Project (proyek) - UIGM | Login Student

advertisement
Operations Management
MANAJEMEN
PROYEK
POKOK BAHASAN





PENGERTIAN MANAJEMEN PROYEK
PERENCANAAN PROYEK
PENJADWALAN PROYEK
PENGENDALIAN PROYEK
TEKNIK MANAJEMEN PROYEK : PERT
DAN CPM
MANAJEMEN PROYEK
1.
2.
3.
PLANNING – PENYIAPAN TUJUAN,
PENGGAMBARAN PROYEK, DAN
PENGORGANISASIAN TIM.
SCHEDULING – BERKAITAN DENGAN ORANG,
UANG, PASOKAN UNTUK AKTIVITAS TERTENTU
DAN MENGAITKAN AKTIVITAS-AKTIVITAS
SATU SAMA LAIN
CONTROLLING – MENGAWASI SUMBER DAYA,
BIAYA, KUALITAS DAN ANGGARAN.
AKTIVITAS MANAJEMEN
PROYEK
 Perencanaan
 Penyiapan tujuan
 Penyiapan sumber daya
 Penyiapan jadwal kerja
scr terperinci
 pengorganisasian
 Controlling
 Monitor, compare,
revise, action

Penjadwalan
 Kegiatan proyek
 Waktu mulai & berakhir
 Jaringan
PERENCANAAN PROYEK
Before
project
Start of project
Figure 3.1
During
project
PENJADWALAN PROYEK
Before
project
Start of project
Timeline
Figure 3.2
During
project
PENGENDALIAN PROYEK
Before
project
Figure 3.3
Start of project
Timeline
During
project
PENGORGANISASIAN
PROYEK
President
Human
Resources
Marketing
Project 1
Project 2
Figure 3.2
Finance
Design
Quality
Mgt
Production
Mechanical
Engineer
Test
Engineer
Technician
Electrical
Engineer
Computer
Engineer
Technician
Project
Manager
Project
Manager
PERSYARATAN DALAM
PENGORGANISASIAN PROYEK
1. Tugas pekerjaan dapat dijelaskan dengan sebuah
tujuan yang spesifik dan tenggat waktu
2. Pekerjaan bersifat unik atau tidak umum bagi
organisasi saat ini
3. Pekerjaan berisi tugas-tugas rumit yang saling
terkait yang memerlukan kemampuan khusus
4. Proyek bersifat sementara namun penting bagi
organisasi
5. Proyek mempersingkat lini diantara oganisasi
Matrix Organization
Marketing
Project 1
Project 2
Project 3
Project 4
Operations
Engineering
Finance
The Role of
the Project Manager
Highly visible Responsible for making sure
that:
 All necessary activities are finished in order and on time (semua
aktivitas2 yang diperlukan selesai dalam urutan yang benar dan
tepat waktu)
 The project comes in within budget (proyek sesuai dengan
anggaran)
 The project meets quality goals (proyek memenuhi tujuan terkait
kualitas)
 The people assigned to the project receive motivation, direction,
and information (orang yang ditugaskan pada proyek menerima
motivasi, arahan dan informasi yang diperlukan untuk melakukan
pekerjaannya
ETHICAL ISSUES/MASALAH ETIS DALAM
MANAJEMEN PROYEK
 Penawaran hadiah dari kontraktor
 Tekanan untuk merubah laporan status untuk
menutupi kenyataan penundaan
 Laporan palsu untuk pembebanan waktu dan
pengeluaran
 Tekanan untuk mengkompromikan kualitas agar
memperoleh bonus atau menghindari penalti
terkait dengan jadwal
Work Breakdown Structure
(Struktur Perincian Kerja)
Level (tingkatan struktur perincian kerja)
1.
2.
3.
4.
