STATISTIKA A. Definisi Umum 1. Pengertian statistik Statistik adalah kumpulan fakta yang berbentuk angka dan disusun dalam daftar atau tabel yang menggambarkan suatu persoalan. Contoh: statistik kurs dolar Amerika, statistik pertumbuhan jumlah penduduk, dan lain-lain. 2. Pengertian statistika Statistika adalah ilmu yang mempelajari cara-cara pengumpulan, pengolahan, penyajian, dan analisis data serta serta penarikan kesimpulan berdasarkan sifat-sifat data. 3. Pengertian populasi Populasi adalah keseluruhan objek yang akan diteliti. 4. Pengertian sampel Sampel adalah sebagian dari objek yang akan diteliti dan diharapkan memberikan gambaran tentang sifat dari keseluruhan objek/populasi. 5. Pengertian statistik peringkat Statistik peringkat adalah kumpulan data yang diurutkan dari data ukuran terkecil ke data ukuran terbesar dengan lambang x1, x2, x3, …, xn Ketengan: x1 = data ukuran terkecil (xmin) x2 = data ukuran terbesar (xmax) 6. Pengertian variabel Variabel adalah sifat/karakteristik yang diukur. 7. Pengertian datum Datum adalah unsur-unsur dalam data. 8. Macam-macam data a. Data kuantitatif adalah data hasil pengamatan/observasi yang diukur dalam skala numerik/angka. b. Data kualitatif adalah data hasil pengamatan/observasi yang hanya dapat dikelompokkan ke dalam suatu kategori dan tidak dinyatakan dalam skala numerik, seperti kegemaran seseorang terhadap suatu produk. B. Tabel Distribusi Frekuensi 1. Distribusi frekuensi Distribusi frekuensi adalah suatu susunan data dimulai dari data terkecil sampai data terbesar dan membaginya ke dalam beberapa kelas. a. Tabel distribusi frekuensi (1) Tabel distribusi frekuensi untuk data tunggal Contoh: Data ukuran sepatu 30 orang: 36 40 36 36 40 37 38 37 40 39 38 39 39 36 38 36 36 37 38 38 36 37 38 40 40 37 40 38 39 36 Data di atas dapat dituliskan dalam bentuk tabel distribusi frekuensi: Ukuran Sepatu Turus Frekuensi 36 IIII III 8 37 IIII 5 38 IIII II 7 39 IIII 4 40 IIII I 6 Jumlah 30 (2) Tabel distribusi frekuensi untuk data berkelompok Tabel ini digunakan untuk data yang mempunyai rentang lebar. Contoh: Data nilai ujian matematika 40 siswa: 83 80 87 86 86 92 86 84 86 90 89 83 86 83 87 86 89 80 90 84 81 83 91 84 80 81 93 83 87 95 84 95 86 89 80 Jawab: a). Jangkauan/rentang (R) = xmax – xmin = 95 – 80 = 15 b). Banyak kelas interval Berdasarkan aturan Sturgess (dibaca: Stark), yaitu: Banyak kelas interval (k) = 1 + 3,3 logn , dengan n adalah banyaknya data Sehingga: Banyak kelas interval (k) = 1 + 3,3 logn = 1 + 3,3 log40 = 1 + 3,3 x 1,602 = 1 + 5,287 = 6,287 (dibulatkan menjadi 6) rentang c). Panjang interval = banyak kelas 15 = 6 = 2,5 (dibulatkan 3) d). Tabel Interval Nilai Turus Frekuensi 80 – 82 IIII I 6 83 – 85 IIII IIII 10 86 – 88 IIII IIII I 11 89 – 91 IIII III 8 92 – 94 III 3 95 – 97 II 2 Jumlah 40 94 91 86 89 84 Latihan 1: Buatlah tabel