperti voice-fax mail, rincian biaya 30 penggunaan pulsa, pemberitahuan, dll., karena menggunakan SMS lebih murah, simpel, dan efisien. e. GPRS akan memecahkan permasalahan beban jaringan yang ditimbullkan karena meningkatnya penggunaan SMS, karena GPRS akan menjadi jalur alternatif SMS dan akan dilewatkan dalam jaringan sebagai data paket. f. SMS tetap menjadi layanan paling atraktif yang dapat dinikmati oleh pelanggan pra-bayar (selama GPRS masih hanya bisa dinikmati oleh pelanggan pasca-bayar). g. SMS menyediakan layanan bernilai tambah (value added service) dengan penggunaan yang sederhana dan tidak rumit serta dengan biaya yang sangat murah. 2.4 IMPLEMENTASI SIGNALLING SYSTEM NOMOR 7 PADA GSM SS7 merupakan metode pensinyalan dimana pertukaran informasi dan pengiriman data dilaksanakan melalui kanal khusus untuk pensinyalan yang terpisah dari kanal voice. Susunan tiap lapis protokol SS7 dapat dilihat pada gambar 2.5. 31 USER MAP TCAP-User ISDN - UP TCAP MTP - User SCCP Network Management MTP (Level 3) Link Function (Level 2) Data Link Function (Level 1) Gambar 2.5 Arsitektur Signalling System No.7 2.4.1 MESSAGE TRANSFER PART (MTP) Menghadirkan sifat yang netral terhadap semua jenis user dalam arti pengiriman pesan antar user. User disini diterapkan untuk setiap unit fungsional yang menggunakan kemampuan pengiriman dari MTP. Setiap MTP meliputi fungsi protokol dan coding untuk pensinyalan lewat SS7. Untuk fungsi MTP dan user part dapat dibagi menjadi 4 level. Level 1-3 untuk MTP dan sebagian SCCP. Sedang user part mulai dari level 4. Fungsi keseluruhan dari MTP adalah melayani komunikasi antar lokasi sebagai sistem transportasi yang menyediakan transfer sinyal yang handal, misalnya antara MSC, HLR, VLR, BSC. 1. MTP Level 1 (Signalling Data Link Function) Definisi karakteristik fisik, elektrik dan karakteristik fungsional dari link pensinyalan dan pengaksesannya. 2. MTP Level 2 (Signalling Link Function) 32 Berisi semua fungsi dan prosedur untuk mengirim sinyal informasi dalam data link, serta pensinyalannya termasuk pengendalian error dan pemantauan link. 3. MTP Level 3 (Signalling Network Management) Mencakup fungsi penanganan message (message handling function), yang bertanggung jawab untuk ruting dan fungsi manajemen jaringan pensinyalan (signalling network management) yang berfungsi untuk menangani pengendalian konfigurasi jaringan. 2.4.2 SIGNALLING CONNECTION CONTROL PART (SCCP) GSM memiliki kemampuan untuk berhubungan dengan jaringan lain (interworking) maka pengalamatan yang disediakan oleh MTP-3 dalam bentuk DPC (Destination Point Code) dan OPC (Originating Point Code) maupun SPC (Signalling Point Code) tidak mencukupi. SCCP akan membantu pengalamatan ini berdasarkan pada global title. Hal ini merupakan kemampuan untuk menterjemahkan global title (dalam bentuk dialled digits) ke dalam kode titik pensinyalan dan subsystem number (SSN). Global title ini dapat mengindikasikan keseluruhan titik pensinyalan SS7 di seluruh dunia. Namun bila interworking tidak tersedia maka cukup menggunakan MTP-3 dalam bentuk SPC saja tidak perlu menggunakan global title. SCCP menyediakan fungsi yang membantu MTP dalam ruting (secara connectionless/datagram) untuk menyalurkan informasi pensinyalan dalam membangun hubungan dalam seluler. SCCP memiliki fungsi untuk.: a. Mengontrol hubungan signaling secara logika dalam jaringan SS7. 33 b. Transfer unit data pensinyalan melalui jaringan SS7 dengan atau tanpa menggunakan hubungan signaling secara logika. Seluruh message dari MTP didistribusikan ke SCOC (Signalling Connection Oriented Control) dan SCLC (Signalling Connectionless Control). Jika ditujukan ke SCOC akan dilanjutkan ke ISUP (Integrated Service User Part) dan jika ke SCLC akan diteruskan ke TCAP untuk selanjutnya ke MAP. SCCP mempunyai dua tipe protokol yaitu : 1. Connectionless Service yang menyediakan kemampuan untuk mentransfer satu blok data dalam field data dari suatu unit data message tanpa resegmentasi atau reasemble. Panjang maksimum blok data adalah 256 oktet. 2. Connection-oriented Service Yang menyediakan segmentasi dan reasemble tapi tidak ada resequence. Bila panjang blok data lebih dari 256 oktet, maka akan dibagi menjadi segmensegmen data dan akan disusun kembali saat sampai di tujuan. Segmensegmen ini akan dikirim dalam field data dalam suatu data 2.4.3 TRANSACTION CAPABILITIES APPLICATION PART (TCAP) TCAP dan ISP (Intermediate Service Part) merupakan elemen-elemen penyusun TC (Transaction Capabilities). Bila ditinjau dari OSI layer, maka ISP meliputi layer 4, 5 dan 6 (transport, session, presentation) sedangkan TCAP pada layer 7 (application). ISP dalam kaitannya dengan jaringan GSM tidak digunakan karena pelayanan jaringan yang didasarkan pada connectionless (ruting secara datagram). 34 Ada dua jenis dialog yang disediakan oleh TCAP, yaitu terstruktur dan tidak terstruktur. Bila menggunakan dialog terstruktur, pengguna TC (Transaction Capabilities) harus mengindikasikan salah satu dari ketiga kemungkinan berikut bila mengirimkan sebuah bagian pada entitas yang lain : a. Dialog mulai (begin) b. Dialog berlanjut (continue), dialog berupa full dupfex c. Dialog berhenti (end), sisi pengirim tidak lagi mengirim komponen, selanjutnya sisi penerima juga menghentikan pengiriman komponennya. Dialog tak terstruktur mengindikasikan bahwa dialog antar pengguna TC hanya dilakukan pada satu arah (undirectional). Pengguna TC megirimkan komponen tanpa membutuhkan jawaban secara eksplisit terhadap komponen tersebut. 2.4.4 MOBILE APPLICATION PART (MAP) Tujuan umum dari MAP yang direkomendasikan CCITT adalah menyediakan penyambungan secara internasional. MAP juga dibutuhkan dalam jaringan nasional karena masing-masing entitas membutuhkan protokol MAP untuk bekerja dengan entitas lainnya dalam jaringan tersebut. Fungsi MAP terutama untuk pertukaran informasi yang berkaitan dengan kemungkinan pelanggan atau terminal untuk roaming. MAP menggunakan TCAP, SCCP dan layanan MTP yang disediakan untuk transfer informasi antar elemen fungsional dengan fungsi MAP. 35 Pengguna Pelayanan MAP Pengguna Pelayanan MAP Antarmuka Pelayanan Penyedia Pelayanan MAP Gambar 2.6 Pemodelan Pelayanan pada MAP Dialog antar pengguna berlangsung melalui pengiriman dan penerimaan MAP service primitive pada antar muka pelayanan. Pelayanan MAP misalnya : a. Pelayanan Paging dan Pencarian 1. MAP PAGE Digunakan antara VLR dan MSC untuk men-paging MS yang bersangkutan, bila ada panggilan yang masuk ke areanya. 