Keanekaragaman Dan Dispersal Amphibia Pada

advertisement
V. HASIL DAN PEMBAHASAN
5.1. Hasil
5.1.1 Komposisi dan Similaritas Spesies pada Elemen Lanskap dan Korelasi
Jarak dengan Keanekaragaman
5.1.1.1. Komposisi dan Similaritas Spesies Pada Elemen Lanskap
Kurva akumulasi spesies
Pengamatan di lapangan yang telah dilakukan pada kawasan perkebunan
kelapa sawit PT. Kencana Sawit Indonesia, tercatat 5 Famili, 9 Genus dan 27
spesies dengan total sebanyak 1055 Individu ditemukan pada 22 lokasi dengan
menggunakan metode Visual Encounter Survei (VES) desain transek dengan dua
kali pengulangan. Kurva akumulasi spesies dapat dilihat pada Gambar 10.
30
25
Jumlah
20
15
10
5
0
Minggu 1
Minggu 2
Minggu 3
Spesies
Minggu 4
Genus
Minggu 5
Minggu 6
Famili
Gambar 10 Diagram kurva akumulasi spesies pada semua lokasi.
Lima genus yang teramati pada kawasan PT. KSI, empat diantaranya teramati
pada minggu pertama pengamatan. Pada minggu kelima terdapat satu satu
penambahan famili yaitu Megophrydae lalu tren mendatar hingga minggu keenam
pengamatan. Sementara pada tingkatan genus, hampir seluruhnya telah teramati
pada minggu pertama dan juga mengalami penambahan satu genus pada minggu
kelima yang dilanjutkan dengan kurva mendatar hingga minggu keenam
38
pengamatan. Pada tingkatan spesies terdapat 3 fase yang teramati: fase pertama
peningkatan spesies terjadi dari minggu pertama terkoleksi 24 spesies hingga
minggu kedua terjadi penambahan satu spesies, kemudian memasuki fase
mendatar dimana tidak terjadi penambahan jenis spesies dari minggu kedua
hingga minggu keempat, kemudian fase ketiga dimana kurva kembali naik ketika
terjadi penambahan jumlah spesies kembali dari minggu kelima hingga minggu ke
keenam, masing-masing satu spesies pada tiap minggunya.
Lokasi pengamatan lanskap perkebunan yang terbagi menjadi tiga elemen
terdiri dari: area inti terdiri atas Bukit Tengah Pulau (5 transek) dan Bukit Salo (3
transek); matriks yang terdiri atas Matriks Bukit Tengah Pulau (4 transek) dan
Bukit Salo (2 transek) dan koridor yang dibagi menjadi koridor Sungai Jujuan (4
transek) dan Sungai Suir (4 transek). Estimasi kekayaan spesies pada masingmasing elemen menggunakan Indeks Kekayaan Spesies Jackknife dengan hasil
seperti yang tertera pada Gambar 11.
28
30
25
23
23
21
Jumlah
20
22
18
21
18
13
15
Area inti
Matriks
10
Koridor
5
0
S
S Max
Kekayaan Jenis
S Min
Gambar 11 Diagram estimasi kekayaan jenis pada elemen lanskap perkebunan
kelapa sawit.
Estimasi spesies pada elemen lanskap perkebunan kelapa sawit pada PT.KSI,
Elemen dengan kekayaan spesies tertinggi adalah elemen area inti dengan jumlah
spesies perkiraan sebanyak 23 spesies dengan estimasi tertinggi 28 spesies dan
terendah 21 spesies (stdev=3,75) dengan tingkat ketelitian 6,5%. Elemen dengan
estimasi kekayaan spesies teringgi kedua adalah matriks, dengan jumlah perkiraan
sebanyak 21 spesies dengan perkiraan maksimal sebanyak 23 spesies dan yang
39
terendah 18 spesies (st dev= 2,87) dengan tingkat ketelitian 5,5% dan yang
terakhir elemen dengan perkiraan spesies paling rendah adalah koridor dengan
perkiraan kekayaan spesies sebanyak 18 spesies dan diperkirakan masih bisa
bertambah hingga 22 spesies dan yang perkiraan terendah sebanyak 13 spesies
saja (st dev= 4,25) dengan tingkat ketelitian 10,4%.
Dalam pengamatan jumlah spesies aktual; keanekaragaman dan kemerataan
pada ketiga elemen didapatkan hasil seperti yang tertera pada Gambar 12.
B.
A.
C.
Ket: BTP=Bukit Tengah Pulau; BS= Bukit Salo; MBTP= Matriks Bukit Tengah Pulau;
BS=Matriks Bukit Salo; SJ= Sungai Jujuan; SS= Sungai Suir.
Gambar 12 Diagram diversitas amphibia pada elemen lanskap A. Jumlah
Spesies, B. Keanekaragaman, C. Kemerataan.
Pada pengamatan yang telah dilakukan terdata spesies terbanyak tercatat pada
bagian MBTP dengan total 18 spesies dan yang paling sedikit pada MBS dengan
10 spesies. Pada elemen area inti yang diwakili oleh BTP dan BS secara berurutan
dengan nilai 16 dan 15 spesies kemudian pada elemen koridor yang yang terdiri
atas SJ dan SS memiliki jumlah spesies yang sama yaitu 14 spesies.
40
Keanekaragaman amphibia tertinggi ditemukan pada elemen area inti bagian
BTP dengan nilai 2,50 diikuti oleh elemen area inti lainnya yaitu BS dengan nilai
2,25. Elemen matriks memiliki keanekaragaman amphibia terbaik kedua dimana
bagian MBTP memiliki nilai indeks 2,31, sedangkan MBS dengan nilai 1,94.
Elemen koridor secara rata-rata memiliki nilai indeks keanekaragaman terburuk
dibandingkan dua elemen lainnya. Bagian SJ hanya memiliki nilai 1,98 dan yang
paling buruk adalah bagian SS dengan nilai 1,91. Secara umum seluruh lokasi
masuk dalam kategori keanekaragaman sedang.
Kemerataan spesies merupakan alat yang baik untuk menganalisa hubungan
kekayaan spesies dengan keanekaragaman. Area inti memiliki jumlah spesies dan
nilai indeks keanekaragaman tertinggi dengan nilai kemerataan 90% dan 83%
menunjukkan hampir tidak ada dominansi dari spesies yang ada, sedangkan pada
elemen matriks terbaik kedua. Perbandingan pada MBTP dengan MBS
menunjukan adanya spesies yang mendominasi pada MBS karena nilai
kemerataannya lebih baik 4% meski jumlah spesiesnya hanya 10.
Komposisi spesies pada area inti dibagi menjadi dua bagian habitat aqutik dan
terrestrial. Pada habitat akuatik spesies yang ditemukan umumnya merupakan
spesies dengan habit semi akuatik (Bufo asper, Limnonectes blythii, L. crybetus
dan L. microdiscus); akuatik (L. kuhlii, Occidozyga laevis, O. Sumatrana, Rana
picturata, R. erythraea dan R. hosii); semi arboreal (R. parvaccola dan R.
raniceps). Sedangkan habitat terrestrial yang ditemukan adalah Akuatik (L.
kuhlii); semi akuatik (L. microdiscus); terrestrial (B. biporcatus, Leptobrachium
wayseputiense, Kalophrynus pleurostigma, Microhyla heymonsi, M. borneensis
dan Microhyla sp); semi arboreal (R. raniceps); Arboreal (Polypedates
leucomystax dan Polypedates sp). Dari daftar ini semua spesies merupakan jenis
yang mampu hidup pada wilayah hutan yang telah terdegradasi
Matriks didominasi oleh spesies dengan relung generalis dan memiliki daya
adaptasi yang tinggi untuk dapat hidup pada beberapa tipe habitat. Semua spesies
yang ditemukan pada matriks dapat ditemukan pada elemen area inti dan sebagian
lagi pada elemen koridor. Kecuali P. cf macrotis yang hanya ditemukan pada
matriks saja, komposisi spesiesnya terdiri atas habit akuatik (L. kuhlii,
R.
erythraea dan R. hosii); semi akuatik (B. asper, Fejervayra cancrivora, F.
41
limnocaris, L. blythii, L. crybetus dan L. microdiscus); Terrestrial (L.
wayseputiense, , M. heymonsi dan M. berdmorei); semi arboreal (R. nicobariensis,
R. raniceps dan R. parvaccola) dan Arboreal (P. leucomystax, P. cf macrotis dan
Polypedates sp).
Koridor juga di dominasi oleh spesies generalis kecuali Huia sumatrana dan
Rhacophorus cyanopunctatus. Komposisi spesies nya terdiri atas habit Akuatik
(H. Sumatrana, L. kuhlii, R. erythraea, R. picturata dan R. hosii); semi akuatik
(B. asper, Fejervayra cancrivora, F. limnocaris, L. blythii, L. crybetus dan L.
microdiscus); Terrestrial (M. berdmorei); semi arboreal (R. parvaccola, R.
raniceps dan R. nicobariensis) dan arboreal (R. cyanopunctatus).
Similaritas
dari
komposisi
dan
kelimpahan
dikelompokkan
dengan
menggunakan analisis kluster dengan hasil seperti yang tertera pada Gambar 13.
Similarity
-210,42
-106,94
SSHU5 (K)
SJHI0 (K)
SJHI5 (K)
SJHU5 (K)
SSHI5 (K)
SJHU0 (K)
SSHI0 (K)
SSHU0 (K)
BSSS (C)
ST (C)
BTPSK (C)
MBTPB (M)
MBTP-S (M)
MBSB (M)
MBST (M)
MBTPU (M)
BS (C)
MBTPT (M)
BTPB (C)
BTPS (C)
BTPU (C)
100,00
BTPT (C)
-3,47
Lokasi
Gambar 13 Diagram similaritas komposisi dan kelimpahan amphibia pada tiap
lokasi menggunakan metode ward
Analisis kluster membagi lokasi secara umum berdasarkan komposisi dan
kelimpahan spesies menjadi dua kelompok besar yaitu: kelompok pertama
merupakan gabungan antara elemen area inti daratan dengan elemen matriks
kelompok ini mewakili daratan sedangkan kelompok kedua adalah elemen
koridor ditambah elemen area inti akuatik yang cenderung berupa perairan.
42
Pada kelompok yang pertama terbagi kembali menjadi dua bagian yaitu
cluster area inti dan matriks. Pada cluster area inti daratan bagian sisi Bukit
Tengah Pulau Utara, Timur dan Barat komposisi spesiesnya hanya berbeda 1-2
spesies dan kelimpahan yang bervariasi dengan angka yang sama. Sisi selatan dari
bukit ini bersebelahan dengan Bukit Salo, komposisinya juga cenderung
menyerupai Bukit Salo sehingga sedikit berbeda dengan kelompok cluster BTPU,
BTPB dan BTPT dengan tingkat similaritas 82,6. Sementara sisi selatan Bukit
Tengah Pulau lebih dekat dengan Bukit Salo memiliki tingkat kesamaan
komposisi spesies dengan nilai similaritas 80,37. Spesies yang absen pada cluster
area inti daratan adalah semua pesies dengan habit akuatik kecuali L. kuhlii, R.
raniceps, M. berdmorei dan Genus Rhacophorus.
Cluster matriks membentuk kelompok dengan similaritas tertinggi pada
MBTPU dengan MBSB dengan nilai 96. Komposisi dan kelimpahan spesies pada
paling rendah 70,4 pada cabang ke lima, cluster pada elemen matriks relatif tidak
terlalu jauh berbeda secara komposisi dan kelimpahan spesiesnya. Spesies yang
absen pada cluster matriks adalah Spesies Spesialis interior hutan, Genus Huia
dan Rhacophorus serta R. picturata.
Pada Kelompok habitat akuatik, elemen area inti akuatik mengelompok dan
tampak lebih dekat dengan koridor bagian Sungai Suir, bagian SSHU5 tampak
mengelompok dengan semua lokasi pada Sungai Jujuan yang tingkat
similaritasnya paling tinggi dibandingkan seluruh lokasi dengan tingkat kesamaan
98,6. Sedangkan tingkat kesamaan terendah komposisi antara area inti dengan
matriks adalah 52,68-72,44. Pada Sungai Jujuan dan Suir perbedaan komposisi
spesies hanya berbeda masing-masing dua spesies, pada Sungai Jujuan terdapat F.
limnocaris dan R. cyanopuntatus sedangkan pada Sungai Suir terdapat
F.
cancrivora dan M. berdmorei, Genus yang tidak ditemukan pada koridor adalah
Genus Polypedates, Kalophrynus, Occidozyga dan Leptobrachium.
43
5.1.1.2. Korelasi Jarak Dengan Keanekaragaman
Berdasarkan analisis hasil korelasi antara jarak dengan keanekaragaman
diperoleh hasil seperti pada Tabel 3.
Tabel 3 Persamaan regresi antara jarak (Euclidian distance) dengan diversitas
Shannon-Wienner.
No.
Variabel
Persamaan Regresi
P Value R square
1.
Area inti- Koridor H = 1,37 + 0,000187 Jarak+ ϵ 0,379
2,0%
2.
Area inti-Matriks
30,6%
H = 0,768 + 0,00159 Jarak+ϵ
0,004
Ket:P>0.05 tidak signifikan
Pada korelasi antara area inti dengan koridor persamaan regresi menunjukkan
korelasi yang tidak signifikan antara keanekaragaman dengan jarak. Hal ini
dikarenakan adanya ketidakkonsistenan antara pertambahan jarak dengan
bertambahnya nilai indeks keanekaragaman pada semua lokasi. Rata-rata nilai
indeks keanekaragaman tidak terlalu berbeda pada tiap pertambahan jarak,
sementara nilai jarak secara konsisten bertambah. Sehingga pola yang dihasilkan
bervariasi, dapat dilihat pada hubungan korelasi pada tiap lokasi.
