Operations Management MANAJEMEN PROYEK POKOK BAHASAN PENGERTIAN MANAJEMEN PROYEK PERENCANAAN PROYEK PENJADWALAN PROYEK PENGENDALIAN PROYEK TEKNIK MANAJEMEN PROYEK : PERT DAN CPM MANAJEMEN PROYEK 1. 2. 3. PLANNING – PENYIAPAN TUJUAN, PENGGAMBARAN PROYEK, DAN PENGORGANISASIAN TIM. SCHEDULING – BERKAITAN DENGAN ORANG, UANG, PASOKAN UNTUK AKTIVITAS TERTENTU DAN MENGAITKAN AKTIVITAS-AKTIVITAS SATU SAMA LAIN CONTROLLING – MENGAWASI SUMBER DAYA, BIAYA, KUALITAS DAN ANGGARAN. AKTIVITAS MANAJEMEN PROYEK Perencanaan Penyiapan tujuan Penyiapan sumber daya Penyiapan jadwal kerja scr terperinci pengorganisasian Controlling Monitor, compare, revise, action Penjadwalan Kegiatan proyek Waktu mulai & berakhir Jaringan PERENCANAAN PROYEK Before project Start of project Figure 3.1 During project PENJADWALAN PROYEK Before project Start of project Timeline Figure 3.2 During project PENGENDALIAN PROYEK Before project Figure 3.3 Start of project Timeline During project PENGORGANISASIAN PROYEK President Human Resources Marketing Project 1 Project 2 Figure 3.2 Finance Design Quality Mgt Production Mechanical Engineer Test Engineer Technician Electrical Engineer Computer Engineer Technician Project Manager Project Manager PERSYARATAN DALAM PENGORGANISASIAN PROYEK 1. Tugas pekerjaan dapat dijelaskan dengan sebuah tujuan yang spesifik dan tenggat waktu 2. Pekerjaan bersifat unik atau tidak umum bagi organisasi saat ini 3. Pekerjaan berisi tugas-tugas rumit yang saling terkait yang memerlukan kemampuan khusus 4. Proyek bersifat sementara namun penting bagi organisasi 5. Proyek mempersingkat lini diantara oganisasi Matrix Organization Marketing Project 1 Project 2 Project 3 Project 4 Operations Engineering Finance The Role of the Project Manager Highly visible Responsible for making sure that: All necessary activities are finished in order and on time (semua aktivitas2 yang diperlukan selesai dalam urutan yang benar dan tepat waktu) The project comes in within budget (proyek sesuai dengan anggaran) The project meets quality goals (proyek memenuhi tujuan terkait kualitas) The people assigned to the project receive motivation, direction, and information (orang yang ditugaskan pada proyek menerima motivasi, arahan dan informasi yang diperlukan untuk melakukan pekerjaannya ETHICAL ISSUES/MASALAH ETIS DALAM MANAJEMEN PROYEK Penawaran hadiah dari kontraktor Tekanan untuk merubah laporan status untuk menutupi kenyataan penundaan Laporan palsu untuk pembebanan waktu dan pengeluaran Tekanan untuk mengkompromikan kualitas agar memperoleh bonus atau menghindari penalti terkait dengan jadwal Work Breakdown Structure (Struktur Perincian Kerja) Level (tingkatan struktur perincian kerja) 1. 2. 3. 4. Project (proyek) Major tasks in the project (tugas utama dalam proyek) Subtasks in the major tasks (subtugas dalam proyek) Activities (or work packages) to be completed (panyelesaian kerja ) Purposes of Project Scheduling Menunjukkan hubungan dari masing-masing aktivitas dengan yang lainnya dan dengan keseluruhan proyek Mengidentifikasi hubungan yang lebih diutamakan diantara berbagai aktivitas Mendorong pengaturan waktu realistik dan estimasi biaya untuk masing-masing aktivitas Membantu menjadikan lebih baik penggunaan orang, uang dan sumber daya material dengan mengidentifikasi kemacetan utama dalam proyek Project Management Techniques (TEKNIK MANAJEMEN PROYEK) Gantt chart Critical Path Method (CPM) Program Evaluation and Review Technique (PERT) Project Management Techniques (TEKNIK MANAJEMEN PROYEK) Gantt chart Grafik perencanaan yang biasanya digunakan untuk menentukan jadwal sumber daya dan mengalokasikan waktu Project Management Techniques (TEKNIK MANAJEMEN PROYEK) Critical Path Method (CPM)/Metode Jalur Kritis Teknik manajemen proyek yang hanya menggunakan satu faktor waktu per aktivitas Project Management Techniques (TEKNIK MANAJEMEN PROYEK) Program Evaluation and Review Technique (PERT)/Teknik Tinjauan Ulang dan Evaluasi Program Teknik manajemen proyek yang menggunakan tiga waktu estimasi untuk masing-masing aktivitas Scheduling Techniques-GRAFIK GANTT 1. 