2. MAP-SEARCH-FOR-MS Digunakan untuk VLR dan MSC, supaya MSC memulai paging pada keseluruhan daerah pelayanan VLR. Pelayanan ini digunakan jika VLR tidak memiliki informasi lokasi MS tersebut. Proses ini gagal jika MS tidak memberi respons atas sinyal paging ini. b. Pelayanan Short Message antara lain : 1. MAP-SEND-ROUTING-INFO-FOR-SM Antara gateway MSC dan HLR menggunakan MAP-SEND- ROUTINGINFO-FOR-SM ini untuk membawa informasi ruting yang dibutuhkan untuk merutingkan message ke MSC tujuan. 2. MAP-FORWARD-SHORT-MESSAGE 36 Antara gateway MSC dan MSC tujuan menggunakan MAP-FORWARDSHORT-MESSAGE ini untuk mengirimkan message (SM-MT atau SMMO) 3. MAP-REPORT-SM-DELIVERY-STATUS Antara gateway MSC dan HLR menggunakan MAP-REPORT SMDELIVERYSTATUS ini untuk menset MWD dalam HLR atau untuk memberitahukan HLR atas pengiriman message yang sukses. 4. MAP-SEND-INFO-FOR-MT-SMS Digunakan antara MSC dan VLR. MSC tujuan akan menggunakan MAPSEND-INFO-FOR-MT-SMS ini untuk memperoleh informasi yang berhubungan dengan pelanggan untuk mengirimkan message ke pelanggan (SM-MT). 5. MAP-SEND-INFO-FOR-MO-SMS Digunakan antara MSC dan VLR. MSC akan menggunakan MAPSENDINFO- FOR-MO-SMS (saat menerima mesage dari pelanggan) untuk meminta informasi yang berhubungan dengan pelanggan (pelanggan yang mengirimkan mesaage) itu ke VLR. 2.5 ARSITEKTUR TELEPATH SMSC SMSC merupakan sebuah perangkat yang melakukan tugas store and forward trafik short message. Di dalamnya termasuk penentuan atau pencarian rute tujuan akhir dari short message. Sebuah SMSC biasanya didesain untuk dapat menangani short message dari berbagai sumber seperti Voice MailSystem (VMS), Web-based messaging, Email Integration, External Short Messaging Entities (ESME),dan lain- 37 lain. Dalam interkoneksi dengan entitas dalam jaringan komunikasi wireless seperti Home Location Register (HLR) dan Mobile Switching Centre (MSC). Blok diagram SMSC dapat dilihat pada gambar 2.7 dibawah ini BSC MSC BTS SS7 SS7 SMPP SMSC VMS CONSOLE Gambar 2.7 Blok Diagram SMSC Saat pengiriman, message dipancarkan ke BTS (Base Transceiver Station), kemudian diteruskan ke BSC (Base Station Subsystem), dari BSC ke MSC (Mobile Switching Centre), dan masuk ke SMSC (Short Message Service Centre). SMSC berfungsi sebagai server sekaligus buffer. Apabila message yang datang banyak sedangkan kapasitas server SMS terbatas sehingga message yang masuk diantrikan. Pola kedatangan message mengikuti distribusi Poisson, distribusi pelayanan deterministic dengan kecepatan 10 message per detik. Antrian untuk SMS ini dimodelkan pada gambar 2.8 berikut. Output (µ) Input (λ) Sistem antrian Gambar 2.8 Model Antrian untuk SMSC 38 2.5.1 SMS PLATFORM Gambar 2.9 menunjukkan gambar dari SMS Platform. Gambar 2.9 SMS Platform SMSC terdiri dari dua bagian yaitu, Service Centre dan Gateway/Interworking MSC 1. Service Centre (SC) Service Centre terdiri dari berbagai komponen yaitu : a. Telepath Kernel Telepath Kernel berfungsi untuk : 1. Menerima message dari transmitter AIM dan merutekannya ke receiver AIM 2. Jika message tidak dapat segera disampaikan Kernel akan mengatur pengantaran ulang. 3. Membangkitkan dan mengirimkan message ke originator jika message yang didaftarkan sudah mencapai state akhir. b. Event Handler 39 Event Handler bertanggung jawab untuk memonitor kejadian-kejadian dalam SMSC. Semua kejadian dimonitor oleh sistem administrasi. c. Timer Handler Timer handler bertanggung jawab untuk mendeteksi message yang disampaikan untuk pengantaran yang ditunda. d. CDR Handler CDR Handler bertanggung jawab untuk informasi ruting secara umum bagi short message sampai mencapai keadaaan akhir. Informasi ini disimpan dalam Call Detail Records (CDRS) pada file billing yang on-line. File billing diatur melalui antar muka Telepath System Manager Terminal (TPSMT). e. TPWatcher TP Watcher adalah sistem monitor sendiri yang mencek sistem Unix dan masalah-masalah yang potensial untuk meningkatkan kehandalan sistem dan utilisasi yang lebih efektif dari sistem manajemen waktu. f. TPMonitor Merupakan sistem yang berdiri sendiri, berfungsi untuk memonitor SMSC dan bertanggung jawab untuk menjamin sistem handal dalam kegagalan proses. g. Telepath Configuration Interface Ada tiga aplikasi yang disediakan untuk fungsi operasi, administrasi dan pemeliharaan(maintenance), dari Telepath SMSC. 1. Telepath System Manager Terminal (TPSMT) Menyediakan program aplikasi untuk administrasi, operasi dan pemeliharaan SMSC 40 2. Telepath Customer Message Entry (TPCUST) Mengizinkan program aplikasi bagi pelanggan untuk mengirim, menerima dan meminta short message. 3. Telepath Customer Administration Interface (TPCAI) Antar muka yang digunakan untuk provisioning customers. h. Application Programmer Interface (API) Libraries Telepath Application Programmer Interface libraries berfungsi untuk : 1. SMSC API Functions 2. Kernel Interface Functions (KIFs) 3. Event Reporting Functions 4. Database Interface Functions (DIFs) i. Telepath Utilities 1. Database Tools SMSC beroperasi dengan relational database yang dibuat selama instalasi. Seperangkat utilities disediakan untuk membawa fungsi pemeliharaaan, untuk menjamin unjuk kerja database yang optimum. 2. Traffic Report Telepath SMSC menyediakan traffic report yang mengizinkan variasi operasi message dari sistem untuk dimonitor dan variasi dari format laporan. j. Relational Database Management System (RDBMS) 2. Gateway/Interworking MSC Gateway adalah titik pertemuan yang menghubungkan dua jaringan (networks). Gateway sering diletakkan bersama dalam MSC. Tipe yang diset-up ini 41 selanjutnya disebut Gateway-MSC (GMSC). Semua MSC dalam jaringan dapat berfungsi sebagai gerbang. 