Pengujian yang dilakukan dengan melihat korelasi antara jarak area inti
dengan keanekaragaman dengan menggunakan korelasi Pearson menunjukkan
korelasi positif antara dua variabel yang tidak signifikan pada Sungai Suir,
(Sungai Suir hilir r = 0,405, n = 10, p ≥ 0,05; Sungai Suir Hulu r = 0,307, n = 10,
p ≥ 0,05). Pada Sungai Jujuan ada sedikit variasi dimana Sungai Jujuan Hulu
berkorelasi positif (r = 0,093, n = 10, p ≥ 0,05), sedangkan bagian hilirnya
berkorelasi negatif (r = -0,142, n = 10, p ≥ 0,05). Korelasi pada bagian hilir
Sungai Jujuan dapat dilihat sebagai penyebab utama ketidak konsistenan karena
bernilai negatif, dimana nilai indeks keanekaragaman cenderung menurun dengan
pertambahan jarak dari area inti, sementara lokasi yang lain memiliki nilai
korelasi positif yang rendah dan tidak signifikan.
Korelasi antara jarak dengan keanekaragaman pada elemen matriks
berdasarkan analisa diatas didapatkan hasil korelasi antara jarak dengan
keanekaragaman yang signifikan. Dimana keanekaragaman tiap pertambahan
44
jarak satu meter, keanekaragaman akan bertambah sebanyak 0,00159 kali
ditambah dugaan nilai rataan pada daerah matriks.
5.1.2. Perbandingan Keanekaragaman Jenis Amphibia pada Koridor yang
Terpapar dan Tidak dengan Area Inti Serta pada Bagian Hulu dan
Hilir
5.1.2.1. Perbandingan Keanekaragaman Jenis Amphibia pada Koridor yang
Terpapar dan Tidak Terpapar dengan Area Inti
Uji beda keanekaragaman jenis amphibia pada koridor Sungai Suir yang
terpapar dan Sungai Jujuan tidak terpapar dengan area inti dilakukan dengan uji t
student dengan hasil seperti yang tertera pada Tabel 4 berikut:
Tabel 4 Nilai t hitung uji t student keanekaragaman antara sungai jujuan dengan
Sungai Suir.
No.
Habitat
Sungai Suir Hilir
Sungai Suir Hulu
1.
Sungai Jujuan hilir
-1,03ts
-1,45ts
2.
Sungai Jujuan hulu
-0,04ts
-0,62ts
Ket: ts = tidak signifikan
Pada Tabel 4 dapat dilihat ada empat perbandingan dengan hasil tidak ada
perbedaan keanekaragaman amphibia yang signifikan antara Sungai Jujuan yang
tidak terpapar dengan area inti dan Sungai Suir yang terpapar dengan area inti,
baik pengujiannya pada bagian hulu dan hilir dari dua sungai ini. Secara jumlah
jenis kedua sungai juga memiliki jumlah spesies yang sama yaitu 14 spesies,
memiliki tingkat kesamaan komposisi spesies sebanyak 85,7%, spesies yang
hanya ditemukan pada Sungai Jujuan adalah F. cancrivora dan R. cyanopunctatus
sedangkan yang hanya ditemukan pada Sungai Suir saja adalah M. berdmorei dan
F. limnocaris.
45
5.1.2.2. Perbandingan Keanekaragaman Jenis Amphibia pada Aliran Sungai
Bagian Hulu dan Hilir
Uji beda keanekaragaman jenis amphibia pada bagian hulu dan hilir dari
koridor Sungai Jujuan dan Suir dilakukan dengan uji t student dengan hasil seperti
yang tertera pada Tabel 5.
Tabel 5 Nilai t hitung uji t student keanekaragaman pada bagian hulu dan hilir
No.
Habitat
Sungai Jujuan Hulu
Sungai Suir Hulu
1
Sungai Jujuan hilir
-0,99ts
-
2
Sungai Suir hilir
-
-0,60ts
Ket:ts=tidak signifikan
Berdasarkan pada uji t pada keanekaragaman jenis amphibia pada koridor
Sungai Jujuan bagian hulu dan hilir di dapatkan hasil tidak ada perbedaan yang
signifikan antara keanekaragaman amphibia pada bagian hulu dan hilir dari
Sungai Jujuan. Demikian juga dengan bagian hulu dan hilir dari Sungai Suir
dimana tidak ada perbedaan yang signifikan pada keanekaragaman amphibianya.
Adapun sebaran berdasarkan komposisi spesies pada tiap subtransek pada
Sungai Jujuan dapat dilihat pada Gambar 14.
Ket A = B. asper; B = F. limnocaris; C = H. sumatrana; D = L. blythii; E = L. crybetus; F = L.
kuhlii; G = L. microdiscus; H = R. erythraea; I = R. hosii; J = R. nicobariensis; K = R. parvaccola;
L = R. picturata; M = R. raniceps; N = R. cyanopunctatus
Gambar 14 Diagram komposisi spesies antara bagian hulu dan hilir sungai jujuan.
46
Pada diagram dapat dilihat variasi komposisi dari spesies pada setiap
subtransek, tidak terdapat perbedaan yang mencolok antara spesies pada bagian
hulu dengan hilir sungai. Spesies yang ditemukan pada bagian hulu sebanyak 12
spesies sedangkan spesies yang ditemukan pada bagian hilir sebanyak 14 spesies,
lebih banyak dua spesies yaitu L. microdiscus dan F. limnocaris di bandingkan
dengan bagian hulu. Sedangkan pola pada komposisi spesies pada bagian hulu dan
hilir sungai suir dapat dilihat pada Gambar 15.
Ket: A = B. asper; B = F. cancrivora; C = H. sumatrana; D = L. blythii; E = L. crybetus; F = L. kuhlii; G = L. microdiscus;
H = M. berdmorei; I = R. erythraea; J = R. hosii; K = R. nicobariensis; L = R. parvaccola; M = R. picturata; N = R.
raniceps).
Gambar 15 Diagram komposisi spesies antara bagian hulu dan hilir sungai suir.
Pada Gambar 15 terlihat kondisi sebaran spesies juga tidak jauh berbeda
antara bagian hilir spesies tidak memiliki pola jumlahnya meningkat pada bagian
hulu dan menurun pada bagian hilir. Perbedaan terlihat pada jumlah spesies yang
ditemukan pada bagian hulu lebih banyak sejumlah 13 spesies dibandingkan
dengan bagian hilir yang hanya memiliki kekayaan spesies sebanyak 9 spesies.
Spesies yang hanya ditemukan pada bagian hilir adalah F. cancrivora sedangkan
spesies yang hnaya ditemukan pada bagian hulu saja adalah L. microdiscus, R.
nicobariensis, R. picturata dan M. berdmorei.
47
5.1.3. Distribusi dan Dispersal Amphibia
5.1.3.1. Distribusi Amphibia
Peta sebaran amphibia pada lanskap Bukit Tengah Pulau dan Salo dapat
dilihat pada Gambar 16 dan 17.
Gambar 16 Peta sebaran amphibia pada area inti, matriks dan koridor bukit
tengah pulau.
Gambar 17. Peta sebaran amphibia pada area inti, matriks dan koridor bukit
salo.
48
Berdasarkan pada analisis pola sebaran spasialnya (Lampiran 15.) spesies
amphibia pada kawasan KSI memiliki tiga pola: Agregat (B. asper, F. cancrivora,
F. limnocharis, H. sumatrana, K. pleurostigma, L. wayseputiense, L. blyhtii, L.
crybetus, L. kuhlii, M. borneensis, M. heymonsi, O. sumatrana, P. leucomystax,
Polypedates sp, R. erythraea, R. hosii, R. nicobariensis, R. parvaccola, R.
picturata dan R. raniceps); Acak (B. biporcatus, Microhyla sp dan O. laevis); dan
Homogen (L. microdiscus, M. berdmorei, P. cf macrotis dan R. cyanopunctatus).
Pola sebaran spasial ini dapat tergambar melalui distribusi kelimpahan populasi
amphibia pada elemen lanskap, seperti pada:
Area Inti
Wilayah area inti umumnya memiliki tipe habitat yang sama yaitu hutan yang
telah terdegradasi. Pada area inti dengan habitat terrestrial, tipe lokasi bisa
dibedakan menjadi tiga berdasarkan pola area yang berbatasan dengan matriks
yaitu 1). lokasi yang diawali dengan dominasi semak, lokasi yang di awali dengan
dominasi semak ditemukan pada BTPT dan BS, pada BTPT. Daerah yang
berbatasan dengan matriks berupa semak dan perdu dengan pepohonan yang
jarang-jarang, pada 100 meter pertama daerah ini ditemukan P. leucomystax dan
R. raniceps namun pada BS tidak ditemukan amphibia pada daerah perbatasan ini;
2). lokasi yang diawali dengan hutan sekunder. Tipe lokasi ini dapat ditemukan
pada BTPB dan BTPS. Pada BTPB amphibia yang mampu hidup pada daerah
perbatasan ini adalah K. Pleurostigma sedangkan pada BTPS adalah L.
wayseputiense dan 3). Hutan yang didominasi Euphorbiaceae, satu-satunya lokasi
dengan tipe hutan yang didominasi oleh vegetasi Macaranga adalah pada lokasi
BTPU pada lantai hutannya ditutupi dengan serasah-serasah daun lebar dan tebal
namun tampaknya daerah ini dihindari oleh amphibia.
Pada bagian dalam hutan spesies amphibia banyak ditemukan pada daerah
pertengahan transek dan tampaknya menghindari daerah puncak bukit yang lebih
terbuka tutupan kanopinya. Amphibia yang umum ditemukan berada diatas
lapisan serasah seperti K. Pleurostigma, L. wayseputiense, M. heymonsi, M.
borneensis dan L. microdiscus dan B. biporcatus. Mikrohabitat lainnya yang
digunakan adalah kubangan oleh L. kuhlii dan akar banir oleh Microhyla sp. Pada
49
perdu-perdu yang tumbuh di dalam hutan digunakan oleh Polypedates sp, satusatunya amphibia arboreal yang mampu hidup didalam hutan.
Area inti yang habitatnya berupa akuatik pada daerah yang berbatasan dengan
matriks biasanya ditemukan B. asper, L. blythii, L. crybetus, L. kuhlii dan R.
erythraea. Bagian yang sungai yang berada di dalam hutan juga memiliki
komposisi yang sama dengan perbatasan hanya saja R. picturata dan R. hosii
merupakan spesies ciri pada daerah ini spesies semi arboreal juga dapat
ditemukan seperti R. raniceps dan R. parvaccola. Spesies di dalam hutan ini
umum ditemukan pada tepian sungai, mikrohabitat yang lain seperti tebing
digunakan oleh L. microdiscus dan kubangan babi yang berada tidak jauh dari
sungai ditemukan amphibia dari genus Occidozyga.
Matriks
Secara umum amphibia pada matriks tampaknya tidak terlalu menyenangi
daerah perbatasan dengan area inti yang memiliki kontur berbukit yang kering dan
sering kali ditanami dengan sawit yang berusia muda. Seperti pada lokasi
MBTPB, MBST dan MBTP-S pada 100 meter pertama dari jarak tersebut hanya
ditemukan P. cf macrotis dan M. heymonsi masing-masing hanya satu individu,
malah pada MBTPB tidak ditemukan satu pun amphibia. Matriks yang memiliki
perbatasan dengan area inti berupa perkebunan kelapa sawit yang telah dewasa
seperti pada lokasi MBSB juga tidak ditemukan amphibia pada 100 meter
pertama.
Berbeda dengan matriks yang memiliki perbatasan yang basah dengan area
inti seperti pada MBTPU. Beberapa jenis amphibia memanfaatkan bekas aliran
sungai dengan batu-batu besar bersemak yang masih dialiri air dibawahnya
menggenangi area berupa rawa yang dihuni oleh R. erythraea dan R. parvaccola
pada vegetasinya. Pada MBTPT perbatasan berupa areal berawa yang ditanami
dengan sawit muda umumnya digunakan oleh Genus Fejervarya, L. kuhlii, R.
parvaccola dan R. nicobariensis.
Pada perkebunan Amphibia dapat dengan mudah ditemukan pada parit-parit
yang bersemak spesies yang biasa ditemukan adalah B. asper, L. blythii, L. kuhlii.
Kemudian pada bagian tepi jalan perkebunan yang membentuk kubangan banyak
sekali ditemukan R. nicobariensis, M. heymonsi dan beberapa P. leucomystax,
50
Polypedates sp. Kelimpahan R. nicobariensis dan M. heymonsi sangat menonjol
pada kawasan yang memiliki pelepah sawit kering yang jamak digunakan sebagai
pembatas piringan sawit semak. Pakis yang tumbuh subur diantara rentang jarak
tanam sering ditemukan digunakan oleh Genus Polypedates, R. parvaccola, R.
raniceps. Biasanya semakin rimbun semak pakis tersebut makin banyak
ditemukan spesies-spesies ini ditemukan. Pada permukaan tanah perkebunan di
bawah kanopi kelapa saiwt jenis yang kerap ditemukan lainnya adala Genus
Fejervarya, L. microdiscus dan M. berdmorei.
Koridor
Amphibia terdistribusi secara merata di sepanjang koridor hanya saja
komposisi spesiesnya yang tidak seragam. Jenis yang paling terdistribusi secara
merata adalah B. asper jenis ini sangat mendominasi kawasan sering didapati pada
pinggiran sungai baik yang bertebing maupun landai namun tidak ditemukan pada
bagian sungai yang berlubuk dengan tepian yang terbuka dan ditumbuhi oleh
pakis-pakisan, jenis lain yang umum terdistribusi adalah R. hosii selalu dapat
dengan mudah ditemukan pada sungai dengan jeram yang kuat dan kelembaban
yang tinggi.