2. 3. 4. Aktivitas Direncanakan Urutan Kinerja Didokumentasikan Waktu Aktivitas Diestimasi Dan Dicatat Waktu Proyek Keseluruhan Dikembangkan A Simple Gantt Chart A Simple Gantt Chart J Design Prototype Test Revise Production F M Time A M J J A S PENGENDALIAN PROYEK KENDALI PROYEK MELIBATKAN PENGAWASAN MELEKAT YANG KETAT TERHADAP SUMBER DAYA, BIAYA, KUALITAS, DAN ANGGARAN. MENGGUNAKAN SIKLUS UMPAN BALIK (FEEDBACK LOOP) UNTUK MEREVISI RENCANA PROYEK DAN MEMILIKI KEMAMPUAN UNTUK MEMINDAHKAN SUMBER DAYA KE MANA PUN DIBUTUHKAN. Laporan dan grafik PERT/CPM yang terkomputerisasi, seperti Primavera (Primavera System, Inc), MacProject (Apple Computer Corp), MindView (Match Ware). HP Project (Hawlett-Packard). Microsoft Project (Microsoft Corp) Project Control Reports (KENDALI PROYEK) PERINCIAN BIAYA YANG DETAIL UNTUK MASING-MASING TUGAS KURVA TOTAL PROGRAM BURUH/TK TABEL DISTRIBUSI BIAYA RANGKUMAN BIAYA DAN JAM FUNGSIONAL PERAMALAN BAHAN MENTAH DAN PENGELUARAN LAPORAN VARIAN LAPORAN ANALISIS WAKTU LAPORAN STATUS KERJA PERT and CPM PERT : SEBUAH TEKNIK MANAJEMEN PROYEK YANG MENGGUNAKAN TIGA WAKTU ESTIMASI UNTUK MASINGMASING AKTIVITAS CPM : TEKNIK MANAJEMEN PROYEK YANG HANYA MENGGUNAKAN SATU FAKTOR WAKTU PERAKTIVITAS Six Steps PERT & CPM 1. Menentukan proyek dan menyiapkan struktur perincian kerja 2. Mengembangkan hubungan antaraktivitas, menentukan aktivitas mana yang didahulukan dan mana yang harus mengikuti aktivitas lainnya. 3. Menggambarkan jaringan yang menghubungkan semua aktifvitas Six Steps PERT & CPM 4. Menentukan waktu dan atau estimasi biaya pada masing-masing aktivitas 5. Menghitung jalur waktu terpanjang melaluI jaringan (jalur kritis) 6. Menggunakan jaringan untuk membantu merencanakan, menentukan jadwal mengawasi dan mengendalikan proyek. Questions PERT & CPM Can Answer 1. When will the entire project be completed? 2. What are the critical activities or tasks in the project? 3. Which are the noncritical activities? 4. What is the probability the project will be completed by a specific date? Questions PERT & CPM Can Answer 5. Is the project on schedule, behind schedule, or ahead of schedule? 6. Is the money spent equal to, less than, or greater than the budget? 7. Are there enough resources available to finish the project on time? 8. If the project must be finished in a shorter time, what is the way to accomplish this at least cost? A Comparison of AON and AOA Network Conventions (perbandingan AON dan AOA dalam diagram jaringan) Activity on Node (AON) (a) A C B A (b) C B B (c) A Figure 3.5 C Activity Meaning A comes before B, which comes before C A and B must both be completed before C can start B and C cannot begin until A is completed Activity on Arrow (AOA) A B C A B C B A C A Comparison of AON and AOA Network Conventions Activity on Node (AON) A C B D (d) A C (e) B Figure 3.5 D Activity Meaning C and D cannot begin until both A and B are completed C cannot begin until both A and B are completed; D cannot begin until B is completed. A dummy activity is introduced in AOA Activity on Arrow (AOA) A C B D A C Dummy activity B D A Comparison of AON and AOA Network Conventions Activity on Node (AON) A B (f) C Figure 3.5 D Activity Meaning B and C cannot begin until A is completed. D cannot begin until both B and C are completed. A dummy activity is again introduced in AOA. Activity on Arrow (AOA) A Dummy activity B D C A Comparison of AON and AOA Network Conventions Figure 3.5 AOA Network for Milwaukee Paper 2 C 4 (Construct Stack) Dummy Activity 1 3 D 5 (Pour Concrete/ Install Frame) 6 H (Inspect/ Test) 7 Figure 3.9 Determining the Project Schedule (MENENTUKAN JADWAL PROYEK) Perform a Critical Path Analysis Earliest start (ES) = Waktu paling awal dimana sebuah aktivitas bisa Activity Description Time (weeks) dimulai, asumsikan