2.5.2 PROTOKOL DAN ARSITEKTUR PROTOKOL Layer protokol untuk peleyanan SMS dari pelanggan ke pelanggan ditunjukkan oleh gambar 2.10 Gambar 2.10 Layer Protokol untuk Pelayanan SMS Point to Point A. Pelayanan yang Diselenggarakan Short Message Transfer Layer (SM-TL) SM-TL menyediakan pelayanan untuk message pada layer aplikasi (SM-TL). Hal ini memungkinkan SM-AL mentransfer message, menerima message dan menerima laporan tentang message yang telah ditransfer sebelumnya. Terdapat enam tipe Protocol Data Unit (PDU), yaitu : 1. SMS-DELIVER, membawa messagge dari SC ke MS 2. SMS-DELIVER-REPORT, membawa suatu failure cause (jika perlu) 3. SMS-SUBMIT, membawa message dari MS ke SC 4. SMS-SUBMIT-REPORT, membawa suatu faillure cause (jika perlu) 5. SMS-STATUS-REPORT, membawa laporan status dari SC ke MS 42 6. SMS-COMMAND, membawa perintah dari MS ke SC B. Pelayanan yang Diselenggarakan oleh Short Message Relay Layer (SM-RL) SM-RL menyediakan pelayanan untuk SM-TL. Hal ini memungkinkan SMTL mentransfer PDU, menerima PDU dan menerima laporan tentang PDU yang telah ditransfer sebelumnya. Terdapat enam protokol pada SM-RL yaitu: 1. RP-MO-DATA, untuk pentransferan TPDU dari MS ke SMSC 2. RP-MT-DATA, untuk pentransferan TPDU dari SMSC ke MS 3. RP-ACK, untuk acknowledgement 4. RP-ERROR, informasi kegagalan dari transfer RP-MO-DATA atau RP-MTDATA 5. RP-SM-MEMORY-AVAILABLE, memberitahu jaringan bahwa MS mempunyai memori yang dapat menerima satu atau lebih message 6. RP-ALERT-SC, memberi tanda pada SMSC bahwa MS telah beroperasi. Pada komunikasi antara MSC dan MS, pelayanan SM-RL pada antar muka radio mobile juga menggunakan fungsi-fungsi spesifik layer terendah, dan dikontrol oleh entitas kontrol message yang disebut SMR (Short Message Relay). Terdapat empat message yang dikontrol oleh SMR yaitu : 1. RP-DATA, untuk mengirimkan TPDU, baik dari MSC ke MS ataupun sebaliknya. 2. RP-SMMA, dikirimkan oleh MS untuk memberitahukan jaringan bahwa MS telah mampu menerima message. 3. RP-ACK, acknowledgement bagi penerimaan RP-DATA 4. RP-ERROR, berisi penyebab error bagi pengiriman data 43 C. Pelayanan yang Diselenggarakan oleh Connection Management Sub-Layer (CM-Sub Layer) CM-Sublayer menyediakan pelayanan untuk SM-RL pada komunikasi antara MSC dan MS. Pelayanan-pelayanan CM-Sublayer disediakan dengan menggunakan fungsi layer khusus untuk pelayanan layer terendah, yang dikontrol oleh entitas Short Message Control (SMC). Message pada CM-Sublayer a. CP-DATA, dikirim antara MSC dan MS. b. CP-ACK, dikirim antara MSC dan MS dan digunakan untuk acknowledgement bagi penerimaan CP-DATA. c. CP-ERROR, dikirim antara MSC dan MS digunakan untuk memberiikan informasi error. 2.5.3 PROSEDUR HUBUNGAN MOC-MTC, NOTIFIKASI DAN BROADCAST Prosedur dasar dalam SMSC point to point adalah MOC-MTC dan ALERT. Saat seorang pelanggan mengirim message ke pelanggan lain akan melalui prosedur MOC-MTC. Pelanggan yang memiliki fasilitas notifikasi, mempunyai VMS yang terhubung dengan SMSC melalui interface Short Message Peer to Peer (SMPP). Sedangkan broadcast menggunakan prosedur MTC. A. MOC Proses MOC adalah pengiriman message dari MS ke SMSC dan mengirimkan kembali laporan ke MS tentang hasil pengiriman message itu. Gambar 2.11 menunjukkan unit-unit yang tergabung dalam MOC. 44 SC SMS-IWMSC MSC HLR VLR SC Gambar 2.11 Unit-unit yang Tergabung dalam MOC Interaksi antara SMK, MN-AIM, HLR dan MSC selama pengiriman message sukses dari MOC, diilustrasikan gambar 2.12 SMK MN-AIM VMSC HLR PBM PBM GM ACK ACK Gambar 2.12 Pengiriman Message Sukses dari MOC B. MTC Proses MTC merupakan pengiriman message dari SMSC ke MS dan mengirimkan kembali laporan ke SMSC tentang hasil pengiriman message itu. Unitunit yang tergabung dalam MTC dapat dilihat pada gambar 2.13. SC SMS-IWMSC MSC HLR VLR SC Gambar 2.13 Unit-unit yang Tergabung dalam MTC Interaksi antara SMK, MN-AIM, HLR dan MSC selama pengiriman message sukses dad MT dapat diilustrasikan dalam gambar 2.14. 45 MN-AIM SMK VMSC HLR GM BRI BRI ACK PBM PBMM ACK ACK Gambar 2.14 Pengiriman message Sukses dari MTC C. Pengiriman ALERT Prosedur ini berhubungan dengan operasi-operasi penting bagi HLR atau VLR untuk memulai pengiriman Alert ke SC dan memberitahu SC bahwa MS telah beroperasi kembali. Prosedur tersebut digambarkan pada gambar 2.15. SC SMS-IWMSC MSC HLR VLR SC Gambar 2.15 Unit-unit yang Tergabung dalam Pengiriman Alert Interaksi antara SMK, MN-AIM dan HLR selama pengiriman Alert, diilustrasikan pada gambar 2.16. MN-AIM SMK HLR SC ALERT DEFAULT ACT ALERT SC Gambar 2.16 Pengiriman Alert D. Notifikasi 46 Komunikasi antara SMSC dan VMS menggunakan interface SMPP, yang membutuhkkan dua hubungan virtual. Satu digunakan untuk mesage yang berasal dari VMS beserta message responsnya, dan satu lagi digunakan untuk message yang berasal dari SMSC beserta responsnya. Komunikasi antara VMS dan SMSC melalui tahap pembentukan hubungan, tahap berkomunikasi dan tahap pemutusan hubungan. Proses komunikasi antara VMS dan SMSC digambarkan pada gambar 2.117. VMS KOMUNIKASI VIA X25 / TCP-IP SMSC Appl. (Transmitter) SMSC Appl. (Receiver) SMSC KERNEL Gambar 2.17 Komunikasi VMS dan SMSC 1. Tahap Pembentukan Hubungan Saat VMS membentuk suatu hubungan virtual, masing-masing proses dalam VMS akan mengirim suatu 'Bind Transmitter Req' atau 'Bind Receiver Req'. Jika yang dikirim "Bind Transmitter Req' maka SMSC akan berfungsi sebagai server yang menerima message yang dikirim oleh VMS. Sedang bila yang dikirim 'Bind Receiver Req' maka SMSC akan berfungsi sebagai client yang akan mengirimkan message ke VMS. 47 Untuk memulai hubungan, SMSC mengirimkan command ‘bind transmitter’. Pada saat message ini sampai di VMS, password, system-id dan system type dari message akan akan dicek. Password-nya harus sesuai dengan password VMS system-id dan system typenya juga harus menyatakan identifikasi antarmuka yang unik. Jika VMS telah mengecek dan message tersebut sudah valid maka VMS akan mengirimkan command 'bind transmitter resp' sebagai acknowledgement ke SMSC. 2. Tahap Berkomunikasi Setelah hubungan virtual terbentuk, pertukaran informasi baru dapat dilakukan. SMSC dapat mengirimkan message ke VMS. Untuk mengirimkan message itu,. SMSC menggunakan command 'submit sm'. Setelah menerima message ini VMS akan mengirimkan command 'submit sm resp sebagai acknowledgement atas penerimaan message itu ke SMSC 3. Tahap Pemutusan Hubungan Jika ingin mengakhiri komunikasi, baik VMS maupun SMSC dapat menggunakan command 'unbind' menggunakan hubungan virtual yang tepat. Sebelum hubungan terputus, sistem penerima (server) akan mengirimkan acknowledgement terlebih dahulu. Gambar 2.18 Proses komunikasi antara VMS dan SMSC 48 BAB III TEORI DASAR SISTEM ANTRIAN 3.1 PENDAHULUAN Teori antrian merupakan suatu cabang teori probabilitas yang melibatkan studi matematik dari antrian. Mempelajari antrian berarti mempelajari tentang waktu tunggu (waiting time). Formasi antrian merupakan proses yang terjadi bila permintaan terhadap pelayanan dari suatu system melebihi kapasitas sistem sehingga permintaan tersebut diantrikan. 