Pada daerah yang berlubuk dan dilingkupi oleh riparia yang rimbun dapat
ditemukan R. picturata yang menggunakan akar dan cabang-cabang vegetasi
dipinggiran sungai. Bagian tepiannya banyak digunakan oleh L. blythii dan L.
crybetus meskipun kedua jenis ini juga ditemukan pada perairan bersubstrat batubatuan kerikil dangkal, pada vegetasi pinggirnya digunakan oleh R. raniceps dan
R. parvaccola. L. kuhlii banyak ditemukan pada pinggiran sungai yang landai dan
genangan air sungai berlumpur hingga diatas tebing hingga ke tinggian 3 meter
pada air yang terperangkap pada ceruk bebatuan.
R. nicobariensis hanya ditemukan pada bebatuan lava dimana air
terperangkap pada Sungai Jujuan. Sedangkan pada Sungai Suir berada pada
genangan air ditepi lahan pertanian yang dibuka oleh masyarakat. Pada sungai
yang bertebing dapat ditemukan L. microdiscus dan R. cyanopunctatus.
Sedangkan R. erythraea cenderung lebih tidak terikat, dalam pengamatan ini
sering ditemukan pada pinggian sungai yang berair tenang dan daerah yang
melingkupinya relatif terbuka, sering ditemukan pada tebing dan pada daun-daun
51
keladi yang tumbuh dipinggir sungai. Spesies yang jarang ditemukan adalah
Genus Fejervarya pada bagian hilir sungai dalam rentang 100 meter awal
pengamatan dan M. berdmorei ditemukan di dekat lahan pertanian yang dibaru
dibuka oleh masyarakat pada bagian hulu Sungai Suir.
5.1.3.2. Dispersal Amphibia
Komposisi amphibia pada tiap-tiap elemen dapat dilihat pada Gambar 18.
 Polypedates leucomistax
 Bufo biporcatus
 Microhyla sp
 Occidozyga laevis
 Polypedates sp
Area inti
 Leptobrachium wayseputiense
 Microhyla heymonsi
 Occidozyga sumatrana
 Microhyla borneensis
 Bufo asper
 Kalophrynus pleurostigma
 Rana erythraea
 Rana hosii
 Rana parvaccola
 Rana raniceps
 Rana picturata
 Polypedates cf macrotis
Matriks
 Limnonectes microdiscus
 Limnonectes blythii
 Limnonectes crybetus
 Limnonectes kuhlii
Koridor
 Microhyla berdmorei
 Fejervarya cancrivora
 Huia sumatrana
 Fejervarya limnocaris
 Rhacophorus cyanopunctatus
 Rana nicobariensis
Gambar 18 Komposisi amphibia berdasarkan sebarannya pada elemen lanskap.
Berdasarkan pada Gambar 18 Amphibia pada kawasan PT.KSI dapat dibagi
menjadi tiga kategori. Kategori pertama adalah kategori spesies obligat, terlihat
bahwa pada area inti hanya dapat ditemukan 6 spesies, pada matriks 1 spesies dan
2 spesies pada koridor, secara umum dapat diasumsikan spesies-spesies
ini
merupakan spesies spesialis dan bersifat spesifik serta memiliki preferensi habitat
sesuai dengan elemen lanskap yang ditempatinya. Spesies spesifik ini diyakini
tidak melakukan dispersal karena tidak ditemukan pada elemen lainnya.
Kategori kedua adalah spesies fakultatif, kategori terdiri atas spesies yang
memiliki kemampuan untuk hidup pada dua elemen yang berbeda dan memiliki
preferensi pada salah satu atau kedua elemen untuk ditempati, terdiri atas tiga
bagian yaitu:
52
1. Area inti-koridor, spesies yang mampu hidup pada kedua elemen ini
hanya R. picturata. Dimana spesies ini ditemukan pada area inti perairan
dan koridor yang juga berbentuk badan air. Namun preferensi dari spesies
lebih dominan pada area inti.
2. Area inti-matriks, terdiri atas 4 spesies yaitu P. leucomystax, Polypedates
sp, M. heymonsi dan L. wayseputiense. P. leucomystax dan M. heymonsi
memiliki preferensi habitat pada matriks, sedangkan spesies yang terakhir
lebih dikenal sebagai spesies interior hutan dan memiliki preferensi
habitat pada area inti.
3. Matriks-koridor, Terdiri atas 4 spesies juga yaitu semua Genus
Fejervarya, M. berdmorei dan R. nicobariensis. Semua spesies ini lebih
umum ditemukan pada matriks dan pengukuran dengan menggunakan
indeks preferensi habitatnya membuktikan hal ini. Pada koridor hanya R.
nicobariensis yang kelimpahannya masuk dalam kategori jarang
sedangkan 3 spesies lainnya kelimpahannya berkategori langka.
Kategori ketiga adalah Spesies generalis, terdiri atas Spesies amphibia yang
mampu hidup beradaptasi pada ketiga elemen lanskap perkebunan, dengan total 9
spesies dan kesemuanya memiliki habit akuatik. Badan perairan dapat ditemukan
pada area inti berupa sungai-sungai kecil dalam hutan, beberapanya memiliki
aliran air yang berhulu melintasi matriks, badan air pada matriks sendiri berupa
parit-parit kecil di pinggir kolom perkebunan yang mengalir dan bergabung
menjadi sungai kecil yang melintasi area inti dan akhirnya bermuara pada sungaisungai besar berkoridor yaitu Sungai Jujuan dan Sungai Suir.
Berdasarkan analisis preferensi habitat (Lampiran 14.) menunjukkan sebagian
besar spesies hanya memiliki preferensi pada satu habitat saja seperti pada: Area
inti (B. biporcatus, R. picturata, O. laevis, O. sumatrana, K. pleurostigma, L.
wayseputiense, M. borneensis dan Microhyla sp); matriks (F. cancrivora, F.
limnocharis, R. nicobariensis, R. parvaccola, M. berdmorei, M. heymonsi, P.
leucomistax dan P. cf macrotis); dan koridor (B. asper, H. sumatrana, R. hosii, L.
blythii, L. kuhlii dan R. cyanopunctatus). Sebagian lainnya memiliki preferensi
pada dua habitat yang berbeda antara lain: pada area inti-matriks (L. microdiscus
53
dan Polypdates sp); area inti-koridor (L. crybetus); dan matriks-koridor (R.
erythraea dan R. raniceps).
5.2. Pembahasan
5.2.1. Keanekaragaman dan Similaritas Spesies pada Elemen Lanskap dan
Korelasi Jarak dengan Keanekaragaman
5.2.1.1. Keanekaragaman dan Similaritas Spesies pada Elemen Lanskap
Kurva akumulasi spesies
Kurva akumulasi spesies berhenti pada jumlah 27 spesies dan masih
menunjukan tren menanjak walau cenderung mendatar. Hal ini menunjukkan
masih ada kemungkinan untuk penemuan spesies lainnya namun relatif sedikit
bila variasi habitat yang dijadikan lokasi pencarian masih sama, semakin luasnya
area pencarian akan mencakup habitat yang lebih heterogen (Shen et al. 2009) dan
lamanya waktu (Crosswhite et al. 1999) yang diperlukan akan menentukan
seberapa banyak spesies yang teramati. Jumlah spesies yang ditemukan termasuk
tinggi dan lebih baik dari rata-rata jumlah spesies yang ditemukan oleh Kurniati
(2009) yang melakukan pengamatan diversitas amphibia di 14 lokasi yang
berbeda pada Taman Nasional Kerinci Sebelat dengan jumlah rata-rata kekayaan
spesies 16 (stdev= 6).
Estimasi dalam kekayaan jenis merupakan cara paling sederhana dalam
mengukur keanekaragaman. Munculnya area inti sebagai elemen lanskap yang
memiliki nilai tertinggi dengan 23 spesies (stdev=3,75) secara umum menyatakan
bahwa area inti merupakan wilayah dengan keanekaragaman tertinggi, mengingat
jumlah transek yang digunakan pada area inti lebih besar dan lebih beragam jenis
habitat yang di survei membuat label keanekagaraman tertinggi pada kawasan ini
tidak tergambarkan dengan baik, karena elemen matriks yang lebih relatif lebih
homogen kawasannya menempati posisi terbaik kedua dengan jumlah 21 spesies
(stdev= 2,87) dengan jumlah transek yang lebih sedikit, sedangkan koridor
merupakan elemen dengan kekayaan jenis terendah. Faktor ketidakstabilan
lingkungan mungkin mempengaruhi rendahnya kekayaan jenis pada koridor.
Faktor dominansi menyebabkan kekayaan spesies yang diperkirakan lebih
cenderung dibawah estimasi (Magurran 2004).
54
Kurniati (2011) melakukan penelitian pada kawasan yang sama menemukan 6
spesies yang berbeda dengan yang tercatat dalam penelitian ini pada matriks. Hal
ini dikarenakan lebih cenderung kepada variasi daerah yang disurvei mencakup
aliran sungai, kolam dan perkebunan sawit itu sendiri yang ke semuanya didalam
matriks, sedangkan pencarian pada koridor ditemukan 11 spesies dimana 4 spesies
berbeda dengan yang ditemukan dalam penelitian ini dengan menggunakan dua
metode pecarian dan aliran sungai yang berbeda, pencarian pada area inti tidak
ditemukan amphibia karena hanya satu lokasi dan metode yang digunakan.
Hal ini menggambarkan variasi dari lokasi, luas area dan metode yang
digunakan sangat menentukan keanekaragaman pada suatu lokasi. Kekayaan
spesies yang berasal dari komunitas yang berbeda seharusnya dibandingkan
berdasarkan pada ukuran sampling effort yang sama
termasuk area yang
dieksplorasi, waktu yang digunakan (Begon et al. 2006) dan metode sampling
yang dipakai (Magurran 2004).
Jumlah Jenis, Diversitas dan Kemerataan.
Lanskap Bukit Tengah Pulau (BTP-MBTP-SJ) dan lanskap Bukit Salo (BSMBS-SS). Bila perbandingan dilakukan dengan persepsi ini sekilas terlihat
keanekaragaman pada lanskap Bukit Tengah Pulau lebih baik dibandingkan
dengan lanskap Bukit Salo, baik dari sisi jumlah spesies, keanekaragaman dan
kemerataan. Menunjukkan bahwa karakter lanskap pada Bukit Tengah Pulau lebih
padu dengan mozaik yang homogen dibandingkan dengan Bukit Salo. Namun hal
ini juga cukup bias dikarenakan luas area yang disurvei lebih banyak
dibandingkan Bukit Salo. Secara keseluruhan lanskap bukit tengah pulau juga
memiliki porsi wilayah yang lebih banyak dibandingkan dengan Bukti Salo
ditambah kawasan lanskap Bukit Salo terutama pada area inti dan koridornya
terus tergerus oleh penebangan liar sehingga luasan hutannya terus menyusut pada
beberapa sisi, tergambar dari tutupan tajuk (Lampiran 1).
Secara umum pada area inti spesies yang ditemukan merupakan spesies yang
mampu hidup pada wilayah hutan sekunder diantaranya adalah L. wayseputiense,
K. Pleurostigma, dan M. borneensis. Kelimpahan yang rendah menunjukkan
adanya tekanan habitat pada populasi, perpaduan antara pembalakan liar dan
perkebunan memberikan efek berantai bagi spesies spesialis hutan. Faktor penentu
55
utama efek perkebunan terhadap amphibia adalah temperatur, lingkungan dengan
kanopi terbuka akan meningkatkan eksposur cahaya bagi amphibia, meningkatkan
tekanan fisiologi karena stress panas (Wanger et al. 2009).
Selain spesies-spesies ini, rata-rata amphibia lainnya mampu hidup diluar
hutan dan beradaptasi dengan baik. Dengan melihat kondisi pada area inti yang
telah jauh terdegradasi maka diyakini spesies yang hanya mampu hidup pada
hutan primer diyakini telah punah keberadaaannya pada area inti, fragmen kecil
yang terisolasi juga memiliki spesies yang kecil pada taxa lain seperti pada kupukupu (Benedict et al. 2006). Faktor lainnya diyakini karena daya dispersal yang
rendah juga mempengaruhi amphibia sendiri (Gillespie, in press), mempengaruhi
migrasi antar habitat yang penting untuk aliran genetik (Wang & Whitlock 2003).
Transformasi pada daratan mempengaruhi integritas dari sistem ekologi melalui
hilangnya spesies asli, invansi spesies eksotik, erosi pada tanah dan menurunnya
kualitas air (Forman & Godron 1986). Spesies asli yang tersisa setelah modifikasi
secara umum akan berkurang dalam jumlah dan tidak terhubung dengan batasan
habitat yang masih utuh. Hasilnya populasi dari tumbuhan dan hewan yang ada
pada habitat yang tertingggal ini juga akan terbagi dan berkurang dan juga
menyebabkan beberapa spesies tertentu menghadapi kepunahan.
Keanekaragaman yang cukup tinggi di kawasan area inti terbantu karena
kemerataan yang baik. Meski secara kuantitas sebenarnya populasinya
mengkhawatirkan karena setiap spesies hanya diwakili oleh satu individu bila
dirata-ratakan dengan jumlah lokasi yang dijadikan titik pengambilan data.
Sedangkan pada area inti yang habitatnya akuatik tidak jauh berbeda dengan
koridor, hanya R. picturata dan R. hosii yang memiliki keterikatan yang tinggi
dengan hutan, meskipun R. hosii juga dapat ditemukan diluar hutan (Kurniati
2009). Keanekaragaman spesies pada akuatik tidak lebih baik dibandingkan pada
area inti pada habitat daratan karena beberapa spesies semi akuatik dan akuatik
yang sedikit dominan diwilayah tersebut namun lebih baik dibandingkan dengan
koridor.