Project (proyek)
Major tasks in the project (tugas utama dalam proyek)
Subtasks in the major tasks (subtugas dalam proyek)
Activities (or work packages) to be completed (panyelesaian
kerja )
Purposes of Project Scheduling
 Menunjukkan hubungan dari masing-masing aktivitas dengan yang
lainnya dan dengan keseluruhan proyek
 Mengidentifikasi hubungan yang lebih diutamakan diantara berbagai
aktivitas
 Mendorong pengaturan waktu realistik dan estimasi biaya untuk
masing-masing aktivitas
 Membantu menjadikan lebih baik penggunaan orang, uang dan
sumber daya material dengan mengidentifikasi kemacetan utama
dalam proyek
Project Management Techniques (TEKNIK
MANAJEMEN PROYEK)
 Gantt chart
 Critical Path Method
(CPM)
 Program Evaluation and
Review Technique
(PERT)
Project Management Techniques (TEKNIK
MANAJEMEN PROYEK)
 Gantt chart
Grafik perencanaan yang
biasanya digunakan untuk
menentukan jadwal sumber
daya dan mengalokasikan
waktu
Project Management Techniques (TEKNIK
MANAJEMEN PROYEK)
 Critical Path Method
(CPM)/Metode Jalur Kritis
Teknik manajemen proyek
yang hanya menggunakan
satu faktor waktu per
aktivitas
Project Management Techniques (TEKNIK
MANAJEMEN PROYEK)
 Program Evaluation and
Review Technique
(PERT)/Teknik Tinjauan Ulang
dan Evaluasi Program
Teknik manajemen proyek
yang menggunakan tiga
waktu estimasi untuk
masing-masing aktivitas
Scheduling Techniques-GRAFIK
GANTT
1.
2.
3.
4.
Aktivitas Direncanakan
Urutan Kinerja Didokumentasikan
Waktu Aktivitas Diestimasi Dan Dicatat
Waktu Proyek Keseluruhan
Dikembangkan
A Simple Gantt Chart
A Simple Gantt Chart
J
Design
Prototype
Test
Revise
Production
F
M
Time
A M J
J
A
S
PENGENDALIAN PROYEK
KENDALI PROYEK MELIBATKAN PENGAWASAN MELEKAT
YANG KETAT TERHADAP SUMBER DAYA, BIAYA, KUALITAS,
DAN ANGGARAN.
MENGGUNAKAN SIKLUS UMPAN BALIK (FEEDBACK LOOP)
UNTUK MEREVISI RENCANA PROYEK DAN MEMILIKI
KEMAMPUAN UNTUK MEMINDAHKAN SUMBER DAYA KE
MANA PUN DIBUTUHKAN.
Laporan dan grafik PERT/CPM yang terkomputerisasi, seperti Primavera
(Primavera System, Inc), MacProject (Apple Computer Corp), MindView (Match
Ware). HP Project (Hawlett-Packard).
Microsoft Project (Microsoft Corp)
Project Control Reports (KENDALI PROYEK)
 PERINCIAN BIAYA YANG DETAIL UNTUK MASING-MASING
TUGAS
 KURVA TOTAL PROGRAM BURUH/TK
 TABEL DISTRIBUSI BIAYA
 RANGKUMAN BIAYA DAN JAM FUNGSIONAL
 PERAMALAN BAHAN MENTAH DAN PENGELUARAN
 LAPORAN VARIAN
 LAPORAN ANALISIS WAKTU
 LAPORAN STATUS KERJA
PERT and CPM
 PERT : SEBUAH TEKNIK MANAJEMEN
PROYEK YANG MENGGUNAKAN TIGA
WAKTU ESTIMASI UNTUK MASINGMASING AKTIVITAS
 CPM : TEKNIK MANAJEMEN PROYEK
YANG HANYA MENGGUNAKAN SATU
FAKTOR WAKTU PERAKTIVITAS
Six Steps PERT & CPM
1. Menentukan proyek dan menyiapkan struktur
perincian kerja
2. Mengembangkan hubungan antaraktivitas,
menentukan aktivitas mana yang didahulukan dan
mana yang harus mengikuti aktivitas lainnya.
3. Menggambarkan jaringan yang menghubungkan
semua aktifvitas
Six Steps PERT & CPM
4. Menentukan waktu dan atau estimasi biaya
pada masing-masing aktivitas
5. Menghitung jalur waktu terpanjang
melaluI jaringan (jalur kritis)
6. Menggunakan jaringan untuk membantu
merencanakan, menentukan jadwal
mengawasi dan mengendalikan proyek.