3.2 STRUKTUR DASAR SISTEM ANTRIAN Sistem antrian dapat digambarkan sebagai berikut : input output Sistem antrian Gambar 3.1 Sistem Antrian server tunggal Unit operasional yang melalui system antrian biasa disebut pelanggan (customer). Deretan pelanggan dapat tiba pada suatu elemen pelayanan (server) atau lebih dengan tingkat kedatangan tertentu (λ), satuannya pelanggan/detik. Jika pelanggan yang datang mendapati elemen pelayanan dalam keadaan sibuk, maka pelanggan tersebut akan diantriakan dan menunggu untuk mendapat pelayanan. Dari antrian pelanggan dapat dipilih untuk dilayani menurut aturan tertentu yang disebut 49 disiplin antrian (queue discipline). Kemudian pelanggan memasuki server untuk mendapat pelayanan dengan kecepatan pelayanan dengan satuan pelanggan/detik. Untuk mengelompokkan jenis sistem antrian digunakan notasi Kendall A/B/m, dimana A menyatakan distribusi waktu antar kedatangan (interarrival-time), B menyatakan distribusi waktu pelayanan (service time) , dan m menyatakan jumlah elemen pelayanan paralel yang digunakan. Distribusi yang sering digunakan adalah : 3.3 M Distribusi eksponensial D Distribusi deterministic G Distribusi general POLA KEDATANGAN (PATTERN OF ARRIVAL) Pola kedatangan ini merupakan salah satu komponen utama dari system antrian. Pola kedatangan dapat berupa regular arrival atau random arrival, yang masing-masing akan diuraikan berikut ini. 3.3.1 REGULAR ARRIVAL Regular arrival atau pola kedatangan tetap, artinya interval waktu antar dua kedatangan berturut-turut adalah konstant (tetap). Pola kedatangan ini sangat sederhana tapi kurang realistis. 3.3.2 RANDOM ARRIVAL Situasi yang sering terjadi adalah pola kedatangan yang bersifat random, artinya kedatangan dapat terjadi kapan saja. Dengan asumsi bahwa kedatangan 50 berikutnya tidak tergantung dari kedatangan sebelumnya. Bila λ adalah harga ratarata kedatangan per unit waktu maka probabilitas kedatangan dalam interval Δt adalah λ Δt. Fungsi padat dari waktu kedatangan dinyatakan oleh : F(x) = λ e-λ t (3.1) Dengan distribusi eksponensial dari selang waktu kedatangan akan diperoleh probabilitas n kedatangan terjadi pada panjang t sebagai berikut : Pn (t) = λ (λ t ) n e − λ t n! (3.2) Distribusi ini dikenal dengan sebagai distribusi\poisson dan bersifat diskrit, sedangkan distribusi eksponensial adalah kontinyu, karena selang waktu kedatangan dapat berharga sebarang positif. Berdasarkan hubungan kedua distribusi ini maka pola kedatangan random sering pula disebut pola kedatangan Poisson. Dimana selang waktu kedatangannya terdistribusi secara eksponensial. Pola ini juga penting dalam teori antrian karena dengan asumsi bahwa selang waktu kedatangan adalah independent terhadap kedatangan sebelumnya akan menghasilkan solusi matematis yang sederhana pada beberapa kasus. 3.4 DISTRIBUSI WAKTU PELAYANAN DAN KECEPATAN PELAYANAN Komponen kedua dari system antrian adalah karakteristik pelayanan yang dibutuhkan oleh setiap pelanggan. Unit pelayanan tergantung pada tipe elemen pelayanan dan pelanggannya adalah data atau pesan (message), maka unitnya berupa (bits) atau (bytes). 51 Pada umumnya diasumsikan bahwa pelanggan bersifat homogen, sehingga permintaan pelayanan (service demand) terdistribusi secara identik dan dikenal sebagai distribusi pelayanan. Kecepatan pelayanan menyatakan seberapa cepat elemen pelayanan menyelesaikan pekerjaannya. Jika elemen pelayanannya berupa kanal saluran transmisi, maka kecepatannya dihitung dalam (bps) atau (kbps), dan menyatakan kecepatan transmisi. Jika permintaan pelayanan pelanggan adalah S (service unit) dan elemen pelayanannya mempunyai kecepatan C (service unit/sec)maka S/C adalah waktu pelayanan (service time). Jika nilai C constant maka tidak ada perbedaan mendasar antara permintaan pelayanan dan waktu pelayanan. Oleh karena itu untuk S/C = 1, permintaan pelayanan dinyatakan dalam waktu. 3.5 DISIPLIN ANTRIAN Disiplin antrian menentukan bagaimana pelanggan selanjutnya (next customer) dipilih dari antrian untuk mendapatkan pelayanan. Beberapa disiplin antrian yang diketahui yaitu : 1. FCFS, First Come First Server, pelanggan yang dipilih untuk mendapat pelayanan adalah pelanggan yang paling dahulu antri. 2. LCFS, Last Come First Server, dengan disiplin pelayanan ini pelanggan yang terakhir memasuki antrian akan dipilih untuk mendapat pelayanan. 3. PS, processor Sharing, setiap pelanggan yang berada dalam antrian akan mendapat porsi pelayanan yang sama, sehingga dalam hal ini tidak ada antrian tunggu karena setiap pelanggan telah mendapat pelayanan meskipun belum lengkap. 52 4. Acak (random), artinya pelanggan yang akan mendapat pelayanan dipilih secara acak, sehingga seluruh pelanggan yang antri mempunyai peluang yang sama. Ada juga system antrian dengan prioritas jika terdapat prioritas maka hal yang harus diperhatikan adalah apa yang terjadi jika pelanggan yang datang memiliki prioritas lebih tinggi dari pelanggan yang sedang dilayani. Ada dua prioritas antrian yang berkaitan dengan hal itu ; 1. Non-preemptive, jika pelanggan yang datang dengan prioritas lebih tinggi maka pelanggan yang mempunyai prioritas lebih rendah yang sedang dilayani tidak diinterupsi. 2. Preem tive, jika pelanggan yang datang dengan prioritas lebih tinggi maka pelanggan yang mempunyai prioritas lebih rendah yang sedang dalam pelayanan akan diinterupsi dan dilanjutkan lagi jika pelanggan dengan prioritas lebih tinggi selesai dilayani. 3.6 RUMUS LITTLE Salah satu hasil yang paling menarik dalam teori antrian adalah yang dibuat oleh J.D, little, rumusnya dapat dinyatakan sebagai berikut : N=λT (3.3) Dimana : N = Jumlah pelanggan rata-rata dalam system λ = Tingkat kedatangan rata-rata pelanggan kedalam system T = Waktu tunggu rata-rata pelanggan didalam system 53 Secara logika sebenarnya relasi ini sudah diketahui sebelum Litle menurunkannya. Relasi ini berlaku umum untuk semua tipe antrian. 