Matriks Bukit Tengah Pulau dan Matriks Bukit Salo merupakan bagian dari
elemen matriks. Kedua lokasi ini memiliki nilai yang kontras pada jumlah spesies
dimana Matriks Bukit Tengah Pulau merupakan bagian dengan jumlah spesies
56
paling tinggi dengan jumlah 18 spesies sementara Matriks Bukit Salo merupakan
yang terendah bila dibandingkan dengan lokasi keseluruhan. Hal ini disebabkan
oleh jumlah transek pada Matriks Bukit Tengah Pulau jauh dua kali lebih banyak
bila dibandingkan dengan Matriks Bukit Salo. Matriks Bukit Tengah Pulau
diwakili dengan empat transek sedangkan matriks bukit salo dengan dua transek.
Jumlah transek ini sebanding dengan luas area yang diamati menjadi dua kali
lebih banyak, luas area sebanding dengan jumlah spesies (Tjorve 2003), karena
area yang lebih luas memiliki habitat yang lebih heterogen dan lingkungan mikro
yang lebih bervariasi pula. Namun terbatasnya daya dispersal dan minimnya
mikrohabitat yang tersedia juga mempengaruhi hal ini (Shen et al. 2009; Donald
& Evans 2006). Spesies yang mampu bertahan pada matriks merupakan spesies
generalis dengan relung yang luas, dan beberapa spesies mampu hidup sama
baiknya pada perkebunan dan hutan yang telah terdegradasi.
Koridor pada Sungai Jujuan dan Sungai Suir memiliki jumlah spesies,
keanekaragaman dan kemerataan yang relatif paling buruk bila dibandingkan
dengan elemen lainnya. Hal ini disebabkan karena dominasi beberapa spesies
yang sangat kental karena habitat yang relatif homogen dan lingkungan yang
sangat fluktuatif menyangkut debit air, sifat fisika dan kimia karena tidak
stabilnya sistem hidrologi karena mulai tergerusnya sistem penyangga yang tidak
kontinyu. Hal ini dapat tergambar dengan mudah pada kondisi populasi H.
sumatrana di kawasan ini. Jenis spesies ini adalah amphibia yang menyenangi air
berjeram jernih di dalam hutan (Mistar 2003), kondisi populasinya dari kedua
sungai hanya di dapati 10 individu saja dalam rentang total 4 kilometer panjang
transek. Hal ini mungkin disebabkan sungai yang ada tidak memiliki hutan yang
berkesinambungan menyebabkan menurunnya kelembaban, suhu, fluktuasi debit
air (Olson et al. 2007). Pendangkalan karena sedimentasi, dan masuknya material
kimiawi ke dalam perairan.
Faktor ini menyebabkan spesies yang paling mampu beradaptasi akan
mendominasi kawasan dan spesies yang memiliki batas toleransi lingkungan akan
menghadapi hambatan dalam struktur populasinya. Hal yang sama juga terjadi
pada taxa yang lain, spesies hutan yang ditemukan pada perkebunan sedikit dan
spesies yang umum ditemukan berlimpah (Bruhl et al. 2003; Sheldon et al. 2010)
57
Disamping itu struktur komunitas amphibia yang berada di elemen koridor,
dihindari oleh spesies interior hutan dan amphibia dengan habit arboreal dari
genus Polypedates.
Spesies spesialis interior hutan menghindari daerah riparia mungkin
dikarenakan karena faktor efek tepi mengingat lebar koridor riparia yang berkisar
antara 20-50 meter dan karakter habitat yang tidak menunjang bagi siklus hidup
mereka. Riparian pada koridor berupa hutan sekunder yang memiliki lapisan
serasah yang tipis, mikrohabitat yang dapat menunjang hidup mungkin saja tidak
tersedia, sementara absennya genus Polypedates belum diketahui penyebabnya.
Bickford et al. (2009) memiliki persepsi yang berbeda mengenai ini hasil
penelitiannya menunjukan habitat untuk berreproduksi yang lebih heterogen
berperan dalam menentukan kekayaan spesies, fragmen yang besar dan
berdekatan memiliki spesies yang lebih banyak dan kelimpahan tidak memiliki
korelasi dengan area hutan atau konektivitas.
Similaritas
Tingkat persamaan antara tipe area inti perairan dengan Koridor juga tidak
terlalu banyak berbeda. Pada dispersal pada area inti Bukit Tengah Pulau- Koridor
Sungai Jujuan, pada area inti terrestrial tingkat persentase kesamaan komposisi
spesies tertinggi hanya 14,3% pada Bukit Tengah Pulau Selatan (BTPS) 4,3%
pada Bukit Tengah Pulau Timur (BTPT), 9,5% pada Bukit Tengah Pulau utara
(BTPU) dan bahkan pada Bukit Tengah Pulau barat (BTPB) tidak ada spesies
yang sama, bandingkan dengan area inti berkarakter perairan (Bukit Tengah Pulau
Sungai Kecil) yang memiliki tingkat kesamaan tertinggi 22,2%. Jumlah individu
pada area inti terrestrial yang terlalu kecil juga menghindari terjadinya dispersal
rata-rata jumlah individu pada tiap area inti bertipe terrestrial hanya 1
individu/spesies. Tidak memenuhi syarat alasan mengapa suatu organisme
berdispersal.
Berdasarkan pada kesamaan komposisi dan kelimpahan spesiesnya, area inti
terrestrial memiliki tingkat kesamaan yang lebih baik dengan matriks
dibandingkan dengan koridor, sebaliknya area inti akuatik memiliki tingkat
kesamaan yang lebih baik dengan matriks, data karakter lingkungan perairan pada
58
koridor juga mendukung dugaan ini (Lampiran 1). Hal ini membuktikan bahwa
spesies dengan habitat terrestrial lebih memilih preferensi habitat lain dengan tipe
terrestrial pula. Dan spesies akuatik juga lebih memiliki preferensi pada habitat
akuatik lainnya. Habitat yang memiliki kemiripan karakter akan menarik
komposisi spesies yang sama pula (Craig & Beal 1992). Hasil ini diperkuat
dengan tipe lokasi yang serupa antara Bukit Tengah Pulau-Salo yang lebih dekat
dengan Matriks Bukit Tengah Pulau Barat, kesamaan keduanya adalah topografi
lokasi yang serupa dimulai pada kelerengan tinggi, MBSB-MBTPU dan MBTPT
memiliki tipe transek yang diawali dengan trek yang relatif basah dan lembab.
Dalam diagram terlihat lokasi yang memiliki komposisi dan kelimpahan yang
paling sama adalah habitat yang paling homogen diantara lainnya. Koridor adalah
habitat yang paling homogen diantara habitat lainnya, karena komposisi dan
kelimpahan spesies antar lokasinya diatas 96%. Hal ini dapat menerangkan
mengapa kekayaan spesies pada koridor lebih sedikit dibandingkan lokasi lainnya.
Heterogenitas pada habitat mempengaruhi kekayaan jenis pada suatu lokasi, pada
Bukit Tengah Pulau Sungai Kecil dan Sungai Ternuk juga terlihat pola dimana
hulu keduanya berasal dari parit-parit perkebunan yang membentuk sungai kecil
dan mengalir ke melintasi area inti. Berbeda dengan Bukit Salo Sungai Jernih
yang asal airnya dari perbukitan bukit salo menunjukan kesamaan dengan Sungai
Suir yang merupakan sungai besar terdekat, meski pun letaknya bersebelahan
dengan Sungai Ternuk, pengaruh lokasinya yang berada di dalam hutan
mempengaruhi komposisi spesies yang serupa karakternya dengan Sungai Suir.
Hal yang menarik dari kesamaan komposisi ini adalah spesies amphibia yang
memiliki habit arboreal, dari 4 spesies yang ditemukan hanya 1 spesies saja
(Genus Rhacophorus) yang memanfaatkan habitat akuatik, sedangkan 3 spesies
lainnya (Genus Polypedates) hidup pada habitat terrestrial. Hal ini diduga juga
bergantung kepada heterogenitas habitat reproduksi yang memiliki perbedaan
pada Genus Rhacophorus dan Genus Polypedates. Katak pohon diketahui juga
terbagi menjadi dua kelompok yaitu kelompok yang menggunakan sungai sebagai
tempat berbiak dan kelompok yang menggunakan air tergenang untuk berbiak
(Inger & Stuebing 1997).
59
5.2.1.2. Korelasi Jarak dengan Keanekaragaman
Berdasarkan pada perhitungan yang telah dilakukan pada area inti-koridor
dengan melihat korelasi antara keanekaragaman amphibia dengan jarak dari
hutan, menunjukan bahwa jarak dari hutan tidak berpengaruh signifikan terhadap
peningkatan maupun penurunan keanekaragaman amphibia di sepanjang koridor
sungai jujuan maupun Sungai Suir. Hal ini bertentangan dengan model
equilibrium teori biogeografi pulau yang dikemukakan oleh McArthur (1972),
bahwa semakin jauh jarak dengan sumber keanekaragaman berbanding terbalik
dengan keanekaragaman. Hasil ini merupakan salah satu dari efek dari jarak,
semakin jauh jarak maka akan menyebabkan makin tingginya tingkat kepunahan
suatu spesies dan imigrasi menurun dengan drastis (Simberloff 1974), karena
kekayaan spesies dalam komunitas berhubungan dengan proses imigrasi dan
emigrasi dari satwa (MacArthur & Wilson 1967).
Laurance (2008) mengkaji secara global mengenai teori biogeografi pulau
memiliki batasan dalam relevansinya memahami ekosistem terfragmen; Pertama,
teori biogeografi pulau hanya memberikan sedikit prediksi mengenai bagaimana
komposisi dalam komunitas berubah dengan berjalannya waktu; Amphibia seperti
satwa lainnya juga memiliki preferensi sendiri terhadap habitatnya dan merupakan
satwa yang sangat terikat dengan mikrohabitatnya dan berkarakter phylopatric.
Amphibia
cenderung untuk menetap pada suatu lokasi ketika dewasa. Fase
juvenile amphibia paling banyak melakukan dispersal dan mungkin butuh
beberapa generasi untuk melintasi koridor (Burbrink 1998). Faktor ini sangat
berbahaya bagi populasi amphibia pada perkebunan kelapa sawit terutama spesies
spesialis hutan, perkebunan kelapa sawit dibuka dengan proses konversi yang
cepat secara luas (Koh & Wilcove 2008).
Perubahan suhu, kelembaban, eksposur cahaya, hidrologi mempengaruhi
fisiologi yang menyebabkan stress bagi amphibia akan menyebabkan kepunahan
pada seluruh strata umur. Kondisi hutan yang tidak seragam juga tidak
mempengaruhi secara nyata (lihat sub bab 5.2.2). Ketersediaan mikrohabitat yang
disenangi oleh amphibia itu sendiri lebih menentukan keanekaragaman pada
amphibia dari pada kebutuhannya dengan hutan (Nuzzo & Mierzwa 2000). Perlu
dicatat definisi habitat bagi amphibia tidak selalu diassosiasikan dengan hutan
60
beberapa jenis amphibia mampu hidup di luar hutan selama mikrohabitatnya
tersedia dan juga tergantung pada seberapa lebar relung ekologi dari spesies
tersebut.
Ke-2, efek tepi dapat menjadi pengarah terjadinya kepunahan spesies lokal
yang tidak dipertimbangkan oleh teori biogeografi pulau; Pada koridor yang
berbentuk garis persegi seperti pada kawasan KSI, efek tepi sangat berpengaruh
karena hampir setiap sisi dari hutan riparia dipengaruhi oleh efek tepi. Hal ini
menyebabkan spesies interior hutan tidak ditemukan pada pada koridor (Santosbarerra
&
Urbina-cardona
2011).
Gangguan
pada
habitat
yang
utuh
menyebababkan peningkatan pada panjang batas antara fragmen dan habitat yang
melingkupinya. Tepi baru yang tercipta menyebabkan perubahan pada
karakteristik iklim mikro, yang mana secara signifikan merubah tumbuhan asli
dan komunitas hewan yang ada. Ukuran dari fragmen habitat mempengaruhi
dengan mencolok proses ekologi yang terjadi, sebagian besar perubahan
disebabkan oleh bagian tepi habitat ini. secara umum kekayaan spesies menurun
seiring dengan berkurangnya luasan fragmen (Collinge 1996). Untuk spesies
interior hutan dimensi koridor dengan tipe panjang dan sempit akan dirasa seperti
tepian habitat yang besar dan menghindarinya. Namun pengujian yang dilakukan
Burbrink (1998) terhadap korelasi antara lebar riparia dengan kekayaan spesies
tidak menunjukan hasil yang signifikan pada amphibia karena keterbatasan dalam
memisahkan efek dari lebar koridor dan jarak dari area inti. Faktor ini juga
berlaku pada KSI bila melihat komposisi komunitas amphibia dengan tidak
ditemukannya spesies interior hutan.
Ke-3, matriks dari vegetasi yang mengungkung habitat dapat mempengaruhi
konektivitas fragmen, memberikan efek pada demografi, genetik, dan survival
dari populasi lokal; keterkaitan pada poin ini dijelaskan lebih lanjut pada area intimatriks. dan beberapa penelitian menunjukan bahwa matriks tidak bisa sama
dengan “lautan” pada konsep teori biogeografi karena tidak sepenuhnya bertindak
sebagai barrier bagi satwa (Fahrig et al. 2011).
Ke-4, Kebanyakan lanskap yang terfragmen juga dipengaruhi oleh faktor
manusia seperti perburuan, pembalakan, kebakaran dan polusi, yang berinteraksi
sinergis dengan fragmentasi habitat. Kenyataannya dilapangan gangguan yang
61
dapat terjadi pada lanskap terfragmen juga terjadi pada koridor. Lahan koridor
yang dibiarkan oleh perusahaan sebagai bagian dari HCVF, disalahartikan oleh
masyarakat sebagai wilayah terlantar dan peluang ini banyak digunakan untuk
mengembangkan usaha perkebunan sendiri. Seringkali kontrol yang lemah dari
pihak perusahaan menyuburkan faktor ini. Proses ini pun melibatkan pembalakan,
kemudian pembukaan lahan dengan cara di bakar dan polusi secara langsung
adalah polusi akibat erosi tanah yang parah dilapangan pelanggaran berat dapat
ditemukan pada Bukit Salo.