semua aktivitas pendahulunya telah selesai A Build internal components 2 Earliest finish (EF) = waktu paling awal dimana sebuah aktivitas bisa B Modifydiselesaikan roof and floor 3 C startConstruct stack 2 Latest (LS) = waktucollection paling lambat dimana sebuah aktivitas bisa dimulai sehingga tidak menunda waktu D Pour concrete and install frame 4 penyelesaian dari keseluruhan proyek E finishBuild burner 4 Latest (LF) = high-temperature waktu paling lambat dimana sebuah aktivitas selesaicontrol sehingga tidak menunda waktu F Install harus pollution system 3 penyelesaian dari keseluruhan proyek G Install air pollution device 5 H Inspect and test 2 Table Total Time (weeks) 25 3.2 Determining the Project Schedule Perform a Critical Path Analysis Activity Name or Symbol A Earliest Start ES EF Latest Start LS LF Figure 3.10 2 Earliest Finish Latest Finish Activity Duration Forward Pass Begin at starting event and work forward Earliest Start Time Rule: If an activity has only a single immediate predecessor, its ES equals the EF of the predecessor If an activity has multiple immediate predecessors, its ES is the maximum of all the EF values of its predecessors ES = Max {EF of all immediate predecessors} Forward Pass Begin at starting event and work forward Earliest Finish Time Rule: The earliest finish time (EF) of an activity is the sum of its earliest start time (ES) and its activity time EF = ES + Activity time ES/EF Network for Milwaukee Paper ES EF = ES + Activity time Start 0 0 0 ES/EF Network for Milwaukee Paper EF of A = ES of A + 2 ES of A 0 Start 0 A 0 2 0 2 ES/EF Network for Milwaukee Paper 0 A 2 0 Start 0 0 2 EF of B = ES of B + 3 ES of B B 0 3 3 ES/EF Network for Milwaukee Paper 0 A 2 2 0 Start 2 0 0 0 B 3 2 C 3 4 ES/EF Network for Milwaukee Paper 0 A 2 2 0 Start 2 C 4 2 0 = Max (2, 3) 0 D 3 0 B 3 7 3 4 ES/EF Network for Milwaukee Paper 0 A 2 2 2 0 Start C 4 2 0 0 0 B 3 3 3 D 4 7 ES/EF Network for Milwaukee Paper 0 A 2 2 2 0 Start C 4 4 2 F 7 3 0 4 0 E 8 13 4 0 B 3 3 3 D 4 7 H 15 2 G 8 13 5 Figure 3.11 Backward Pass Begin with the last event and work backwards Latest Finish Time Rule: If an activity is an immediate predecessor for just a single activity, its LF equals the LS of the activity that immediately follows it If an activity is an immediate predecessor to more than one activity, its LF is the minimum of all LS values of all activities that immediately follow it LF = Min {LS of all immediate following activities} Backward Pass Begin with the last event and work backwards Latest Start Time Rule: The latest start time (LS) of an activity is the difference of its latest finish time (LF) and its activity time LS = LF – Activity time LS/LF Times for Milwaukee Paper 0 A 2 2 2 0 Start C 4 4 2 F 7 3 0 4 0 E 8 13 13 4 0 B 3 3 H 2 15 15 LS = LF D – Activity time G 3 7 4 8 13 5 LF = EF of Project LS/LF Times for Milwaukee Paper 0 A 2 2 2 0 Start C 4 4 10 2 F 3 7 13 E 0 8 of LF =4 Min(LS following activity) 0 13 13 4 0 B 3 3 3 D 4 7 G 8 13 5 H 2 15 15 LS/LF Times for LF = Min(4, 10) Milwaukee Paper 0 A 2 2 2 0 Start 2 C 2 4 4 4 10 0 4 4 0 0 B 3 3 3 D 4 7 E 4 F 3 7 13 8 13 8 13 G 8 13 8 13 5 H 2 15 15 LS/LF Times for Milwaukee Paper 0 0 0 0 Start 0 A 2 2 2 2 2 C 2 4 4 4 10 0 4 0 4 0 1 B 3 3 3 4 4 D 4 E 4 F 3 7 13 8 13 8 13 G 7 8 13 8 8 13 5 H 2 15 15 Computing Slack Time After computing the ES, EF, LS, and LF times for all activities, compute the slack or free time for each activity Slack is the length of time an activity can be delayed without delaying the entire project Slack = LS – ES or Slack = LF – EF Computing Slack Time Earliest Earliest Start Finish Activity ES EF A B C D E F G H 0 0 2 3 4 4 8 13 2 3 4 7 8 7 13 15 Latest Start LS Latest Finish LF Slack LS – ES On Critical Path 0 1 2 4 4 10 8 13 2 4 4 8 8 13 13 15 0 1 0 1 0 6 0 0 Yes No Yes No Yes No Yes Yes Table 3.3 Critical Path for Milwaukee Paper 0 0 0 0 Start 0 A 2 2 2 2 2 C 2 4 4 4 10 0 4 0 4 0 1 