3.7 SISTEM ANTRIAN M/M1 System antrian M/M/1 adalah system antrian dengan tipe server tunggal, pola kedatangan Poisson, distribusi waktu pelayanan eksponensial dan tingkat pelayanan rata-rata μ pelanggan/detik. μ μ 2 1 0 λ μ λ ... λ λ μ μ n-1 λ μ μ N+1 n λ λ λ Gambar 3.2 Diagram transisi keadaan system antrian M/M/1 Proses kedatangan : P (terjadinya 1 kedatangan dalam [t,t + Δ t]) = λ Δτ (3.4) P (tidak ada kedatangan dalam [t,t + Δ t]) = 1 - λ Δt (3.5) Proses pelayanan : P ( 1 pelayanan selesai dalam [t,t + Δ t]) = μ Δτ (3.6) P (tidak ada pelayanan selesai dalam [t,t + Δ t]) = 1 - λ Δt (3.7) Didefenisikan : Pn(t) = P (jumlah kedatangan = n pada waktu t) Pij (tΔ) ialah probabilitas berubahnya dari i kedatangan ke j kedatangan dalam interval Δt detik. Pn(t+Δt) = Pn(t)Pn,n(Δt)+Pn-I(t) Pn-I,n(Δt)+ Pn+I(t) Pn+I,n(Δt) (3.8) 54 Persamaan ini menyatakan keadaan dengan n pelanggan saat t+Δt dapat terjadi dari n-1,n atau n+1 pelanggan pada waktu t. Untuk keadaan 0(n=0) terdapat tersamaan khusus : Po(t+Δt) = Po(t)Po,o(Δt)+P1,o(Δt) (3.9) Jika persamaan (3.4),(3.5),(3.6),(3.7) disubtitusikan ke persamaan (3.8) dan (3.9) dan bentuk Δt dengan orde lebih tinggi diabaikan diperoleh : Pn(t+Δt) = Pn(t)(1- λ Δt)(1-μ Δt)+Pn-1(t)( λ Δt)+Pn+1(t)(μ Δt) Pn(t+Δt) = Po(t)(1- λ Δt)+P1(t)(μ Δt) Dari persamaan-persamaan diatas dapat dicari probabilitas terdapat n paket dalam system pada keadaan mantap : dPn(t ) = -(λ+μ)Pn(t)+λPn-1(t)+μ Pn+1(t) dt ,n >=1 (3.10) dPo(t ) = - λPo(t)+μP1(t) dt (3.11) dPn(t ) = 0, maka probabilitas keadaan stasioner Pn dari antrian M/M/1 dt adalah ; (λ+μ)Pn = λPn-1+μPn+1 ,n ≥1 (3.12) (3.13) λPo = μP1 μ μ 2 1 λ μ λ ... λ λ μ μ n-1 λ μ μ N+1 n λ λ λ Gambar 3.3 Diagram keseimbangan antrian M/M1 55 Untuk mencari solusi probabilitas kesetimbangan untuk system antrian M/M/1 dapat digunakan argumentasi seimbang. Misal pada gambar 3.5 adalah diagram kondisi antrian dengan dua kondisi yang berdekatan yaitu n dan n+1. Maka fluks kondisi yang memasuki n adalah μPn+1 dan fluks yang meninggalkan adalah λ pn. Dengan prinsip kesetimbangan diperoleh : (3.14) λ Pn = μ Pn+1 Dengan melakukan pengulangan berkali-kali dan p = λ/μ didapat solusi untuk Pn : Pn = ρ vPo (3.15) Untuk mencari Po digunakan sifat probabilitas ∑ nPn = 1, diperoleh Po = (1- ρ), jika ρ<1 dan antrian tak terbatas, sehingga solusi probabilitas keadaan kesetimbangan untuk antrian M/M/1 : P = (1-ρ) ρv (3.16) Beberapa besaran yang dapat dihitung berdasarkan probabilitas keadaan kesetimbangan yang telah diketahui : 1. Throughput system atau jumlah pelanggan yang dilayani per detik (γ0. Untuk server tunggal tingkat pelayanan rata-rata adalah μ, jika antrian selalu tidak kosong. Dalam kenyataannya, antrian kadang-kadang kosong, dengan probabilitas Po, maka tingkat pelayanan kurang dari μ. Jadi γ = μ (1-Po), karena (1-Po) adalah probabilitas bahwa antrian tidak kosong. Jika tidak ada bloking maka γ = λ dan λ = μ(1-Po). 2. Jumlah pelanggan rata-rata dalam antrian termasuk yang sedang dilayani (n atau E(n)): E(n) = n = ∑ n =0 nPn = ρ / (1- ρ) 56 3. Delay waktu waktu melewati antrian termasuk waktu tunggu dan waktu pelayanan atau waktu tranmisi (τ). Dari rumus Little diperoleh : 4. Jumlah pelanggan rata-rata yang menunggu dalam antrian (nQ) : μ nQ= λτQ λ n = λτ Gambar 3.5 Rumus Little pada antrian M/M/1 Diketahui dalam antrian server tunggal terdapat hubungan antara waktu tunggu rata-rata (τQ) dan delay (τ) rata-rata untuk melewati antrian. τ = τQ + 1/μ, maka nQ = λ τ Q = λ τ – λ/ μ =n–ρ 3.8 SISTEM ANTRIAN M/G/1 System antrian M/G/1 merupakan system antrian dengan proses kedatangan poisson, distribusi waktu pelayanan merupakan distribusi umum (general), dan merupakan server tunggal, dengan asumsi kapasitas buffer tak terbatas. Akan dihitung jumlah pelanggan rata-rata dalam antian n atau E(n) dan delay waktu rata-rata dalam antrian E(T) atau Wq. Berdasarkan rumus yang dikenal dengan rumus Pollaczek-Kinchine diketahui bahwa : E(n) = ρ (1 − ρ ) [1-ρ / 2(1-μ2τ2)] (3.17) 57 E(T) = Wq = E (n) λ = 1/ λ [1- ρ / 2(1- μ2τ2)] (1 − ρ ) (3.18) Parameter ρ adalah λ/μ = λ E(τ), dengan λ tingkat kedatangan rata-rata dan E(τ) = 1/μ waktu pelayanan rata-rata. Parameter τ2 adalah variasi dari distribusi pelayanan. Kedua persamaan diatas,jika dibandingkan dengan besaran dalam persamaan M/M/1 yang telah dibahas sebelumnya, jumlah pelanggan rata-rata dalam antrian dan delay waktu dalam antrian, dapat diperoleh dari distribusi pelayanan eksponensial dikalikan dengan faktor koreksi. Faktor koreksi ini terdapat dalam tanda kurung pada persamaan (3.17) dan (3.18) tergantung pada rasio variansi τ2 dari distribusi pelayanan dengan kuadrat nilai rata-rata 1 / μ2 . Variansi distribusi eksponensial = 1 / τ2. Jika τ2 > μ2 maka pendudukan dan delay waktu antrian juga lebih besar. Sebaliknya jika τ2 < μ2 maka pendudukan dan delay antrian juga menurun. Pada kasus khusus semua pelanggan atau paket mempunyai panjang dan lama pelayanan yang sama yaitu 1/ μ maka τ2 = 0 : E(n) = Wq = ρ 1− ρ (1-ρ / 2) 1/ μ (1 − ρ / 2) 1/ ρ , τ2 = 0 (3.19) , τ2 = 0 (3.20) Antrian dengan karakteristik ini disebut system antrian M/D/1, dengan D merepresentasikan waktu pelayanan deterministik dan merupakan kasus khusus dalam antrian M/G/1 karena mempunyai pendudukan dan delay terkecil yang mungkin. 58 BAB IV ANALISIS ANTRIAN 4.1 UMUM Survey yang dilakukan di PT. TELKOMSEL Divisi Network Regional VAS (Vailure Accurance System) and Data Communication Medan Sub Departement serta Divisi Network Regional SQA (Service Quality Accurance), sebagai penyelenggara telephone bergerak mempunyai 3 SMSC di Indonesia, yaitu : 1. SMSC Jakarta 2. SMSC Surabaya 3. SMSC Medan Yang mana masing-masing MSC di distribusi oleh GMSC yang betempat di Jakarta. MSC untuk propinsi yang ada di Indonesia ditangani oleh SMSC, untuk bagian Sumatera ditangani oleh SMSC Medan, untuk bagian tengah ditangani oleh SMSC Jakarta, dan bagian timur ditangani oleh SMSC Surabaya. SMSC satu sama lainsaling interkoneksi antara SMSC Jakarta, SMSC Surabaya, dan SMSC Medan. Sehingga pesan dapat diterima walaupun kita berada di daerh lain yang mempunyai jaringan telkomsel didaerah dimana kita berada. Untuk Divisi I Regional Sumbagut terdapat 2 tempat yaitu : 1. Terletak di Pulau Bryan (Puba) 2. Terletak di Tembung Untuk wilayah Puba mensuplay daerah kawasan dalam kota, dan untuk wilayah Tembung mensuplay daerah kawasan kota. Dan mesin SMSC terletak di Tembung tepatnya pada PT. TELKOM. 