Perubahan ini mempengaruhi komunitas amphibia. daerah koridor akan
dihindari oleh spesies interior hutan karena faktor efek tepi yang ditimbulkan.
Pembakaran dan pembukaan lahan menjadi barrier baru bagi pergerakan
amphibia. Perubahan fungsi kawasan menyebabkan hilangnya mikrohabitat yang
dibutuhkan oleh amphibia dan merubah karakter sungai yang menyebabkan
terjadi perubahan komposisi dalam komunitas dan adanya dominasi oleh beberapa
spesies dan menurunnya populasi spesies lain secara drastis. Ditambah dengan
adanya perburuan bagi spesies tertentu di dalam koridor dan hadirnya predator
baru seperti biawak (Varanus salvator) dan kobra (Naja sumatrana) pada koridor
yang juga turut mempengaruhi dominasi oleh spesies tertentu. Kegiatan ini
dilakukan secara selektif oleh masyarakat dan seringkali wilayah yang dikelola
berada didekat area inti yang masih luas kawasan hutannya dan relatif jarang
dipantau oleh perusahaan.
Ke-5, fragmentasi seringkali memiliki dampak yang berbeda-beda pada
properti ekologi seperti dinamika gap-kanopi, cadangan karbon, dan struktur
tropik dari komunitas. Hal ini akan menyebabkan variasi pada koridor tergantung
dari struktur yang membangun ekosistem itu sendiri dan tingkat kestabilannya.
Collinge (1996) menjelaskan bahwa Derajat heterogenitas habitat pada fragment
yang terisolasi merupakan faktor yang bertanggung jawab secara parsial atas
hubungan antara komposisi spesies dan karakteristik fragmen spasial. Fragment
yang besar lebih berkemungkinan mengandung variasi dari tipe tanah, topografi,
iklim mikro dan jumlah habitat yang lebih besar dari fragmen yang lebih kecil
fragment. Penggunaan koridor oleh hewan juga bervariasi tergantung pada pola
mencari makan, ukuran tubuh, ukuran home range, derajat spesialisasi makanan,
62
pergerakan dan tingkah laku sosial. Keberadaan satwa pada koridor lebih besar
ditentukan oleh tingkah laku mencari makan dan tingkah laku sosial dari pada
ukuran tubuh. Namun bagi amphibia ketersediaan kebutuhan untuk siklus
hidupnya lebih penting, alasan ini mungkin menjadi penyebab tidak terbentuknya
pola model equilibrium McArthur& Wilson karena keterbatasan daya dispersal
amphibia (Burbrink 1998). Pada kawasan KSI koridor sendiri berupa hutan
sekunder dengan derajat kelerengan yang tinggi, ketebalan serasah rendah dan
kering. Gap antar kanopinya termasuk luas hal ini mempengaruhi struktur tropik
dimana semua derajatnya termasuk miskin baik mangsa mau pun predator yang
berada pada status populasi yang belum stabil.
Disamping argumen yang diutarakan oleh Laurance (2008), definisi koridor
pada kawasan perkebunan dan keefektifan koridor itu sendiri masih terus
diperdebatkan hingga sekarang. Beberapa pendapat penggiat konservasi
mengutarakan bahwa area hutan yang berada pada pinggiran sungai yang tidak
bisa disebut sebagai koridor karena tidak ditujukan untuk pergerakan satwa.
Wilayah ini diidentifikasi dan dikelompokkan ke dalam hutan yang bernilai
konservasi tinggi karena masuk dalam kategori HCV 1 dan 4, dimana pada
wilayah tersebut terdapat satwa yang dikategorikan bernilai konservasi (HCV 1)
dan memiliki jasa lingkungan seperti mencegah erosi dan sebagai daerah
tangkapan hujan (HCV 4) dalam kutipan pada dasar HCV (KRHTI 2008), tidak
disebutkan dalam klausal HCV. Hutan digunakan untuk pergerakan satwa
termasuk pada hutan bernilai konservasi tinggi, Koridor yang terdapat pada
kawasan PT.KSI bisa digolongkan dalam pengertian koridor satwa yang didefinisi
berdasarkan McEuen (1993) karena meskipun tidak diperuntukkan untuk
memfasilitasi pergerakan satwa antar area alami namun secara fungsional dapat
menghubungkan dua habitat alami (Bukit Salo-Bukit Lipai). Selama definisi
tersebut terpenuhi maka semestinya pengelolaan koridor juga berdasarkan
fungsinya sebagai wilayah pergerakan satwa termasuk untuk pergerakan home
range, migrasi dan dispersal.
Koridor hingga saat ini masih dianggap sebagi solusi terbaik bagi wilayah
yang terisolasi. McEuen (1993) dalam reviewnya pada teori koridor satwa liar,
membuat daftar argumen dari beberapa author yang tidak menyetujui konsep
63
koridor, mempertanyakan alasan mengenai pergerakan pada koridor satwa liar dan
menyatakan mengenai ambiguitas dan kekurangan mengenai konsep koridor.
Alasan-alasan ekologi ini dapat dikelompokan menjadi 2 antara lain: 1).
Kekurangan data mengenai penggunaan koridor dan tidak adanya kontrol dalam
studi lapangan, kekurangan data mengenai signifikansi dari variasi kehilangan
genetik dikarenakan inbreeding dan populasi kecil menyebabkan kemungkinan
terjadinya genetic drift; 2). Habitat pada koridor yang tidak sesuai, dapat
mendorong koridor berfungsi sebagai perangkap genetik dan genetik sink, koridor
juga dapat digunakan oleh predator dan tempat kontak penyakit.
Pada area inti-matriks berdasarkan pada perhitungan yang telah dilakukan
dengan melihat korelasi antara keanekaragaman amphibia dengan jarak dari hutan
pada matriks, menunjukan bahwa jarak dari hutan berpengaruh signifikan
terhadap peningkatan keanekaragaman amphibia di kawasan perkebunan kelapa
sawit. Amphibia di kawasan perkebunan kelapa sawit lebih cenderung
menghindari daerah perbatasan dan memiliki korelasi yang positif dengan
pertambahan jarak. hal ini menunjukan perkebunan kelapa sawit yang telah
dewasa merupakan habitat yang baik bagi spesies yang menggunakannya, ini
dikarenakan jumlah jenis yang ditemukan dan kelimpahannya lebih tinggi bila
dibandingkan dengan populasinya didalam hutan maupun pada daerah tepi yang
berbatasan dengan hutan.
Faktor ini dipengaruhi oleh daerah perbatasan didominasi oleh semak berkayu
dan tidak ada pohon yang menaungi dan umumnya ditanam dengan kelapa sawit
usia muda. Hutan memiliki kondisi iklim moderat dan kelengkapan struktur yang
menyediakan perlindungan dan kelembaban bagi amphibia, berkurangnya
kekayaan dan kelimpahan amphibia pada hutan yang telah dibabat dan habitat
yang mengalami pertumbuhan sekunder pada tegakan mengimplikasikan kurang
sesuainya tipe habitat bila dibandingkan dengan hutan yang telah matang (Wind
1999). Sementara jenis yang hidup di perkebunan kelapa sawit semuanya
memiliki relung ekologi yang lebar (Gillespie in press) dan Pengaruh matriks
tidak selalu sama pada spesies, bahkan pada spesies yang dekat sekali pun
(Ricketts 2001). Pola ini juga tampak perkebunan lain dimana spesies general
64
mendominasi kawasan (Wanger et al. 2009). Perkebunan kelapa sawit tidak dapat
menggantikan peran habitat alami.
Matriks memiliki pengaruh pada konektivitas fragmen, pengaruh usia vegetasi
yang menjadi pada matriks yang mempengaruhi keanekaragaman amphibia sejauh
ini juga belum dipelajari dengan baik. Beberapa literatur yang menyatakan bahwa
amphibia pada daerah peralihan lebih sedikit dibandingkan daerah yang
mengapitnya salah satunya telah diteliti oleh Yanuarefa (2010) yang hanya
menemukan dua spesies individu didaerah perbatasan antara kebun dengan hutan
dataran rendah, perbedaan luas antara daerah peralihan dan wilayah yang
mengapitnya dipandang sebagai kemungkinan terjadinya peristiwa ini. pengaruh
efek tepi dipandang lebih baik menerangkan fenomena ini (Santos-Barrera &
Urbina-Cardona 2011).
Efek tepi menyebabkan gangguan fisik pada vegetasi dan tanah perubahan
gradient lingkungan abiotik seperti paparan cahaya matahari, kelembaban yang
rendah, kecepatan angin, meningkatkan akses bagi organisme dan material
polutan (Harper et al. 2005) lain yang lebih tinggi pada bagian tepi membuat
tingkat kesesuaian habitat amphibia pada kawasan ini sangat rendah. Amphibia
yang ditemukan pada daerah perbatasan umumnya hidup disekitar sumber dan
genangan air untuk bertahan hidup. Sehingga spesies hutan memiliki barier
lingkungan yang efektif dan spesies pada sawit memilih habitat perkebunan
kelapa sawit yang lebih matang karena keadaan lingkungannya yang lebih stabil.
Banyak hal yang belum diketahui mengenai resistensi amphibia spesialis
hutan, karena minimnya studi mengenai aspek ini. Dalam pengamatan ditemukan
masing-masing satu individu L. wayseputiense pada matriks Bukit Tengah PulauSalo yang berjarak kurang lebih 400 meter dari hutan dan R. hosii ditengah-tengah
perkebunan kelapa sawit Lokasi Matriks Bukit Tengah Pulau. L. wayseputiense,
selama ini memang dikenal sebagai spesies yang bereproduksi pada sungai,
organisme diketahui berdispersal melalui matriks meskipun habitat tersebut tidak
cocok untuk survival dan reproduksi (Ricketts 2001). R. hosii dikenal sebagai
spesies yang menghuni sungai beraliran deras dan menghabiskan masa
juvenilenya didalam hutan, perubahan tingkah lakunya dengan menggunakan
kawasan perkebunan kelapa sawit untuk mencapai fase dewasanya adalah
65
kesimpulan yang terlalu dini untuk itu dibutuhkan studi lebih lanjut untuk
mengamati fenomena ini.
Ekosistem perkebunan ini banyak kehilangan spesies yang biasa ditemukan
pada hutan pada umumnya namun keadaan dihutan sendiri karena telah
terdegradasi parah juga jauh lebih sedikit spesies yang ditemukan terutama spesies
terrestrial. Tidak semua spesies menunjukan respon negatif yang sama (Ricketts
2001). Variasi yang terjadi pada spesies kemungkinan disebabkan oleh
perbedaaan toleransi pada spesies spesifik terhadap lanskap perkebunan kelapa
sawit. Spesies yang mampu hidup pada perkebunan kelapa sawit juga dengan
mudah dapat ditemukan pada habitat yang telah di pengaruhi oleh urbanisasi
lainnya.
Jenis yang paling merosot ditemukan adalah jenis katak serasah yang dominan
pada hutan yang secara kelimpahan dan biomassanya berkurang secara dramatis,
yang merupakan respon terhadap berkurangnya serasah dan gangguan pada
perkebunan kelapa sawit seiring dengan masuknya masa panen. Bagi spesies
residen pada perkebunan kelapa sawit, matriks tentu saja tidak menjadi
penghambat bagi pergerakannya, namun berbeda bagi spesies hutan yang
mungkin saja memiliki resistensi terhadap matriks kelapa sawit.
Dibutuhkan penelitian lebih lanjut untuk memantapkan dugaan korelasi ini,
karena dalam penelitian ini kondisi matriks yang tidak terlalu bervariasi (Terjal
dan ditanami sawit muda) mungkin saja dapat menjadi faktor pengarah hasil
korelasi yang didapat dalam penelitian ini. Penambahan variasi kondisi
dan
jumlah lokasi perkebunan akan sangat memnbantu dalam pemahaman lebih lanjut
mengenai aplikasi teori biogeografi dalam lanskap perkebunan kelapa sawit.
5.2.2. Perbandingan Keanekaragaman Jenis Amphibia pada Koridor yang
Terpapar dan Tidak dengan Area Inti Serta pada Bagian Hulu dan
Hilir.
5.2.2.1 Perbandingan Keanekaragaman Jenis Amphibia pada Koridor yang
Terpapar dan Tidak dengan Area Inti.
Tidak ada perbedaan Keanekaragaman antara spesies amphibia pada sungai
yang terpapar langsung dengan area inti dan tidak, Hasil uji t menunjukkan tidak
66
adanya perbedaan yang signifikan terhadap sungai yang terpapar dengan area inti
(Sungai Suir) maupun yang tidak (Sungai Jujuan). Isolasi tidak memberikan
kontribusi dalam menjelaskan variasi pada kekayaan jenis (Eterovick 2003).
Konektivititas pada koridor dan area inti memiliki dua terdiri dapat dibagi
menjadi dua jalur, jalur darat dan jalur air. Konektivitas dari jalur air cenderung
tidak memiliki hambatan yang dapat menghalangi terjadinya pergerakan amphibia
dari area inti menuju koridor dan spesies yang menggunakan jalur ini memiliki
relung ekologi yang lebih lebar, pergerakan dari jalur darat yang sering
dikhawatirkan memiliki banyak barrier terhadap pergerakan amphibia. Bila jalur
terrestrial dan akuatik dapat digunakan sama baiknya akan meningkatkan tingkat
keberhasilan dispersal pada amphibia (Funk et al. 2004).