Questions PERT & CPM
Can Answer
1. When will the entire project be
completed?
2. What are the critical activities or tasks in
the project?
3. Which are the noncritical activities?
4. What is the probability the project will be
completed by a specific date?
Questions PERT & CPM
Can Answer
5. Is the project on schedule, behind
schedule, or ahead of schedule?
6. Is the money spent equal to, less than, or
greater than the budget?
7. Are there enough resources available to
finish the project on time?
8. If the project must be finished in a shorter
time, what is the way to accomplish this
at least cost?
A Comparison of AON and AOA Network
Conventions (perbandingan AON dan AOA dalam
diagram jaringan)
Activity on
Node (AON)
(a) A
C
B
A
(b)
C
B
B
(c)
A
Figure 3.5
C
Activity
Meaning
A comes before
B, which comes
before C
A and B must both
be completed
before C can start
B and C
cannot
begin until
A is
completed
Activity on
Arrow (AOA)
A
B
C
A
B
C
B
A
C
A Comparison of AON and AOA
Network Conventions
Activity on
Node (AON)
A
C
B
D
(d)
A
C
(e)
B
Figure 3.5
D
Activity
Meaning
C and D cannot
begin until both
A and B are
completed
C cannot begin
until both A and B
are completed; D
cannot begin until
B is completed. A
dummy activity is
introduced in AOA
Activity on
Arrow (AOA)
A
C
B
D
A
C
Dummy activity
B
D
A Comparison of AON and AOA
Network Conventions
Activity on
Node (AON)
A
B
(f)
C
Figure 3.5
D
Activity
Meaning
B and C cannot
begin until A is
completed. D
cannot begin
until both B and
C are completed.
A dummy
activity is again
introduced in
AOA.
Activity on
Arrow (AOA)
A
Dummy
activity
B
D
C
A Comparison of AON and AOA
Network Conventions
Figure 3.5
AOA Network for Milwaukee
Paper
2
C
4
(Construct
Stack)
Dummy
Activity
1
3
D
5
(Pour
Concrete/
Install Frame)
6
H
(Inspect/
Test)
7
Figure 3.9
Determining the Project Schedule
(MENENTUKAN JADWAL PROYEK)
Perform a Critical Path Analysis
Earliest start (ES) = Waktu paling awal dimana sebuah aktivitas bisa
Activity Description
Time (weeks)
dimulai, asumsikan semua aktivitas
pendahulunya telah selesai
A
Build internal components
2
Earliest finish (EF) = waktu paling awal dimana sebuah aktivitas bisa
B
Modifydiselesaikan
roof and floor
3
C startConstruct
stack
2
Latest
(LS) = waktucollection
paling lambat
dimana sebuah aktivitas
bisa dimulai sehingga tidak menunda waktu
D
Pour concrete
and install frame
4
penyelesaian dari keseluruhan proyek
E finishBuild
burner
4
Latest
(LF) = high-temperature
waktu paling lambat dimana
sebuah aktivitas
selesaicontrol
sehingga
tidak menunda waktu
F
Install harus
pollution
system
3
penyelesaian dari keseluruhan proyek
G
Install air pollution device
5
H
Inspect and test
2
Table
Total Time (weeks)
25 3.2
Determining the Project Schedule
Perform a Critical Path Analysis
Activity Name
or Symbol
A
Earliest
Start
ES
EF
Latest
Start
LS
LF
Figure 3.10
2
Earliest
Finish
Latest
Finish
Activity Duration
Forward Pass
Begin at starting event and work forward
Earliest Start Time Rule:
 If an activity has only a single immediate
predecessor, its ES equals the EF of the
predecessor
 If an activity has multiple immediate
predecessors, its ES is the maximum of
all the EF values of its predecessors
ES = Max {EF of all immediate predecessors}
Forward Pass
Begin at starting event and work forward
Earliest Finish Time Rule:
 The earliest finish time (EF) of an activity
is the sum of its earliest start time (ES)
and its activity time