59 Kepadatan antrian pada umumnya terjadi pada waktu Peak Season, yang juga berarti musim liburan, lebaran, natal bahkan Tahun Baru yang terkadang terajadi secara berurutan merupakan nuansa rutin tahunan yang terjadi di Indonesia. Konon kabarnya, mudik Lebaran adalah merupakan mobilitas terbesar kedua didunia, dimana yang pertama adalah ibadah haji (Pilgrimage). Fenomena ini bila dikaitkan dengan bisnis, khususnya dilihat dari bisnis telekomunikasi dapat dijadikan suatu kajian yang menarik. Terutama bagi Telkomsel sebagai penyelenggara jasa telekomunikasi selular, memiliki kaitan yang sangat erat dengan pergerakan/mobilitas masyarakat dengan mudik Lebaran, liburan atau lainnya. Dengan itu Telkomsel mengambil analisa data diantaranya adalah data pemakai SMS per pelanggan dan data Failed SMS yang terjadi sehingga dat tersebut menjadi bermanfaat untuk mengetahui pertumbuhan % pengguna SMS per pelanggan. Untuk melihat sejauh mana pelanggan sudah mengetahui, memanfaatkan SMS dalam rangka pemberian ucapan selamat seperti pada mudik Lebaran. Pada hari Lebaran peningkatan SMS/MMS yang melonjak sangat tajam pada H-1 sebelum Lebaran sehingga menyebabakan blocking khususnya untuk MSC dan berangsur normal sampai H-3 sesudah Lebaran. Maka persiapan untuk Lebaran, Natal, dan Tahun Baru harus mempersiapkan diri jauh-jauh hari sebelum tiba waktu kapasitas antrian tinggi, dengan melaksanakan berbagai persiapan sebagai berikut : 1. Menambah kapasitas HLR yang semula 1 juta menjadi 1,2 juta, dan kapasitas VLR semua MSC menjadi 1.750.000. 2. Melakukan penambahan 4 buah BSC baru 3. Melakukan Re-Boundary MSC dan Swing Over 8 BSC yang ditujukan untuk pemerataan beban. 60 4. Penambahan Kapasitas Link Inter MSC maupun ke Trunk PSTN 5. Integrasi IN-2 6. Penambahan coverage dan kapasitas BSS dengan integrasi BTS-BTS baru sebanyak 17 BTS baru pada bulan November dan penambahan kapasitas TRX di beberapa lokasi BTS. 7. Pemasangan COMBAT di daerah yang di luar jangkauan signal atau pedalaman tetapi terdapat jalur akses mudik/user mobile 8. Penyiapan GENSET 9. Aktifitas Features Cell Broadcast 4.2 STRATEGI PENGIRIMAN MESSAGE Ketika message dikirimkan ke SME tujuan (MS), keadaan transisi SME menjadi sibuk (busy) , dan tidak ada percobaan pengiriman lebih jauh yang dibuat oleh Kernel ke SME tujuan sehingga mobile report diterima dari SME tujuan. Pada tanda terima dari mobile report dari SME tujuan menunjukkan pengantaran yang berhasil (ACK), messagenya ditandai sebagai DONE dengan status Delivered dan message dipindahkan ke antrian yang telah diproses. Keadaan transisi SME kembali menjadi AVAILABLE. Dan message selanjutnya bisa diproses. Pada tanda terima mobile report dari MS yang menunjukkan unsuccesful delivery , kernel mengambil salah satu tindakan tegantung pada mobile report yang diterima menunjukkan kondisi tetap atau sementara. • Kondisi tetap (PNAC) 61 Message ditandai dengan tidak dapat dikirimkan (undeliverable) dan dipindahkan ke antrian yang telah diproses. Laporan akan segera dikirimkan ke SME asal yang memberitahukan message tidak dapat dikirimkan. • Kondisi sementara (TNACK) Penyebab kondisi ini karena pelanggan non-aktif. Pengiriman ulang selanjutnya ditentukan oleh sinyal ALERT dari HLR yang menunjukkan MS aktif kembali atau berdasarkan algoritma pengulangan yang diatur oleh kernel. 4.3 PENGIRIMAN MESSAGE KEMBALI Saat pelanggan mengirim message (MOC) tapi ternyata pelanggan yang dihubungi sedang non-aktif atau berada diluar cakupan, akan dilakukan pengiriman message kembali yang diatur oleh Kernel. Algoritma pengulangan message secara garis besar sebagai berikut : • Retry Level – 0 Setelah pangiriman message ternyata menerima laporan bahwa pelanggan yang dihubungi tersebut non-aktif atau diluar cakupan, maka akan ditunggu 60 detik, sebelum percobaan pengiriaman ulang. • Retry Level – 1 Pengiriman ulang message pertama ini dilakukan setelah 300 detik. Jika setelah pengiriman ulang ini belum diperoleh laporan dari jaringan message akan memasuki retry level – 2 • Retry Level – 2 62 Retry level – 2 ini diset setelah pengiriman ulang pertama belum memperoleh jawaban dari jaringan, ditunggu saru jam untuk pengiriman ulang kembali. Jika masih belum memperoleh jawaban dari jaringan maka message akan memasuki retry level – 3 • Retry Level – 3 Pengiriman ulang akan terus dilakukan setiap satu jam sekali, sampai memperoleh laporan dari jaringan bahwa pelanggan aktif. Pengiriman ulang ini dilakukan selama tiga hari. Jika sampai tiga hari belum memperoleh laporan dari jaringan, message akan memasuki retry level-4 • Retry Level – 4 Ini merupakan pengiriman ulang terakhir kalinya sebelum message dihapus dari basis data (RDBMS). 4.3.1 IDENTIFIKASI MESSAGE Proses yang harus dilewati message sejak dikirim sampai diterima MS tujuan cukup lama. Message diterima SME (Short Message Entity), dan kemudian dilewatkan ke telepath kernel. Proses pertama adalah validasi untuk menjamin message mempunyai alamat pengirim dan penerima yang benar. Validasi lebih jauh adalah sebagai berikut : 1. Security Pengecekan dilakukan untuk memastikan pengirim message diketahui system dan diizinkan untuk mengakses. System sudah membentuk identitas user, hal ini membuktikan pengirim telah memiliki hak untuk mengkses message yang diserahkan. 63 2. Validation and Verification Pengecekan dilakukan pada masing-masing parameter dalam message. Parameter ini terdiri dari tipe message, panjang message, prioritas message, alamat pengirim dan penerima. Jika salah satu parameter ini tidak valid, SMSC akan mengembalikan laporan error ke SME pengirim, dan message dibuang oleh SMSC. 3. Subscription Check Sistem ini juga membentuk pengecekan terhadap message yang berlawanan dari layanan khusus CUG (Close |User Group). Pengecekan dilakukan untuk menjamin pelanggan di luar CUG tidak mengakses layanan ini. 4. ID allocation Identifikasi yang unik diturunkan untuk masing-masing message yang disampaikan dengan benar. Identifikasi digabungkan dengan tanggal dan waktu message diserahkan dan ditambah pada identifikasi. 4.3.2 ANTRIAN MESSAGE Kernel bertanggung jawab untuk pengiriman message dan jika gagal melakukan pengiriman. Elemen pertama dalam antrian memelihara logika antrian sebagai berikut : 1. Normal message queque Kernel menahan semua message yang bukan prioritas untuk pengiriman. Elemen pertama dalam antrian adalah yang pertama datang dan yang terakhir adalah yang terakhir datang. 2. Priority message queque 64 Kernel menahan semua message prioritas untuk pengiriman. Elemen pertama dalam antrian adalah yang mempunyai prioritas tertinggi dan elemen terakhir adalah yang mempunyai prioritas terendah. Antrian ini berada di depan normal message queque. 