Pada koridor yang tidak terpapar dengan area inti (Sungai Jujuan-Bukit
Tengah Pulau). Barier yang menghalangi berupa jalan, sungai kecil dan matriks
perkebunan kelapa sawit yang berusia muda. Dalam kawasan KSI yang membuat
batasan antara koridor yang tidak terpapar langsung adalah jalan yang aktif
dipakai oleh aktivitas transportasi harian kegiatan perkebunan. Jalan seringkali
dianggap sebagai penghambat dalam dispersal amphibia (Dodd Jr et al. 2004;
Glista et al. 2007). Efek dari jalan berupa peningkatan suhu, hidrologi, polutan,
suara, cahaya, invasif spesies, akses manusia diyakini secara independen setiap
faktor memiliki pengaruh pada ekosistem disekitarnya ditambah dengan tipe jalan
dan proses ingkungan seperti angin, air dan tingkah laku (Forman 2000) dan
amphibia merupakan satwa yang sangat rentan dipengaruhi oleh faktor ini
(Andrew et al. 2008). Terbukti faktor jalan bukan merupakan barrier bagi
amphibia di perkebunan dikarenakan koridor yang langsung terpapar dengan area
inti tidak memiliki perbedaan yang signifikan terhadap keanekaragaman di
dalamnya. Efek dari faktor-faktor pergerakan sangat bervariasi antar spesies,
sehingga kemampuan berdispersal pada tiap spesies tidak dapat disama-ratakan.
Jalan di perkebunan sawit berbeda dengan jalan raya pada umumnya, jalan di
perkebunan sawit berupa tanah liat bercampur kerikil yang berlumpur dimusim
hujan dan berdebu di musim panas, kepadatan kendaraan juga berbeda dengan
jalan raya. Bagian tepian jalanan yang berlumpur dan tergenang seringkali
digunakan oleh amphibia dan selama pengamatan tidak pernah ditemukannya
67
amphibia yang mati tergilas di sekitar jalan yang langsung berbatasan dengan area
inti menunjukan batasan oleh jalan tidak terlalu berpengaruh dalam dispersal
amphibia di kawasan perkebunan kelapa sawit. Sungai juga dapat menjadi barrier
bagi amphibia terrestrial (Marsh et al. 2007). amphibia terrestrial tidak
mengembangkan adaptasi morfologi untuk melintasi perairan, namun faktor ini
juga dapat di abaikan karena jenis-jenis yang ditemukan pada sungai kecil ini,
tidak satupun ditemukan amphibia interior hutan.
Matriks mungkin saja menjadi penghalang berikutnya matriks berupa kelapa
sawit yang masih berusia muda cenderung dihindari. Namun penemuan L.
wayseputiense pada MBTP-S mungkin menunjukkan kemampuan beberapa
spesies terrestrial yang mampu beradaptasi pada matriks lebih baik dibandingkan
yang dipahami sebelumnya. Mengingat kemampuan mereka bertahan pada
kondisi area inti yang tidak terlalu baik selama hampir 20 tahun dari generasi ke
generasi menunjukan kemampuan adaptasi pada lingkungan matriks.
Faktor lain yang dapat mempengaruhi adalah panjang area bukit yang paling
dekat berbatasan dengan koridor adalah kurang lebih 500 meter. Serta sisi Bukit
Tengah Pulau yang berhadapan dengan koridor memiliki topografi kelerengan
yang tinggi dan ditumbuhi vegetasi strata tiang yang rapat dan sangat rimbun
cenderung dihindari oleh amphibia karena faktor efek tepi. Lebar dari tepian
bercak memberikan pengaruh pada satwa karena faktor efek tepi (Forman &
Godron 1981). Perpaduan dari barrier-barrier ini mungkin merupakan penyebab
tidak terdeteksinya amphibia interior hutan yang tersisa pada koridor.
Pada koridor yang terpapar dengan area inti (Sungai Suir-Bukit Salo), keadaan
pada Bukit Salo lebih buruk dari pada Bukit Tengah Pulau. Satu-satunya koridor
yang masih terpapar dengan area inti berada di bagian hulu sungai, sedangkan
pada bagian hilir telah mengalami pembukaan lahan dalam beberapa tahun yang
berbeda, sebagian telah ditanami dengan kelapa sawit muda oleh masyarakat.
Kondisi koridor yang berbatasan paling dekat dengan area inti bisa dikatakan
sudah tidak memiliki hutan riparia lagi dan ditanami dengan sawit. Sedangkan
pada koridor bagian hulu yang masih terpapar berupa hutan muda yang
mengalami suksesi, faktor kesesuaian habitat diyakini menjadi penyebab
terbatasnya habitat yang tersisa. Meskipun demikian habitat yang tidak seragam
68
pada Sungai Suir menunjukan keanekaragaman rata-rata yang lebih tinggi dari
pada Sungai Jujuan, hal ini dikarenakan kemeraatan yang lebih baik pada Sungai
Suir.
5.2.2.2. Perbandingan Keanekaragaman Jenis Amphibia pada Aliran Sungai
Bagiah Hulu dan Hilir
Berdasarkan pada perhitungan yang telah dilakukan tidak ada perbedaan yang
signifikan antara bagian hulu dan hilir Sungai Jujuan maupun dengan Sungai Suir.
Begitu pula saat diuji perbedaan bagian hulu Sungai Jujuan dengan bagian hilir
Sungai Suir dan Bagian hulu Sungai Suir dengan Bagian hilir Sungai Jujuan. Hal
yang sama diutarakan oleh Eterovick (2003) bahwa argumentasi yang
menjelaskan berudu dapat hanyut dan menyebabkan kekayaan spesies akan lebih
tinggi pada sungai yang berukuran sedang (hilir) tidak terbukti dalam studi yang
dilakukannya.
Perbedaan
keanekaragaman
amphibia
berdasarkan
pengamatan,
lebih
mengarah pada variasi dari karakter riparia pada masing-masing bagian sungai.
Tipe aliran sungai, mikrohabitat yang tersedia, tutupan tajuk. Substrat sungai dan
kuat arus hal inilah yang menyebabkan variasi kekayaan jenis dan kelimpahan
spesies pada suatu titik dan yang paling. Luas hutan dan konektivitas bukan yang
utama dalam menentukan kelimpahan namun ketersediaan habitat berbiak
(Bickford et al. 2010).
Berdasarkan komposisi spesies, pada Sungai Jujuan pada bagian hilir memiliki
dua spesies yang tidak terdapat pada bagian hulu. Penyebabnya antara lain, pada
bagian hilir sungai beberapa parit dari perkebunan bermuara ke dalam badan
sungai memberikan kemudahan bagi F. limnocaris untuk masuk ke lingkungan
riparia demikian pula dengan L. microdiscus, bagian hilir sungai jujuan memiliki
tebing-tebing tanah yang lembab merupakan lokasi favorit bagi L. microdiscus,
spesies ini bisa jadi merupakan spesies residen pada riparia atau yang bergerak
dari perkebunan kelapa sawit.
Pada Sungai Suir berdasarkan kepada komposisi spesies yang ditemukan,
bagian hulu memiliki kekayaan spesies yang lebih banyak dari hilir. Spesies yang
tidak ditemukan dihilir antara lain, L. microdiscus karena tidak adanya habitat
berupa lereng yang lembab. R. nicobariensis dan M. berdmorei ditemukan pada
69
genangan air di samping perkebunan kopi masyarakat, mikrohabitat ini tidak
ditemukan pada bagian hilir. Sedangkan R. picturata menyukai aliran sungai yang
terpecah membentuk aliran kecil yang relatif tenang yang juga tidak ditemukan
pada bagian hilir. F. cancrivora yang ditemukan pada bagian hilir yang langsung
berbatasan dengan perkebunan sawit karakter ini tidak ditemukan pada bagian
hulu.
5.2.3. Distribusi dan Dispersal Amphibia
5.2.3.1 Distribusi Amphibia
Area Inti
Daerah tepi pada hutan yang memiliki variasi tipe tutupan vegetasi seperti
semak, hutan Macaranga dan hutan sekunder akan membuat perbedaan keadaan
lingkungan interior hutan dan kekayaan spesies yang ada di dalamnya. Hal ini
berkaitan dengan efek tepi dimana keadaan bagian tepi yang lebih terbuka akan
menyebabkan pengaruhnya terhadap lingkungan menjadi lebih besar pula. Efek
tepi menjadi penentu perubahan biotik dan abiotik, seperti fluktuasi pada
temperatur, peningkatan angin dan radiasi matahari dan menurunkan kelembaban,
yang mempengaruhi kondisi optimum yang diinginkan oleh amphibia (Kapos et
al. 1995). Meskipun amphibia disebut memiliki sensitivitas terhadap perubahan
lingkungan (Cushman 2006). Beberapa studi yang mempelajari mengenai efek
tepi ini memberikan hasil yang berlawanan dari beberapa teori yang telah dikenal,
dimana kekayaan spesies meningkat pada daerah tepi (Gardner et al. 2007) dan
ternyata ada pengaruh yang diberikan oleh variasi ruang dan waktu (Lehtinen et
al. 2003). Beberapa penelitian menunjukan terjadinya penurunan kelimpahan pada
beberapa spesies pada bagian tepi dari fragmen atau tidak mengalami berdampak
sama sekali (Marsh & Pearman 1997; Schlaepfer & Gavin 2001).
Hal ini selain mempengaruhi kekayaan jenis tentu saja mempengaruhi pada
distribusi, dimana amphibia akan cenderung menempati kondisi habitat yang
paling menunjang untuk keberlangsungan siklus hidupnya. Respon amphibia
dipengaruhi oleh distribusi karakter habitat seperti ketersedian makanan, iklim
mikro dan lokasi berbiak, ketiga faktor ini merupakan penentu dalam distribusi
amphibia pada patch yang berukuran kecil. Kondisi hutan pada area inti yang
70
lebih stabil pada bagian tengah, juga turut membawa hubungan ekologi antar
spesies yang lebih stabil karena faktor lingkungan yang mendukung. Hubungan
yang kuat antara distribusi amphibia dan distribusi karakter yang habitat yang
tidak sempurna bisa menyebabkan hubungannya dengan area dapat tidak
mengikuti kurva area-spesies (Wind 1999).
Efek tepi juga akan mempengaruhi jenis vegetasi yang tumbuh didalam hutan.
Hal ini berkaitan dengan tutupan kanopi dan serasah yang menutup lantai hutan.
Amphibia terrestrial pada interior hutan sering berasosiasi dengan adanya
ketersediaan serasah. Pada hutan yang di awali dengan semak cenderung memiliki
serasah yang tipis secara kualitas serasah di semak lebih buruk dan
hutan
sekunder memberikan tutupan kanopi dan serasah yang lebih baik hal ini mungkin
saja menentukan keberadaan K. pluerostigma dan L. wayseputiense di hutan
sekunder. Berbeda dengan hutan Macaranga memiliki bentuk serasah yang agak
berbeda karena bentuk daunnya yang lebar dan melengkung sehingga terlihat
tebal namun sepertinya juga tidak disukai oleh amphibia. Kelimpahan dari spesies
anura juga tidak dipengaruhi oleh ketebalan lapisan serasah namun lebih
mempengaruhi komunitas (Van Sluys et al. 2007) dari pada kelimpahan ( Menin
et al. 2007). Habitat yang masih dalam proses perkembangan tepian hutan yang
dalam tahap pelunakan dan mengungkung (Harper et al. 2005), seperti pada Bukit
Tengah Pulau Utara dan Bukit Salo masih dihindari oleh amphibia.
Pada area inti akuatik distribusi dari amphibia dipengaruhi oleh ukuran sungai
dan kuat arus. Studi menunjukkan hubungan antara ukuran sungai dengan jumlah
atau komposisi spesies (Parris & McCarthy 1999; Keller et al. 2009).
Diperkirakan kecepatan air dan ukuran badan sungai bisa memiliki pengaruh
terhadap kekayaan spesies amphibia, namun variabel ini tidak mempengaruhi
komunitas di brazil (Eterovick 2003). Hutan juga sangat penting bagi spesies
seperti R. picturata yang sangat bergantung dengan hal ini. R. picturata jelas
menghindari area yang berbatasan langsung dengan perkebunan kelapa sawit
demikian pula halnya dengan H. sumatrana dan R. hosii meskipun memiliki
cenderung memiliki karakter habitat yang sama namun R. hosii terlihat lebih
dapat mentolerir habitat yang terdegradasi.
71
Matriks
Distribusi spesies banyak dipengaruhi oleh efek tepi dan lebih banyak
dipelajari dari sisi hutan (Dixo & Martins 2008; Marsh & Pearman 1997; Toral et
al. 2002). Pada habitat yang lebih heteregon, efek tepi pada matriks akan berbeda
tiap tipe cover, sangat bergantung pada seberapa besar matriks tersebut dapat
menekan efek dari tepi (Santos-Barrera & Urbina-Cardona 2011). Dalam studi ini
efek hutan terhadap matriks mungkin lebih berguna dari sisi perkebunan dari pada
sisi amphibia itu sendiri. amphibia lebih cenderung terdistribusi mengikuti
ketersediaan mikrohabitatnya. Keterikatan yang kuat dengan perkebunan dan
habitat non hutan juga menentukan distribusi beberapa spesies (Gillespie et al. in
press). Ketika mikrohabitat tersedia maka amphibia dapat ditemukan pada daerah
yang berbatasan dengan hutan hal ini tergambarkan secara umum. Amphibia pada
matriks tampaknya tidak terlalu menyenangi daerah perbatasan dengan area inti
yang memiliki kontur berbukit yang kering dan sering kali ditanami dengan sawit
yang berusia muda, ketiadaan cover yang memadai menyebabkan suhu lebih
tinggi pada daerah ini dibandingkan dengan kelapa sawit yang lebih dewasa.
Namun daerah perbatasan yang basah seperti aliran sungai dan daerah berawa
dapat digunakan oleh beberapa spesies meskipun kelimpahannya rendah.
Hubungan yang ditemukan dalam studi ini menunjukkan bahwa efek tepi
berdampak pada kekayaan jenis. Respon dari anura ini diakibatkan karena
sensitifitasnya terhadap perubahan lingkungan dikarenakan karakter yang
kompleks pada morfologi dan fisiologinya, begitu pula dengan jarak dari tepi
hutan memiliki hubungan dengan kekayaan spesies namun bukan kelimpahan dari
setiap spesies (Lehtinen et al. 2003). Namun perlu dicatat bahwa respon spesies
terhadap lingkungan juga bervariasi sehingga efeknya tidak bisa disama-ratakan
(Nishikido & Menin 2011).
