PENDAHULUAN Latar Belakang Perkembangan teknologi informasi yang sangat pesat yang terjadi dewasa ini menuntut manusia untuk mampu beradaptasi dengan perkembangan tersebut. Upaya adaptasi yang dilakukan manusia dapat dilihat dari banyaknya kegiatan yang dilakukan secara komputerisasi sehingga menghasilkan data dalam jumlah yang besar. Dengan ketersediaan data yang semakin melimpah tersebut, penemuan pengetahuan yang berguna dari suatu database yang besar semakin populer dan menarik perhatian. Penemuan pengetahuan yang berguna tersebut dapat dilakukan menggunakan teknik data mining. Data mining merupakan proses ekstraksi informasi atau pola dalam database yang berukuran besar (Han & Kamber 2006). Salah satu teknik data mining adalah sequential pattern mining yang berguna untuk menemukan pola sekuensial yang terdapat pada database yang pertama kali diperkenalkan oleh Agrawal dan Srikant pada tahun 1995. Pada database, salah satu data yang sering dijumpai adalah data transaksi. Data transaksi merupakan data konsumen atau pelanggan pada sebuah lembaga komersil maupun non-komersil yang berisi id konsumen, waktu transaksi, dan item transaksi. Dari data transaksi seperti halnya transaksi supermarket, dapat ditemukan pola sekuensial untuk mengetahui keterkaitan antarbarang atau item. Salah satu algoritme yang dapat digunakan untuk mengetahui pola sekuensial dari suatu data transaksi yaitu Sequential PAttern Discovery using Equivalence classes (SPADE). Algoritme SPADE merupakan algoritme berbasis candidate generation and test dan merupakan penyempurnaan dari algoritme penentuan pola sekuensial terdahulu yakni Apriori. Pada perkembangannya, algoritme SPADE masih jarang diimplementasikan sehingga diperlukan kajian yang lebih dalam dengan harapan bahwa apabila implementasi algoritme SPADE berhasil, maka penerapan algoritme berbasis patterrn growth akan semakin menarik untuk dilakukan. Dengan mengadopsi fungsi-fungsi pada algoritme SPADE, akan dilihat kecenderungan pembelian barang oleh customer dalam kurun waktu tertentu. Sebagai contoh, customer biasa membeli kebutuhan pokok di awal bulan karena sebagian besar mendapatkan gaji pada periode tersebut. Kejadian seperti ini sebenarnya terekam dalam database, hanya saja belum tergali informasi tentang itu. Dengan mencari pola-pola dari database menggunakan algoritme SPADE, akan terlihat keterkaitan jenis barang yang dibeli oleh pembeli pada waktu tertentu (Zaki 2001). Hal ini dapat dimanfaatkan oleh pemilik supermarket dalam pengambilan keputusan terkait dengan penjualan barang. Tujuan Penelitian Penelitian ini bertujuan untuk mengimplementasikan algoritme SPADE untuk melihat keterkaitan antara beberapa item dari suatu data transaksi pembelian. Ruang Lingkup Penelitian Ruang lingkup penelitian ini dibatasi pada penerapan algoritme SPADE dengan menggunakan data transaksi pembelian Sinar Mart Swalayan selama periode 1 bulan terhitung sejak 1 Maret hingga 31 Maret 2004. Data transaksi pembelian tersebut berisi id pembeli, waktu pembelian berdasarkan tanggal, dan juga jenis barang atau item yang dibeli. Analisis dilakukan terhadap kelompok data tersebut sehingga menghasilkan informasi mengenai pola pembelian barang atau item yang digambarkan dalam bentuk frequent sequences dan juga association rule. Manfaat Penelitian Hasil penelitian ini diharapkan mampu melihat keterkaitan antarbarang yang dibeli oleh pembeli pada data transaksi pembelian. Keterkaitan antara barang atau item tersebut dapat digunakan sebagai bahan pertimbangan dalam pengambilan keputusan yang berhubungan dengan penjualan barang atau item pada periode berikutnya. Selain itu, penelitian ini juga diharapkan dapat menjadi dasar penelitian selanjutnya yang terkait dengan penentuan pola sekuensial sehingga didapatkan algoritme yang memiliki kinerja yang lebih efektif dan efisien. TINJAUAN PUSTAKA Knowledge Discovery from Data (KDD) Knowledge Discovery from Data (KDD) adalah suatu proses mengekstrak ilmu pengetahuan atau informasi yang berasal dari kumpulan data dalam jumlah besar (Han & Kamber 2006). Data mining adalah proses penemuan pengetahuan yang menarik dari kumpulan data yang tersimpan pada database, data warehouse, dan media penyimpanan informasi lainnya. Tahapan-tahapan proses KDD dapat diilustrasikan pada Gambar 1. 1