4.4 DESKRIPSI MODEL Sistem antrian M/G/1 adalah system antrian dengan proses kedatangan Poisson, distribusi waktu pelayanannya adalah distribusi umum (general), server tunggal, dengan asumsi kapasitas buffer antrian tidak terbatas. Sistem antrian M/D/1 merupakan kasus khusus dari antrian M/G-/1, dimana panjang message dan waktu pelayanan konstant, sehingga memiliki waktu pendudukan dan delay terkecil. Antrian untuk SMS ini dimodelkan sebagai berikut : Gambar : Model Antrian untuk SMSC SMSC berfungsi sebagai server sekaligus buffer yang menyimpan message dalam RDBMS. Pola kedatangan message mengikuti distribusi Poisson, distribusi pelayanan determine dengan kecepatan 10 message perdetik. Waktu broadcast menunjukkan jam pengiriman broadcast, dan persentase pelayanan yang aktif.dalam satu hari terdapat tiga zone waktu yaitu : • Zone I, pada pukul 06.00 – 08.00 dan 20.00 – 22.00, dengan rata-rata jumlah pelanggan yang aktif 30% 65 • Zone II, pada pukul 08.00 – 20.00, dengan rata-rata jumlah pelanggan yang aktif 85%. • Zone III, pada pukul 22.00 – 24.00 dan 00.00 – 06.00, dengan rata – rata jumlah pelanggan yang aktif 2% 4.5 ANALISIS WAKTU TUNGGU RATA-RATA DALAM ANTRIAN Waktu tunggu rata-rata dalam antrian dimulai saat message diterima RDMS dan siap dikirim ke MS tujuan. Faktor-faktor yang mempengaruhi waktu tunggu ratarata dalam antrian adalah jumlah pelanggan, tingkat broadcast, jumlah notifikasi, waktu broadcast, dan waktu pelayanan. Pola kedatangan message mengikuti distribusi Poisson dan waktu pelayanan bernilai tetap yaitu 10 detik per message.] 4.5.1 PERHITUNGAN JUMLAH PELANGGAN Dari data yang diperoleh dari salah satu operator GSM di wilayah Medan yaitu PT. TELKOMSEL dapat dihitung jumlah pelanggan untuk pengguna sms diwilayah Medan. Wilayah Medan memiliki 232 sel dengan total pelanggan sebesar ± 479.177 pelanggan. Untuk perhitungan dalam menganalisa antrian sms, maka dari data diambil kesimpulan semua pelanggan pernah menggunakan, dimana dalam perhitungan diasumsikan semua pelanggan aktif. Jumlah rata-rata pelanggan aktif. Jumlah ratarata pelanggan pengguna sms untuk 1 sel dapat diperhitungkan sebagai berikut : Jumlah pelanggan total = 479.177 pelanggan Jumlah pelanggan untuk 1 sel yaitu = 479.177 pelanggan / 232 sel = ± 2065 pelanggan. Dari perhitungan diperoleh bahwa untuk pelanggan sms sebesar ± 2065 66 pelanggan untuk 1 selnya. Dalam perhitungan dilihat pengaruh dari jumlah pelanggan pengguna sms dimana dengan asumsi setiap pelanggan mengirim message 2 message per hari, maka ada 958354 message per hari. Jumlah message yang diproses sistem adalah : Jumlah pelanggan (2 + % notifikasi + % broadcast) Ini dengan asumsi masing-masing pelanggan mengirim dua message per hari, misalnya tiga hari maka tiap hari selama tiga hari akan dikirim message berdasarkan rumus diatas. Dalam perhitungan ini diasumsikan untuk GSM phase II semua pelanggan mempunyai fasilitas SMS dan berhak untuk mengakses layanan ini, sehingga tidak ada message yang ditolak. 4.5.2 WAKTU TUNGGU RATA-RATA PADA SISTEM ANTRIAN , BROADCAST DAN NOTIFIKASI TETAP. Untuk menganalisis pengaruh perubahan jumlah pelanggan diambil beberapa sampel yang diharapkan dapat mewakili sistem. Sebagai sampel digunakan jumlah pelanggan 200, 300, 400, 500, 600, ribu dengan tingkat broadcast 10%, notifikasi 10%, pelanggan dianggap semua aktif. 1. Untuk 200.000 pelanggan ; Jumlah message yang diproses adalah : Jumlah pelanggan (2 + %notifikasi + %broadcast) 200.000 (2 + 0,1 + 0,1) = 440.000 message/hari = 5,092 message/detik 67 Ini berarti message berdatangan dengan mengikuti distribusi poisson pada tingkat rata-rata 5,092 message/detik Diketahui komponen data sekaligus nilainya sebagai berikut : λ = 5,092 message/detik E (t) = 10 message/detik Dengan waktu pelayanan yang konstan, maka akan diperoleh Var (t) = 0 ini sebagai pelayanan yang tetap. Ekspektasi jumlah message dalam sistem antrian SMSC adalah : Ls = λ E(t) + λ2 ( E 2 (t ) + Var (t )) 2(1 − λE (t )) = 5,092*10 + = 50,92 + 5,092 2 (10 2 + 0) 2(1 − 5,092 * 10) 2592,846 − 99,84 = 24,949 Dengan ini jumlah rata-rata message dalam sistem antrian pada SMSC adalah sebanyak 25 message Ws = Ls λ = 24,949 5,092 = 4,899 detik Dengan demikian rata-rata waktu tunggu dalam sistem antrian SMSC adalah : 4,899 detik. 2. Untuk 300.000 pelanggan ; Diketahui komponen data sekaligus nilainya sebagai berikut : λ = 7,638 message/detik E (t) = 10 message/detik 68 Dengan waktu pelayanan yang konstan, maka akan diperoleh Var (t) = 0 ini sebagai pelayanan yang tetap. Ls = λ E(t) + λ2 ( E 2 (t ) + Var (t )) 2(1 − λE (t )) = 7,638*10 + = 76,38 + 7,638 2 (10 2 + 0) 2(1 − 7,638 * 10) 5833,904 − 150,76 = 37,68 Dengan ini jumlah rata-rata message dalam sistem antrian pada SMSC adalah sebanyak 38 message Ws = Ls λ = 37,68 7,638 = 4,933 detik Dengan demikian rata-rata waktu tunggu dalam sistem antrian SMSC adalah : 4,933 detik. 3. Untuk 400.000 pelanggan ; Diketahui komponen data sekaligus nilainya sebagai berikut : λ = 10,185 message/detik E (t) = 10 message/detik Dengan waktu pelayanan yang konstan, maka akan diperoleh Var (t) = 0 ini sebagai pelayanan yang tetap. Ls λ2 ( E 2 (t ) + Var (t )) = λ E(t) + 2(1 − λE (t )) 10,185 2 (10 2 + 0) = 10,185*10 + 2(1 − 10,185 * 10) 69 = 101,85 + 10373,422 − 201,7 = 50,42 Dengan ini jumlah rata-rata message dalam sistem antrian pada SMSC adalah sebanyak 50 message Ws = Ls λ = 50,42 10,185 = 4,950 detik Dengan demikian rata-rata waktu tunggu dalam sistem antrian SMSC adalah : 4,950 detik. 4. Untuk 500.000 pelanggan ; Diketahui komponen data sekaligus nilainya sebagai berikut : λ = 12,731 message/detik E (t) = 10 message/detik Dengan waktu pelayanan yang konstan, maka akan diperoleh Var (t) = 0 ini sebagai pelayanan yang tetap. Ls λ2 ( E 2 (t ) + Var (t )) 2(1 − λE (t )) = λ E(t) + = 12,731*10 + = 127,31 + 12,7312 (10 2 + 0) 2(1 − 12,731 * 10) 16207,836 − 252,62 = 63,151 Dengan ini jumlah rata-rata message dalam sistem antrian pada SMSC adalah sebanyak 63 message Ws = Ls λ = 63,151 12,731 = 4,960 detik 70 Dengan demikian rata-rata waktu tunggu dalam sistem antrian SMSC adalah : 4,960 detik. 