Amphibia dalam kawasan perkebunan sendiri terdistribusi tidak secara acak
namun cenderung mengelompok mengikuti mikrohabitat yang ada terutama pada
semak pakis-pakisan dan genangan air. Pengamatan di lapangan juga
menunjukkan pada kawasan perkebunan yang baru saja dibersihkan dari semak
dan pakis-pakisan yang baru saja dibersihkan, begitu juga daerah yang baru saja
mengalami pengaruh penyemprotan herbisida tidak ditemukan amphibia
72
disekitarnya, hal ini juga turut mendorong penurunan jumlah spesies dan
kepunahan bagi diversitas (Turner et al. 2011).
Pinggiran jalan perkebunan seringkali terdapat genangan air berlumpur yang
merupakan cekungan tanah terjadi akibat tak mampu menahan beban truk dan
traktor yang mengangkut tandan buah. Lokasi seperti ini merupakan lokasi favorit
bagi amphibia. Pada satu kubangan dapat ditemukan puluhan individu dari 3-5
jenis, namun penghuni tetapnya adalah R. nicobariensis dan M. heymonsi, jenis
yang didapati tergantung apa mikrohabitat apa yang menyokong didekatnya, bila
pakis-pakisan maka amphibia arboreal dari Genus Polypedates dan semi arboreal
(R. raniceps dan R. parvaccola) juga dapat ditemukan, bila dekat dengan parit
atau sungai pada jalan yang bersemak maka B. asper, L. blythii, L. kuhlii dan P.
leucomystax dapat ditemukan disekitarnya.
Koridor
Spesies yang ditemukan pada koridor umumnya merupakan spesies yang
dapat ditemukan pada habitat yang terdegradasi. Secara umum hal ini
menggambarkan bahwa koridor merupakan habitat yang telah terdegradasi dan
masih mengalami suksesi, distribusi spesies pada koridor erat kaitannya dengan
preferensi habitat. dan sangat spesies spesifik. Meski demikian secara umum
dapat dikelompokkan menjadi 8 kelompok. Kelompok penghuni tepian (B. asper,
L. blyhtii dan L. crybetus,), tepian basah (L. kuhlii), genangan (M. berdmorei dan
R. nicobariensis), tebing (L. microdiscus), arus deras (H. sumatrana dan R. hosii),
berbatasan dengan perkebunan (R erythraea, F. cancrivora dan F. limocharis),
petengger (R. raniceps dan R. picturata) dan arboreal (R. cyanopunctatus).
Kelompok penghuni tepian memiliki ciri yang paling spesifik adalah
menggunakan tepian untuk berdiam diri. Baik itu tepian berbatu, berpasir, sedikit
bertebing atau tanah. Kelompok ini dapat terdistribusi dimana saja pada bagian
sungai dan hampir merata terutama sekali B. asper. Pada kelompok tepian basah
hanya memiliki L.kuhlii, menyukai karakter tepian sungai yang sangat dangkal
dan cenderung berlumpur serta berair jernih. Pada tebing sungai meskipun jarang
ditemukan hanya L. microdiscus yang memanfaatkannya. Bila sungai memiliki
genangan air pada bagian tepiannya biasanya digunakan R. nicobariensis
73
sedangkan M. berdmorei yang hanya satu individu belum banyak diketahui
meskipun juga ditemukan dekat genangan air.
Sungai berbatu dengan arus yang deras merupakan ciri spesifik mikrohabitat
bagi R. hosii dan H. sumatrana, meskipun H. sumatrana lebih menyukai air yang
lebih jernih. Bila sungai berbatasan dengan perkebunan kelapa sawit terkadang
juga terdapat parit-parit kecil yang bermuara ke dalam sungai maka ada
kemungkinan R. erythraea, F. cancrivora dan F. limnocaris dapat ditemukan.
Kelompok petengger menyenangi aliran sungai yang tenang biasanya pada aliran
sungai kecil yang sedikit terbelah disisi pulau kerikil yang agak bersemak Dan
terakhir bila kondisi hutan pada bagian tepian sungai memiliki kanopi dan kondisi
hutan yang baik dapat ditemukan R. cyanopunctatus meskipun jarang sekali.
Penjelasan diatas tergambar berbagai macam mikrohabitat yang dibutuhkan
oleh spesies pada koridor, komposisi dan distribusi spesies pada koridor akan
mengikuti pola mikrohabitat yang dibentuk oleh sungai disepanjang alirannya dan
amphibia akan mengikuti pola sebaran mikrohabitat tersebut.
5.2.3.2 Dispersal Amphibia pada Kawasasan PT. KSI
Fragmentasi habitat merupakan salah satu faktor yang menyebabkan amphibia
berdispersal, Amphibia yang rentan terhadap fragmentasi dapat terdorong untuk
berdispersal jarak mencapai jarak
5 km ketinggian ( 750 m) dengan kelerengan
(36o sejauh 2 kilometer). Penemuan ini menunjukan bahwa dispersal merupakan
karakter sejarah hidup yang penting bagi beberapa amphibia dan menunjukan
bawa fragmentasi merupakan ancaman yang serius terhadap amphibia (Funk et al.
2004). Secara global kurang lebih Satu kilometer merupakan merupakan rata-rata
jarak dispersal yang mampu ditempuh oleh sekitar 44% amphibia di dunia, tidak
semua amphibia membentuk metapopulasi dan tidak semua amphibia memiliki
daya dispersal yang buruk (Smith & Green 2005).
Fragmentasi habitat mempengaruhi spesies dalam cara-cara yang berbeda.
Beberapa spesies dapat menurun populasinya secara tajam atau hilang sama sekali
dalam fragmen-fragmen, lainnya dapat bertahan dengan susah payah dan spesies
yang lain dapat meningkat populasinya dengan tajam (Laurance 2008). Spesies
74
memiliki ketergantungan yang bervariasi pada karakter habitat dikarenakan
kesensitifannya pada respon lingkungan.
Spesies generalist memiliki respon yang positif dan mampu berkembang
dengan pesat pada habitat sekunder atau perkebunan yang telah diklelola,
sementara spesialist terus menurun populasinya bahkan menjadi punah (Yaap et
al. 2010). Fragmentasi menyebabkan terbatasnya dispersal amphibia kawasan
yang terfragmen dan hanya spesies yang tidak memiliki pengahambat pergerakan
dan kemampuan beradaptasilah yang mampu berdispersal antar elemen lanskap.
Dalam penelitian ini dapat dikelompokan spesies berdasarkan tipe habitat yang
dihuninya yang menjadi asumsi dasar kemampuannya berdispersal antar elemen
lanskap yang dibagi menjadi tiga kelompok spesies, yaitu:

Spesies Obligat
Spesies obligat merupakan spesies yang hanya ditemukan pada tipe elemen
tertentu saja. Hal ini dikarenakan keterkaitan siklus hidupnya pada karakter
habitat
yang ada. Keterikatan pada karakter habitat ini menyebabkan
pergerakkannya juga bergantung pada sebaran spasial karakter spesifik yang ada
di dalam perkebunan. Ketidakmampuan beradaptasi dengan lingkungan yang lain
yang membatasi wilayah yang dihuni saat ini menuju habitat yang lebih baik
merupakan faktor penghambat utama.
Faktor diatas disebabkan oleh keterbatasan morfologi dan fisiologi. Spesies
terrestrial hutan yang tersisa pada area inti mungkin saja dapat mentolerir suhu
dan kelembaban yang sedikit meningkat pada hutan yang terdegradasi. Namun
berbeda pada matriks dimana tutupan kanopinya tidak seperti hutan sekunder
dimana suhu dan kelembaban berubah cukup sigifikan dan tidak adanya serasah
pada matriks akan menjadi penghambat dalam pergerakan.
Kalophrynus merupakan amphibia yang tidak berbiak di sungai (non stream
breeding) (Iskandar & Mumpuni 2004b), dapat ditemukan pada serasah hutan
primer pada ketinggian rendah, berudunya ditemukan pada genangan yang sangat
kecil dan dangkal. Kataknya ini memakan semut dan rayap, dan bergerak hingga
menemukan jalur semut atau sarangnya dan makan hingga puas sedangkan M.
borneensis hanya ditemukan pada lantai hutan primer dan berbiak pada genangan
air hujan dan beberapa pada kubangan babi hutan. Kemungkinannya untuk
75
dispersal keduanya jelas hanya akan didorong oleh ketersediaan habitat untuk
mendukung siklus hidupnya. (Inger & Stuebing 1997). B. biporcatus biasanya
juga berlimpah pada daerah hutan dan berkurang pada hutan sekunder dan habitat
yang terdegradasi (Iskandar & Mumpuni 2004a).
Pada spesies akuatik seperti O. laevis dikenal sebagai spesies hutan
menyukai daerah berlumpur dan sungai yang sangat kecil, juga ditemukan pada
genangan Badak dan Babi. Secara berkala dewasanya hanya duduk atau
mengambang pada genangan berlumpur (Mistar 2003). Tak jauh berbeda dengan
O. Sumatrana yang biasanya ditemukan pada hutan dataran rendah yang lembab
dan mampu bertahan pada hutan sekunder yang tidak terlalu terganggu (Iskandar
& Mumpuni 2004c). Genus Occidozyga belum banyak diketahui bagaimana
spesies ini bergerak dari satu kubangan ke kubangan yang lainnya, namun faktor
sedikitnya
kubangan
berlumpur
yang
ditemukan
menjelaskan
mengapa
kelimpahannya juga rendah.
Pada matriks hanya tercatat hanya P. cf macrotis yang tidak berbagi habitat.
Pada lokasi lain spesies ini mampu hidup di hutan sekunder, kelimpahannya yang
rendah pun mungkin saja menggambarkan sebenarnya perkebunan kelapa sawit
bukan merupakan habitat yang ideal bagi spesies ini dan mengalami tekanan
populasi. R. macrotis Umum dijumpai pada habitat kolam-kolam kecil dalam
jumlah banyak, di hutan sekunder pada vegetasi bagian bawah (Inger & Stubeing
1997).
Pada koridor spesies yang hanya pada elemen lanskap ini adalah H.
sumatrana, spesies ini menyukai aliran sungai yang kuat dan dikelilingi oleh
hutan. Kelembaban merupakan faktor utama mengapa spesies ini hanya
ditemukan pada sungai dengan aliran air yang deras, jernih dan berbatu-batu.
Jeram akan meningkatkan kandungan air dalam udara, faktor lainnya adalah H.
sumatrana dan juga menggunakan karakter sungai seperti ini untuk berbiak.
Spesies ini juga cukup unik karena ada fase dimana mereka juga menggunakan
daratan namun selama pengamatan tidak teramati, selama bulan purnama jantan
akan tinggal disekitar rerumputan tidak jauh dari tepi sungai, tetapi betina akan
sulit ditemukan (Mistar 2003). R. cyanopunctatus pada hutan primer dataran
rendah, biasanya dijumpai pada sungai-sungai kecil yang berarus sedang dengan
76
tutupan tajuk yang rapat (Mistar 2003). Belum diketahui apakah R.
cyanopunctatus merupakan stream breeding spesies atau bukan namun
keberadaannya yang sering ditemukan di didekat sungai di duga spesies ini
menggunakan sungai sebagai lokasi berbiak.

Spesies Fakultatif
Spesies fakultatif merupakan spesies yang mampu menempati dua tipe habitat
yang berbeda, terdiri atas tiga bagian yaitu:
1. Area Inti-Koridor
Kemungkinan besar dispersal yang terjadi hanyalah pada amphibia yang
memiliki keterikatan dengan sungai seperti amphibia akuatik dan semi akuatik.
Sedangkan amphibia terrestrial tidak menunjukkan adanya kemungkinan
penggunaan koridor sebagai dispersal. Hal ini diperkuat hasil uji similaritas
(Gambar 12) menunjukan bahwa komposisi spesies pada area inti akuatik hampir
identik dengan koridor Sungai Suir mencapai 96%. Namun untuk komposisi
spesies terrestrial yang diuji dengan indeks similaritas sorensen rata-rata tingkat
kesamaan komposisi spesies adalah 2.28%. Beier & Noss (1998) menyatakan
bahwa penggunaan koridor spesies lebih kepada focal spesies dan lanskap.
Kesesuaian habitat tampaknya merupakan alasan utama dari satwa dalam
menggunakan koridor untuk berdispersal. Spesies interior hutan umumnya adalah
amphibia terrestrial dan arboreal, spesies terrestrial yang tidak ditemukan
kemungkinan disebabkan oleh kelembaban yang buruk karena faktor edge efek
karena riparia berbentuk linear sempit Burbrink et al. (1998) berpendapat
absennya spesies pada koridor mungkin disebabkan oleh kebutuhan untuk
melengkapi siklus hidup yang tidak terpenuhi.
R. picturata Selalu dijumpai di tepian sungai-sungai berukuran kecil dan
sedang, pada tumbuhan herba atau akar, kadang-kadang dijumpai agak jauh dari
sungai (Inger & Stuebing 1997). Spesies ini diketahui menghabiskan pada saat
juvenile mereka hidup pada serasah dan ketika dewasa mereka kembali ke sungai
(Mistar 2003). Mungkin hal ini yang menyebabkan keberadaannya yang tidak
berada jauh dari hutan, demikian pula halnya dengan R. hosii, hanya saja
penemuan R. hosii di perkebunan kelapa sawit menunjukan bentuk adaptasi
77
dengan lingkungan dan diyakini memiliki tingkat keberhasilan yang rendah
mengingat jumlah yang ditemukan sangat minim.