B 3 3 3 4 4 D 4 E 4 F 3 7 13 8 13 8 13 G 7 8 13 8 8 13 5 H 2 15 15 ES – EF Gantt Chart for Milwaukee Paper 1 A Build internal components B Modify roof and floor C Construct collection stack D Pour concrete and install frame E Build hightemperature burner F Install pollution control system G Install air pollution device H Inspect and test 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 LS – LF Gantt Chart for Milwaukee Paper 1 A Build internal components B Modify roof and floor C Construct collection stack D Pour concrete and install frame E Build hightemperature burner F Install pollution control system G Install air pollution device H Inspect and test 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Variability in Activity Times CPM assumes we know a fixed time estimate for each activity and there is no variability in activity times PERT uses a probability distribution for activity times to allow for variability Variability in Activity Times Three time estimates are required Optimistic time (a) – if everything goes according to plan Pessimistic time (b) – assuming very unfavorable conditions Most likely time (m) – most realistic estimate Variability in Activity Times Estimate follows beta distribution Expected time: t = (a + 4m + b)/6 Variance of times: v = [(b – a)/6]2 Variability in Activity Times Probability Estimate follows beta distribution Expected time: Figure 3.12 t = (a + 4m + b)/6 Probability oftimes: Variance of 1 in 100 of Probability < a occurring v = [(b − a)/6]2 of 1 in 100 of > b occurring Activity Time Optimistic Time (a) Most Likely Time (m) Pessimistic Time (b) Computing Variance Optimistic Most Likely Pessimistic Expected Time Variance Activity a m b t = (a + 4m + b)/6 [(b – a)/6]2 A B C D E F G H 1 2 1 2 1 1 3 1 2 3 2 4 4 2 4 2 3 4 3 6 7 9 11 3 2 3 2 4 4 3 5 2 .11 .11 .11 .44 1.00 1.78 1.78 .11 Table 3.4 Probability of Project Completion Project variance is computed by summing the variances of critical activities sp2 = Project variance = (variances of activities on critical path) Probability of Project Completion Project variance is computed by summing the variances of critical Project variance activities sp2 = .11 + .11 + 1.00 + 1.78 + .11 = 3.11 Project standard deviation sp = = Project variance 3.11 = 1.76 weeks Probability of Project Completion PERT makes two more assumptions: Total project completion times follow a normal probability distribution Activity times are statistically independent Probability of Project Completion Standard deviation = 1.76 weeks 15 Weeks Figure 3.13 (Expected Completion Time) Probability of Project Completion What is the probability this project can be completed on or before the 16 week deadline? Z = due – expected date /sp date of completion = (16 wks – 15 wks)/1.76 = 0.57 Where Z is the number of standard deviations the due date or target date lies from the mean or expected date Probability of Project Completion From Appendix I What is the probability can .00 .01 this project .07 .08 be completed on or before the 16 week .1 .50000 .50399 .52790 .53188 deadline? .2 .53983 .54380 .56749 .57142 .5 .6 date /s Z.69146 = due .69497 − expected.71566 .71904 p date .72575 of completion .72907 .74857 .75175 = (16 wks − 15 wks)/1.76 = 0.57 Where Z is the number of standard deviations the due date or target date lies from the mean or expected date Probability of Project Completion Probability (T ≤ 16 weeks) is 71.57% 0.57 Standard deviations 15 Weeks Figure 3.14 16 Weeks Time Determining Project Completion Time Probability of 0.99 Probability of 0.01 2.33 Standard deviations From Appendix I Figure 3.15 0 2.33 Z Variability of Completion Time for Noncritical Paths Variability of times for activities on noncritical paths must be considered when finding the probability of finishing in a specified time Variation in noncritical activity may cause change in critical path What Project Management Has Provided So Far The