5. Untuk 600.000 pelanggan ; Diketahui komponen data sekaligus nilainya sebagai berikut : λ = 15,277 message/detik E (t) = 10 message/detik Dengan waktu pelayanan yang konstan, maka akan diperoleh Var (t) = 0 ini sebagai pelayanan yang tetap. Ls λ2 ( E 2 (t ) + Var (t )) 2(1 − λE (t )) = λ E(t) + = 15,277*10 + = 152,77 + 15,277 2 (10 2 + 0) 2(1 − 15,277 * 10) 23338,672 − 303,54 = 75,881 Dengan ini jumlah rata-rata message dalam sistem antrian pada SMSC adalah sebanyak 76 message Ws = Ls λ = 75,881 15,277 = 4,967 detik Dengan demikian rata-rata waktu tunggu dalam sistem antrian SMSC adalah : 4,967 detik. Data perhitungan keseluruhan untuk waktu tunggu rata-rata dalam sistem dan jumlah rata-rata message dalam sistem untuk jumlah pelanggan berubah dapat dilihat dari tabel 4.1 dibawah ini : 71 Pelanggan Ws (detik) Ls (detik) 200.000 4,899 24,949 300.000 4,933 37,680 400.000 4,950 50,420 500.000 4,960 63,151 600.000 4,967 75,881 Tabel 4.1 waktu tunggu rata-rata dan jumlah rata-rata message dalam sistem Waktu tunggu rata-rata (detik) Delay Dalam Sistem 4,980 4,970 4,960 4,950 4,940 4,930 4,920 4,910 4,900 4,890 0 200 400 600 800 Jumlah Pelanggan (ribu) Grafik 4.1 Waktu tunggu rata-rata dalam sistem Dari tabel dan grafik diatas secara umum dapat dilihat bahwa semakin banyak jumlah pelanggan semakin besar waktu tunggu rata-rata antrian dalam sistem dan semakin besar juga jumlah rata-rata message dalam sistem. Hasil perhitungan menunjukkan bahwa waktu tunggu dipenaruhi oleh jumlah pelanggan. Semakin banyak jumlah pelanggan berarti jumlah message yang diroses semakin banyak, dan kemungkinan message datang pada saat yang bersamaan semakin besar sehingga waktu tunda akan lebih lama. 72 4.5.3 Waktu Tunggu Rata-Rata Dalam Antrian SMSC Parameternya berupa jumlah pelanggan, pelanggan dianggap semua aktif yaitu antara 200, 300, 400, 500, 600 ribu pelanggan dengan tingkat broadcast 10 % dan notifikasi 10 %. 1. Untuk 200.000 pelanggan Diketahui komponen data sekaligus nilainya sebagai berikut : λ = 5,092 message/detik E (t) = 0,1 Ls = λ E(t) + Ls = 24,949 Ws = Lq = Ls – λ.E(t) Ls λ λ2 ( E 2 (t ) + Var (t )) 2(1 − λE (t )) = 4,899 detik = 24,949 – 5,092*0,1 = 24,439 Ini berarti jumlah rata-rata pelanggan yang ada dalam antrian SMSC adalah 24 pelanggan. Wq = Lq λ = 24,439 = 4,799 5,092 Ini berarti jumlah waktu rata-rata untuk menunggu dalam antrian pada SMSC adalah 4,799 detik. 2. Untuk 300.000 pelanggan Diketahui komponen data sekaligus nilainya sebagai berikut : λ = 7,638 message/detik 73 E (t) = 0,1 Ls = λ E(t) + Ls = 37,68 Ws = Lq = Ls – λ.E(t) Ls λ λ2 ( E 2 (t ) + Var (t )) 2(1 − λE (t )) = 4,933 detik = 37,68 – 7,638*0,1 = 36,912 Ini berarti jumlah rata-rata pelanggan yang ada dalam antrian SMSC adalah 37 pelanggan. Wq = Lq λ = 36,912 = 4,833 7,638 Ini berarti jumlah waktu rata-rata untuk menunggu dalam antrian pada SMSC adalah 4,833 detik. 3. Untuk 400.000 pelanggan Diketahui komponen data sekaligus nilainya sebagai berikut : λ = 10,185 message/detik E (t) = 0,1 detik Ls = λ E(t) + λ2 ( E 2 (t ) + Var (t )) 2(1 − λE (t )) = 50,42 Ls Ws = Lq = Ls – λ.E(t) λ = 4,950 detik = 50,42 – 10,185*0,1 74 = 49,401 Ini berarti jumlah rata-rata pelanggan yang ada dalam antrian SMSC adalah 49 pelanggan. Wq = Lq = λ 49,401 = 4,850 10,185 Ini berarti jumlah waktu rata-rata untuk menunggu dalam antrian pada SMSC adalah 4,850 detik. 4. Untuk 500.000 pelanggan Diketahui komponen data sekaligus nilainya sebagai berikut : λ = 12,731 message/detik E (t) = 0,1 Ls = λ E(t) + λ2 ( E 2 (t ) + Var (t )) 2(1 − λE (t )) = 63,151 Ls Ws = Lq = Ls – λ.E(t) λ = 4,960 detik = 63,151 – 12,731*0,1 = 61,877 Ini berarti jumlah rata-rata pelanggan yang ada dalam antrian SMSC adalah 62 pelanggan. Wq = Lq λ = 61,877 = 4,860 12,731 Ini berarti jumlah waktu rata-rata untuk menunggu dalam antrian pada SMSC adalah 4,860 detik. 5. Untuk 600.000 pelanggan 75 Diketahui komponen data sekaligus nilainya sebagai berikut : λ = 15,277 message/detik E (t) = 0,1 Ls λ2 ( E 2 (t ) + Var (t )) = λ E(t) + 2(1 − λE (t )) = 75,881 Ls Ws = Lq = Ls – λ.E(t) λ = 4,967 detik = 75,881 – 15,277*0,1 = 74,353 Ini berarti jumlah rata-rata pelanggan yang ada dalam antrian SMSC adalah 74 pelanggan. Wq = Lq λ = 74,353 = 4,867 15,277 Ini berarti jumlah waktu rata-rata untuk menunggu dalam antrian pada SMSC adalah 4,867 detik. Data perhitungan keseluruhan untuk waktu tunggu rata-rata dalam antrian dan jumlah rata-rata message dalam antrian untuk jumlah pelanggan berubah dapat dilihat dari tabel 4.2 dibawah ini : Pelanggan Wq (detik) Lq (detik) 200.000 4,799 24,439 300.000 4,833 36,912 400.000 4,850 49,401 500.000 4,860 61,877 600.000 4,867 75,353 76 Tabel 4.1 waktu tunggu rata-rata dan jumlah rata-rata message dalam sistem Waktu tunggu rata-rata (detik) Delay dalam antrian 4,880 4,870 4,860 4,850 4,840 4,830 4,820 4,810 4,800 4,790 0 200 400 600 800 Jumlah pelanggan (ribu) Grafik 4.2 Waktu tunggu rata-rata dalam antrian Grafik 4.2 menunjukkan grafik waktu tunggu message dalam buffer dibandingkan dengan jumlah pelanggan. Semakin besar pelanggan maka waktu tunggu yang dihasilkan akan semakin besar. Delay dalam buffer didapatkan dengan cara membagikan antara jumlah rata-rata pelanggan dalam buffer dan jumlah kedatangan message. Sehingga dapat diambil analisa bahwa waktu tunggu rata-rata dalam antrian dipenaruhi oleh waktu tunggu rata-rata dalam sistem, jumlah pelanggan, tingkat broadcast dan jumlah notifikasi. 77 BAB V PENUTUP 5. 1 KESIMPULAN Dari analisis pada bab-bab sebelumnya dapat disimpulkan bahwa : 1. Jumlah pelanggan mempengaruhi waktu tunggu rata-rata dalam antrian, semakin banyak jumlah pelanggan semakin besar waktu tunggu rata-rata dalam antrian. 2. Tingkat broadcast dan jumlah notifikasi mempengaruhi waktu tunggu ratarata dalam antrian, tingkat broadcast semakin besar waktu tunggu rata-rata dalam antrian, tingkat broadcast sebesar 30 % sudah sangat membebani server. 3. Waktu tunggu rata-rata dalam antrian dipengaruhi oleh waktu tunggu ratarata dalam sistem. 5.2 SARAN 1. Untuk broadcast sebaiknya PT. TELKOMSEL menggunakan server khusus untuk broadcast yang terpisah dari server untuk MOC dan Notifikasi. 2. Untuk hari-hari pada tingkat trafik sms sibuk (overload) disarankan bagi pengguna sms menggunakan sms over GPRS 78 DAFTAR PUSTAKA [1] Mulyanta, Edi S. “Kupas Tuntas Telepon Seluler”. Penerbit Andi. Yogyakarta [2] Rozidi, Romzi Imron. “Membuat Sendiri SMS Gateway (ESME) Berbasis Protokol SMPP”. Penerbit Andi. Yogyakarta. [3] Garg, Vijaiy K. “Wireless Network Evolution 2G to 3G”. Prentice Hall Communication Enginering and Emerging Technologies Series. [4] Kakiay, Thomas J. “Dasar Teori Antrian Untuk Kehidupan Nyata”. Penerbit Andi. [5] Walpole, Ronald E. “Ilmu Peluang dan Statistik Untuk Insinyur dan Ilmuan”. Edisi Keempat. Penerbit ITB. Bandung. [6] Sudjana M.A.M.Sc, Prof. DR. “ Metoda Statistika”. Edisi ke 5. Penerbit Tarsito. Bandung. [7] “GSM System”. http://www.gsmworld.com [8] Buckingham, Simon. “Success 4 SMS” White Paper, http://www.yes2sms.com, 2001. [9] “Performansi SMSC”. http://www.telkomsel.com/tutorials/Article.Pdf. [10] PT. TELEKOMUNIKASI INDONESIA.”Signalling System No.7”.1994 79 80