EF = ES + Activity time
ES/EF Network for Milwaukee
Paper
ES
EF = ES + Activity time
Start
0
0
0
ES/EF Network for Milwaukee
Paper
EF of A =
ES of A + 2
ES
of A
0
Start
0
A
0
2
0
2
ES/EF Network for Milwaukee
Paper
0
A
2
0
Start
0
0
2
EF of B =
ES of B + 3
ES
of B
B
0
3
3
ES/EF Network for Milwaukee
Paper
0
A
2
2
0
Start
2
0
0
0
B
3
2
C
3
4
ES/EF Network for Milwaukee
Paper
0
A
2
2
0
Start
2
C
4
2
0
= Max (2, 3)
0
D
3
0
B
3
7
3
4
ES/EF Network for Milwaukee
Paper
0
A
2
2
2
0
Start
C
4
2
0
0
0
B
3
3
3
D
4
7
ES/EF Network for Milwaukee
Paper
0
A
2
2
2
0
Start
C
4
4
2
F
7
3
0
4
0
E
8
13
4
0
B
3
3
3
D
4
7
H
15
2
G
8
13
5
Figure 3.11
Backward Pass
Begin with the last event and work backwards
Latest Finish Time Rule:
 If an activity is an immediate predecessor
for just a single activity, its LF equals the
LS of the activity that immediately follows it
 If an activity is an immediate predecessor
to more than one activity, its LF is the
minimum of all LS values of all activities
that immediately follow it
LF = Min {LS of all immediate following activities}
Backward Pass
Begin with the last event and work backwards
Latest Start Time Rule:
 The latest start time (LS) of an activity is
the difference of its latest finish time (LF)
and its activity time
LS = LF – Activity time
LS/LF Times for
Milwaukee Paper
0
A
2
2
2
0
Start
C
4
4
2
F
7
3
0
4
0
E
8
13
13
4
0
B
3
3
H
2
15
15
LS = LF
D – Activity time
G
3
7
4
8
13
5
LF = EF
of Project
LS/LF Times for
Milwaukee Paper
0
A
2
2
2
0
Start
C
4
4
10
2
F
3
7
13
E
0
8 of
LF =4 Min(LS
following activity)
0
13
13
4
0
B
3
3
3
D
4
7
G
8
13
5
H
2
15
15
LS/LF Times for
LF = Min(4, 10)
Milwaukee Paper
0
A
2
2
2
0
Start
2
C
2
4
4
4
10
0
4
4
0
0
B
3
3
3
D
4
7
E
4
F
3
7
13
8
13
8
13
G
8
13
8
13
5
H
2
15
15
LS/LF Times for
Milwaukee Paper
0
0
0
0
Start
0
A
2
2
2
2
2
C
2
4
4
4
10
0
4
0
4
0
1
B
3
3
3
4
4
D
4
E
4
F
3
7
13
8
13
8
13
G
7
8
13
8
8
13
5
H
2
15
15
Computing Slack Time
After computing the ES, EF, LS, and LF times
for all activities, compute the slack or free
time for each activity
 Slack is the length of time an activity can
be delayed without delaying the entire
project
Slack = LS – ES
or
Slack = LF – EF
Computing Slack Time
Earliest Earliest
Start
Finish
Activity
ES
EF
A
B
C
D
E
F
G
H
0
0
2
3
4
4
8
13
2
3
4
7
8
7
13
15
Latest
Start
LS
Latest
Finish
LF
Slack
LS – ES
On
Critical
Path
0
1
2
4
4
10
8
13
2
4
4
8
8
13
13
15
0
1
0
1
0
6
0
0
Yes
No
Yes
No
Yes
No
Yes
Yes
Table 3.3
Critical Path for
Milwaukee Paper
0
0
0
0
Start
0
A
2
2
2
2
2
C
2
4
4
4
10
0
4
0
4
0
1
B
3
3
3
4
4
D
4
E
4
F
3
7
13
8
13
8
13
G
7
8
13
8
8
13
5
H
2
15
15
ES – EF Gantt Chart
for Milwaukee Paper
1
A Build internal
components
B Modify roof and floor
C Construct collection
stack
D Pour concrete and
install frame
E Build hightemperature burner
F Install pollution
control system
G Install air pollution
device
H Inspect and test
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16
LS – LF Gantt Chart
for Milwaukee Paper
1
A Build internal
components
B Modify roof and floor
C Construct collection
stack
D Pour concrete and
install frame
E Build hightemperature burner
F Install pollution
control system
G Install air pollution
device
H Inspect and test
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16
Variability in Activity Times
 CPM assumes we know a fixed time
estimate for each activity and there is no
variability in activity times
 PERT uses a probability distribution for