project’s expected completion time is 15 weeks There is a 71.57% chance the equipment will be in place by the 16 week deadline Five activities (A, C, E, G, and H) are on the critical path Three activities (B, D, F) are not on the critical path and have slack time A detailed schedule is available Trade-Offs And Project Crashing It is not uncommon to face the following situations: The project is behind schedule The completion time has been moved forward Shortening the duration of the project is called project crashing Factors to Consider When Crashing A Project The amount by which an activity is crashed is, in fact, permissible Taken together, the shortened activity durations will enable us to finish the project by the due date The total cost of crashing is as small as possible Steps in Project Crashing 1. Compute the crash cost per time period. If crash costs are linear over time: (Crash cost – Normal cost) Crash cost per period = (Normal time – Crash time) 2. Using current activity times, find the critical path and identify the critical activities Steps in Project Crashing 3. If there is only one critical path, then select the activity on this critical path that (a) can still be crashed, and (b) has the smallest crash cost per period. If there is more than one critical path, then select one activity from each critical path such that (a) each selected activity can still be crashed, and (b) the total crash cost of all selected activities is the smallest. Note that the same activity may be common to more than one critical path. Steps in Project Crashing 4. Update all activity times. If the desired due date has been reached, stop. If not, return to Step 2. Crashing The Project Time (Wks) Activity Normal Crash A B C D E F G H 2 3 2 4 4 3 5 2 1 1 1 2 2 2 2 1 Cost ($) Crash Cost Critical Normal Crash Per Wk ($) Path? 22,000 30,000 26,000 48,000 56,000 30,000 80,000 16,000 22,750 34,000 27,000 49,000 58,000 30,500 84,500 19,000 750 2,000 1,000 1,000 1,000 500 1,500 3,000 Yes No Yes No Yes No Yes Yes Table 3.5 Crash and Normal Times and Costs for Activity B Activity Cost Crash $34,000 — Crash Cost/Wk = Crash $33,000 — Cost = $34,000 – $30,000 3–1 $4,000 = = $2,000/Wk 2 Wks $32,000 — $31,000 — $30,000 — Normal Cost Figure 3.16 Crash Cost – Normal Cost Normal Time – Crash Time Normal — | 1 Crash Time | 2 | 3 Normal Time Time (Weeks) Critical Path And Slack Times For Milwaukee Paper 0 0 0 0 Start 0 0 A 2 2 2 2 2 Slack = 0 C 2 4 4 4 10 Slack = 0 4 0 4 0 1 B 3 3 3 4 4 Slack = 1 D 4 E 4 F 3 7 13 Slack = 6 8 13 8 13 Slack = 0 7 8 13 8 8 13 Slack = 1 2 15 15 Slack = 0 G 5 H Slack = 0 Figure 3.17 Advantages of PERT/CPM 1. Especially useful when scheduling and controlling large projects 2. Straightforward concept and not mathematically complex 3. Graphical networks help highlight relationships among project activities 4. Critical path and slack time analyses help pinpoint activities that need to be closely watched Advantages of PERT/CPM 5. Project documentation and graphics point out who is responsible for various activities 6. Applicable to a wide variety of projects 7. Useful in monitoring not only schedules but costs as well Limitations of PERT/CPM 1. Project activities have to be clearly defined, independent, and stable in their relationships 2. Precedence relationships must be specified and networked together 3. Time estimates tend to be subjective and are subject to fudging by managers 4. There is an inherent danger of too much emphasis being placed on the longest, or critical, path Project Management Software There are several popular packages for managing projects Primavera MacProject Pertmaster VisiSchedule Time Line Microsoft Project Using Microsoft Project Program 3.1 Using Microsoft Project Program 3.2 Using Microsoft Project Program 3.3 Using Microsoft Project Program 3.4 Using Microsoft Project Program 3.5 Using Microsoft Project Program 3.6 Using Microsoft Project Program 3.7