2. Area Inti -Matriks
Spesies yang ditemukan pada Area inti lebih kepada penghuni hutan, dan ada
beberapa yang juga beradaptasi dengan matriks kelapa sawit. Spesies yang
ditemukan didominasi oleh P. leucomystax yang sebenarnya berada pada kaki
bukit yang masih bersemak tidak terlalu jauh dari perkebunan sawit dimana
populasinya cukup berlimpah, P. leucomystax memiliki keterikatan yang kuat
dengan daerah non-hutan (Gillespie et al. in press). Sementara didalam hutan
sendiri hanya Polypedates sp saja yang ditemukan di perkebunan kelapa sawit
jenis ini lebih banyak ditemukan dari pada hutan, spesies ini diperkirakan baru
bagi dunia ilmiah karena memiliki karakter yang berbeda dengan genus
Polypedates yang telah diprediksikan sebelumnya.
L. wayseputiense merupakan spesies hutan yang dikenal bermigrasi menuju
sungai untuk berbiak (Inger & Stuebing 1997), mengingat sisi perbukitan dimana
spesies ini ditemukan tidak didapati adanya aliran sungai. Diyakini spesies ini
memasuki matriks untuk berbiak pada parit kecil yang berada tidak begitu jauh
dari posisinya ditemukan, L. wayseputiense menggunakan waktu malam untuk
bergerak menuju perairan pada matriks untuk menghindari lingkungan yang
ekstrim dan mungkin menggunakan garis hutan yang tersisa didekatnya sebagai
cover disiang hari. Leptobrachium hidup pada lantai hutan berserasah dan
memakan serangga yang berukuran besar. Kaki belakangnya yang pendek
membuat pergerakan nya juga hanya berupa loncatan kecil, dewasanya bermigrasi
ke sungai yang berukuran kecil atau sedang untuk berbiak dan meletakan telurnya
pada bagian berkolam yang tenang (Inger & Stuebing 1997). Dispersal lokal
dikenal pada beberapa spesies hutan di perkebunan kelapa sawit (Gillespie et al.
in press)
M. heymonsi sendiri meski diyakini berasal dari spesies yang sama namun
spesies yang berada di hutan memiliki pola warna warna yang berbeda dengan
yang ditemukan pada matriks. Mungkin ini adalah pola adaptasi dengan
lingkungan matriks, M. heymonsi pada hutan memiliki pola yang mirip dengan
78
coklat warna serah dengan alur coklat muda sementara pada M. heymosi pada
matriks warna coklat ke abu-abuan dengan alur yang pudar.
Matriks kelapa sawit memiliki kemiripan spesies dengan yang menghuni
koridor. Spesies spesialis hutan telah hilang waktu hutan. Laju dispersal yang
tinggi menunjukkan bahwa dispersal memainkan peranan yang penting dalam
dinamika populasi, fragmentasi habitat meningkatkan laju kepunahan. Dispersal
pada amphibia bisa dihalangi oleh jalan, urbanisasi dan hutan yang telah gundul
ditebangi (Carr & Fahrig 2001; Johnston & Frid 2002).
3. Matriks-Koridor
Spesies yang menghuni matriks dan koridor lebih cenderung dikarena
aksesnya yang berdekatan dengan perkebunan kelapa sawit. Dispersal yang terjadi
bisa dilakukan pada masa juvenile dan fase berudu dari parit-parit yang mengaliri
matriks dan bermuara di sungai. Ketika menemukan habitat yang disenangi maka
amphibia akan mulai menetap pada lokasi di dalam lingkungan sungai dan
diyakini dispersal ini merupakan pergerakan dari matriks menuju koridor karena
kelimpahan spesies yang lebih besar ditemukan pada elemen matriks.
F. cancrivora umumnya dijumpai di habitat hutan primer maupun sekunder
dataran rendah, rawa, sawah, bahkan air payau (Mistar 2008). F. limnocaris, Jenis
ini menempati habitat yang telah terganggu pada daerah dataran rendah sampai
pegunungan dataran rendah dan terikat dengan perkebunan dan habitat non-hutan
(Inger & Stuebing 1997; Gillespie et al. in press). R. nicobariensis jenis yang
umum ditemukan pada habitat yang terganggu. Hidup pada habitat yang telah
terganggu bahkan terdapat disekitar pemukiman dimana terdapat air tergenang
atau mengalir lambat (Inger & Stuebing 1997). Ketidak beradaannya pada area
inti dipengaruhi oleh preferensinya untuk memilih perkebunan sebagai habitat
(Gillespie et al. in press). Mungkin dipengaruhi oleh tidak adanya genangan air
pada lereng-lereng bukit yang dibutuhkan sebagai mikrohabitatnya. M. berdmorei
hidup di lantai hutan hutan primer sampai hutan sekunder dataran rendah (Inger &
Stuebing 1997) dan ditemukannya pada kelapa sawit menunjukan kemampuan
adaptasi terhadap daerah terdegradasi, belum banyak aspek kehidupan yang
diketahui dari spesies ini.
79

General Spesies
Kelompok spesies yang dapat beradaptasi dengan baik pada semua elemen
lanskap dan ke semuanya merupakan spesies akuatik. Spesies akuatik lebih
mudah melakukan dispersal dikarenakan perairan cenderung tidak memiliki
barrier bagi amphibia. Semua fase kehidupan amphibia dapat melakukan dispersal
mulai dari telur, hingga katak dewasa, beberapa kasus ditemukan meskipun
philopatric katak dewasa dapat saja berdispersal dengan hanyut mengikuti
material organik yang hanyut bersama sungai, seperti bagian-bagian pohon hingga
daun pakis bertindak seperti rakit bagi amphibia (Schiesari et al. 2003).
Spesies-spesies ini juga dikenal sebagai amphibia yang berbiak pada sungai
meskipun bagian sungai yang digunakan untuk berbiak bervariasi. B. asper hidup
dalam hutan primer dan sekunder tua dataran rendah. Selalu dijumpai di pinggiran
sungai besar maupun kecil, jarang dijumpai didarat yang jauh dari air (Inger &
Stuebing 1997). R. ranicep dan R. parvaccola adalah dua spesies yang dulunya
secara umum dikenal sebagai Rana chalconota merupakan katak yang berbiak
sepanjang sungai dengan ukuran yang bervariasi, jenis amphibia generalis karena
mampu hidup pada hutan dataran rendah, mulai dari hutan primer berbukit, hutan
sekunder dan hutan rawa. Muncul dalam jumlah yang sedikit pada pencarian
diriparian tetapi ketika aktivitas berbiak terjadi banyak spesies dapat terlihat pada
tepian sungai (Inger 1969).
L. kuhlii memiliki relung ekologi yang lebar diketahui hidup dalam hutan
primer sampai sekunder tua pada daerah berbukit dari tepi pantai hingga
pegunungan pada ketinggian hingga 1600 mdpl, sering dijumpai pada sungai
beraliran sedikit tenang. L. blythii, terdapat dalam hutan primer sampai hutan
sekunder, disungai-sungai sedang sampai anak sungai, saat musim kawin jantan
menggali lubang di pasir atau kerikil halus (gravel), dimana betina akan
meletakkan telurnya (Mistar 2003). R. erythraea, merupakan jenis kodok pada
perairan yang terganggu umum ditemukan pada kolam-kolam disekitar
pemukiman dan pada habitat yang terdegradasi hingga aliran sungai pada hutan
sekunder. Pada kerkebunan kelapa sawit kelimpahannya rendah namun
populasinya stabil.
80
R. hosii hidup di hutan primer, hutan sekunder, sampai hutan terganggu,
dijumpai pada ranting semak atau bebatuan dipinggiran sungai beraliran sedikit
deras dengan dasar sungai berbatu dan jernih, bisa juga ditemukan pada hutan
yang terdegradasi yang masih memiliki aliran sungai yang masih jernih (Inger &
Stuebing 1997; Mistar 2003). Spesies ini diketahui tinggal di dalam hutan pada
masa juvenile, namun dalam pengamatan tidak ditemukan fenomena ini. Pada
sungai yang berbatasan dengan perkebunan mungkin saja spesies ini mencoba
beradaptasi dengan menggunakan perkebunan kelapa sawit sebagai subtitusi hutan
namun butuh studi yang lebih mendalam karena hanya satu individu R. hosii yang
ditemukan ditengah-tengah perkebunan sawit, belum dapat membuktikan hal ini.
5.3. Implikasi Konservasi
Program sertifikasi RSPO telah mendorong terbentuknya hutan bernilai
konservasi tinggi untuk memitigasi hilangnya biodiversitas, hutan terfragmen ini
memiliki beberapa keuntungan (Edwards et al. 2010). Dapat berfungsi sebagai
tempat naungan spesies yang bergantung dengan hutan yang tidak mampu untuk
bertahan di dalam lanskap perkebunan (Benedick et al. 2006; Koh 2008b) dan
dapat mempertahankan konektivitas skala lanskap dengan bertindak sebagai batu
loncatan antar habitat, dan juga memiliki keuntungan sosioekonomi seperti
biokontrol hama jika terdapat predator yang tinggal didalam hutan
namun
mencari makan di dalam perkebunan (Koh 2008a), dan fragmen dapat mengurangi
terjadi erosi tanah dari lahan yang ditanami (Green et al. 2005). Biodiversitas ikut
meningkat ketika heterogenitas dari lanskap yang lebih alami juga meningkat
(Fahrig et al. 2011). Namun keefektifannya masih menjadi perdebatan hingga
sekarang, dalam penelitian ini ditemukan bahwa spesies yang ditemukan pada
hutan yang terfragmen ini memiliki struktur populasi rentan yang mengarah
kepada kepunahan spesies yang bergantung pada hutan.
Amphibia di Indonesia masih sedikit mendapatkan perhatian, sebagian besar
dikarenakan miskinnya informasi mengenai taksa ini dibandingkan dengan taksa
vertebrata lainnya. Pada kawasan ini hanya L. blythii yang termasuk dalam daftar
merah IUCN dengan status Near Threaten, sementara spesies yang lainnya masuk
dalam kategori Least Concern. Keberadaan L. blythii pada kawasan perkebunan
81
sawit ini memiliki kelimpahan tidak umum namun lebih baik dari sebagian besar
spesies yang ada lainnya. Ancaman yang paling nyata bagi L. blyhtii di kawasan
ini adalah pemanenan, masyarakat memanfaatkannya sebagai sumber protein
hewani dan menjual ke pasaran bila harganya sedang bagus. pada Sungai Jujuan
yang lokasinya dekat dengan pemukiman dan kerap menjadi lokasi pemanenan L.
blythii yang ditemukan memiliki SVL dibawah 15 cm, sementara pada Sungai
Suir ukuran SVL spesies ini dapat mencapai lebih dari 15 cm. Dibutuhkan
sosialiasi lebih mendalam kepada masyarakat mengenai pemahaman konsep
HCVF untuk menekan angka perburuan, pendekatan kesehatan juga patut
dilakukan mengingat parasit pada amphibia juga dapat menginfeksi manusia.
Amphibia banyak ditemukan pada bagian semak pakisan dan genangan air
tepi jalan, kebiasaan membuat piringan sawit dari pelepah sawit juga turut
menyediakan mikrohabitat bagi amphibia. Pada bagian semak yang telah lama
disemprot dan yang tidak dibersihkan amphibia lebih banyak. Penyemprotan
gulma akan menyebabkan amphibia kehilangan mikrohabitat, genangan air pada
tepi jalan yang digunakan sebagai pencampur pestisida atau herbisida dapat
membahayakan telur dan berudu dari amphibia, kebijakan perusahaan melarang
tindakan ini sebagai bagian dari aplikasi RSPO. Penyemprotan berlebihan
berbahaya bagi amphibia karena sensitifitasnya terhadap pengaruh lingkungan
yang tinggi dapat menyebabkan penurunan populasi, merusak rantai makanan dan
proses ekologi, akan menimbulkan efek negatif seperti ledakan populasi hama
dalam perkebunan itu sendiri. pembersihan pada lantai perkebunan dengan
pembasmian
gulma dan sisa pelepah sawit akan mempengaruhi komunitas
amphibia, aktifitas ini menyebabkan hilangnya mikrohabitat bagi amphibia.
Keberadaan amphibia dalam perkebunan memiliki nilai positif. Arti penting
amphibia pada perkebunan sawit, menjaga stabilnya jaringan makanan, amphibia
adalah pemakan segala jenis serangga termasuk serangga hama bagi perkebunan,
secara tidak langsung amphibia turut sebagai organisme pengendali hama.
Amphibia sebagai indikator pencemaran perairan, ular juga memangsa amphibia
menjaga populasi ular stabil, menekan populasi tikus yang merupakan hama
sawit. potensi ini harus di gali agar konservasi amphibia juga diperhatikan dalam
pengelolaan. Sejauh ini belum ada penelitian yang mengkaji nilai penting
82
keberadaan amphibia dalam perkebunan kelapa sawit terhadap fungsinya sebagai
bagian dari perkebunan itu sendiri. Penggalian ini akan mempermudah upaya
konservasi bagi amphibia karena ada imbal balik yang saling menguntungkan.
Penting untuk diperhatikan pada perkebunan baru yang mengadopsi
pendekatan HCVF akan dibuka atau perluasan lahan, agar hutan yang telah
didelineasi sebagai kawasan bernilai konservasi agar benar-benar dijaga dalam
bentuk aslinya, karena seringkali dilapangan kawasan HCVF yang ada berupa
hutan yang memiliki sejarah logging yang parah. Sehingga satwa interior hutan
yang rentan akan terlebih dahulu punah dan kelimpahannya turun drastis, ketika
pengelolaannya baru diupayakan. Kemudian koneksi antar HCVF penting bagi
keberlangsungan hidup satwa, memungkinkan terjadinya interaksi antar populasi
akan menjaga kestabilan genetik. Pengertian koneksi bukan hanya sekedar
menghubungkan habitat dengan habitat lainnya dengan koridor, tetapi juga
mengenai keefektifan dari koridor itu sendiri akan menentukan derajat
konektivitasnya.
Download