activity times to allow for variability
Variability in Activity Times
 Three time estimates are required
 Optimistic time (a) – if everything goes
according to plan
 Pessimistic time (b) – assuming very
unfavorable conditions
 Most likely time (m) – most realistic estimate
Variability in Activity Times
Estimate follows beta distribution
Expected time:
t = (a + 4m + b)/6
Variance of times:
v = [(b – a)/6]2
Variability in Activity Times
Probability
Estimate follows beta distribution
Expected time:
Figure 3.12
t = (a + 4m + b)/6
Probability
oftimes:
Variance
of
1 in 100 of
Probability
< a occurring v = [(b − a)/6]2 of 1 in 100 of
> b occurring
Activity
Time
Optimistic
Time (a)
Most Likely
Time (m)
Pessimistic
Time (b)
Computing Variance
Optimistic
Most
Likely
Pessimistic
Expected
Time
Variance
Activity
a
m
b
t = (a + 4m + b)/6
[(b – a)/6]2
A
B
C
D
E
F
G
H
1
2
1
2
1
1
3
1
2
3
2
4
4
2
4
2
3
4
3
6
7
9
11
3
2
3
2
4
4
3
5
2
.11
.11
.11
.44
1.00
1.78
1.78
.11
Table 3.4
Probability of Project Completion
Project variance is computed by
summing the variances of critical
activities
sp2 = Project variance
= (variances of activities
on critical path)
Probability of Project Completion
Project variance is computed by
summing the variances of critical
Project variance
activities
sp2 = .11 + .11 + 1.00 + 1.78 + .11 = 3.11
Project standard deviation
sp =
=
Project variance
3.11 = 1.76 weeks
Probability of Project Completion
PERT makes two more assumptions:
 Total project completion times follow a
normal probability distribution
 Activity times are statistically
independent
Probability of Project Completion
Standard deviation = 1.76 weeks
15 Weeks
Figure 3.13
(Expected Completion Time)
Probability of Project Completion
What is the probability this project can
be completed on or before the 16 week
deadline?
Z = due – expected date /sp
date
of completion
= (16 wks – 15 wks)/1.76
= 0.57
Where Z is the number of
standard deviations the due
date or target date lies from
the mean or expected date
Probability of Project Completion
From Appendix I
What is the probability
can
.00
.01 this project
.07
.08
be completed
on or before the
16 week
.1 .50000 .50399
.52790 .53188
deadline?
.2 .53983 .54380
.56749 .57142
.5
.6
date /s
Z.69146
= due .69497
− expected.71566
.71904
p
date
.72575
of completion
.72907
.74857
.75175
= (16 wks − 15 wks)/1.76
= 0.57
Where Z is the number of
standard deviations the due
date or target date lies from
the mean or expected date
Probability of Project Completion
Probability
(T ≤ 16 weeks)
is 71.57%
0.57 Standard deviations
15
Weeks
Figure 3.14
16
Weeks
Time
Determining Project Completion
Time
Probability
of 0.99
Probability
of 0.01
2.33 Standard
deviations
From Appendix I
Figure 3.15
0
2.33
Z
Variability of Completion Time for
Noncritical Paths
 Variability of times for activities on
noncritical paths must be considered
when finding the probability of finishing
in a specified time
 Variation in noncritical activity may
cause change in critical path
What Project Management Has
Provided So Far
 The project’s expected completion time is 15
weeks
 There is a 71.57% chance the equipment will be
in place by the 16 week deadline
 Five activities (A, C, E, G, and H) are on the
critical path
 Three activities (B, D, F) are not on the critical
path and have slack time
 A detailed schedule is available
Trade-Offs And Project Crashing
It is not uncommon to face the
following situations:
 The project is behind schedule
 The completion time has been moved
forward
Shortening the duration of the
project is called project crashing
Factors to Consider When Crashing
A Project
 The amount by which an activity is crashed
is, in fact, permissible
 Taken together, the shortened activity
durations will enable us to finish the
project by the due date
 The total cost of crashing is as small as
possible
Steps in Project Crashing
1. Compute the crash cost per time period.
If crash costs are linear over time:
(Crash cost – Normal cost)
Crash cost
per period = (Normal time – Crash time)
2. Using current activity times, find the
critical path and identify the critical
activities
Steps in Project Crashing
3. If there is only one critical path, then select the
activity on this critical path that (a) can still be
crashed, and (b) has the smallest crash cost per
period. If there is more than one critical path,
then select one activity from each critical path
such that (a) each selected activity can still be
crashed, and (b) the total crash cost of all
selected activities is the smallest. Note that the
same activity may be common to more than one
critical path.
Steps in Project Crashing
4. Update all activity times. If the desired due date
has been reached, stop. If not, return to Step 2.
Crashing The Project
Time (Wks)
Activity Normal Crash
A
B
C
D
E
F
G
H
2
3
2
4
4
3
5
2
1
1
1
2
2
2
2
1
Cost ($)
Crash Cost Critical
Normal
Crash Per Wk ($) Path?
22,000
30,000
26,000
48,000
56,000
30,000
80,000
16,000
22,750
34,000
27,000
49,000
58,000
30,500
84,500
19,000
750
2,000
1,000
1,000
1,000
500
1,500
3,000
Yes
No
Yes
No
Yes
No
Yes
Yes
Table 3.5
Crash and Normal Times and
Costs for Activity B
Activity
Cost
Crash
$34,000 —
Crash Cost/Wk =
Crash $33,000 —
Cost
=
$34,000 – $30,000
3–1
$4,000
=
= $2,000/Wk
2 Wks
$32,000 —
$31,000 —
$30,000 —
Normal
Cost
Figure 3.16
Crash Cost – Normal Cost
Normal Time – Crash Time
Normal
—
|
1
Crash Time
|
2
|
3
Normal Time
Time (Weeks)
Critical Path And Slack Times For
Milwaukee Paper
0
0
0
0
Start
0
0
A
2
2
2
2
2
Slack = 0
C
2
4
4
4
10
Slack = 0
4
0
4
0
1
B
3
3
3
4
4
Slack = 1
D
4
E
4
F
3
7
13
Slack = 6
8
13
8
13
Slack = 0
7
8
13
8
8
13
Slack = 1
2
15
15
Slack = 0
G
5
H
Slack = 0
Figure 3.17
Advantages of PERT/CPM
1. Especially useful when scheduling and
controlling large projects
2. Straightforward concept and not mathematically
complex
3. Graphical networks help highlight relationships
among project activities
4. Critical path and slack time analyses help
pinpoint activities that need to be closely
watched
Advantages of PERT/CPM
5. Project documentation and graphics point out
who is responsible for various activities
6. Applicable to a wide variety of projects
7. Useful in monitoring not only schedules but
costs as well
Limitations of PERT/CPM
1. Project activities have to be clearly defined,
independent, and stable in their relationships
2. Precedence relationships must be specified and
networked together
3. Time estimates tend to be subjective and are
subject to fudging by managers
4. There is an inherent danger of too much
emphasis being placed on the longest, or critical,
path
Project Management Software
 There are several popular packages for
managing projects






Primavera
MacProject
Pertmaster
VisiSchedule
Time Line
Microsoft Project
Using Microsoft Project
Program 3.1
Using Microsoft Project
Program 3.2
Using Microsoft Project
Program 3.3
Using Microsoft Project
Program 3.4
Using Microsoft Project
Program 3.5
Using Microsoft Project
Program 3.6
Using Microsoft Project
Program 3.7
Download