distribusi frekuensi dengan aturan Sturgess dari data berikut: 41 49 53 53 48 42 58 46 60 57 47 48 57 43 46 53 59 50 51 44 2. Tabel distribusi frekuensi kumulatif a. Tabel distribusi frekuensi “kurang dari” Tabel distribusi frekuensi “kurang dari” adalah tabel yang jumlah frekuensi datanya kurang dari atau sama dengan nilai tepi atas pada setiap kelas. Biasanya dilambangkan dengan “fk ”. Nilai tepi atas = batas atas kelas + 0,5 Interval Nilai 80 – 82 83 – 85 86 – 88 89 – 91 92 – 94 95 – 97 Turus IIII I IIII IIII IIII IIII I IIII III III II Jumlah Frekuensi 6 10 11 8 3 2 40 Nilai 82,5 85,5 88,5 91,5 94,5 97,5 fk 6 16 27 35 38 40 b. Tabel distribusi frekuensi “lebih dari” Tabel distribusi frekuensi “lebih dari” adalah tabel yang jumlah frekuensi datanya lebih dari atau sama dengan nilai tepi bawah pada setiap kelas. Biasanya dilambangkan dengan “fk ”. Nilai tepi bawah = batas bawah kelas – 0,5 Interval Nilai 80 – 82 83 – 85 86 – 88 89 – 91 92 – 94 95 – 97 Turus IIII I IIII IIII IIII IIII I IIII III III II Jumlah Frekuensi 6 10 11 8 3 2 40 Nilai 79,5 82,5 85,5 88,5 91,5 94,5 fk 6 16 27 35 38 40 3. Tabel distribusi frekuensi relatif Frekuensi relatif adalah perbandingan antara frekuensi masing-masing kelas dengan jumlah seluruhnya yang dinyatakan dalam persentase. fi fr x100% fi Interval Nilai Turus Frekuensi Frekuensi relatif 80 – 82 IIII I 6 15% 83 – 85 IIII IIII 10 25% 86 – 88 IIII IIII I 11 27,5% 89 – 91 IIII III 8 20% 92 – 94 III 3 7,5% 95 – 97 II 2 5% Jumlah 40 100% Latihan 2: Buatlah tabel distribusi frekuensi kumulatif (kurang dari dan lebih dari) dan tabel distribusi frekuensi relatif dari data berikut: 41 49 53 53 48 42 58 46 60 57 47 48 57 43 46 53 59 50 51 44 C. Penyajian Data dalam Bentuk Diagram 1. Diagram batang Tahun Pengunjung 2001 212 2002 502 2003 300 2004 450 2005 499 2006 500 2007 289 2008 234 Jumlah 2986 Banyak Pengunjung Grafik Pengunjung 502 600 400 450 499 500 300 212 289 234 2007 2008 200 0 2001 2002 2003 2004 2005 Tahun 2006 2. Diagram garis Banyak Pengunjung Grafik Pengunjung 600 502 0 2000 2001 500 300 212 200 499 450 400 2002 2003 289 2004 2005 2006 2007 234 2008 Tahun 3. Diagram lingkaran Tahun Pengunjung 2001 212 2002 502 2003 300 2004 450 2005 499 2006 500 2007 289 2008 234 Jumlah 2986 Dalam bentuk derajat: sudut pusat juring banyak data yang diwakili total data seluruhnya 360 o Dalam bentuk persentase: fi % fi x100% f Grafik Pengunjung 8; 2008; 13% 1; 2001; 12% 7; 2007; 13% 2; 2002; 12% 6; 2006; 13% 3; 2003; 12% 5; 2005; 13% 4; 2004; 12% Latihan 3: Sajikan data tabel berikut dalam bentuk diagram batang, garis, dan lingkaran: 1. Banyak pengunjung perpustakaan beberapa bulan lalu 2. Merek dan banyak sepeda motor guru 3. Ukuran sepatu siswa 4. Tinggi badan siswa 5. Berat badan siswa 6. Jarak rumah ke sekolah 7. Nilai matematika siswa 8. Pekerjaan orang tua 2009 D. Pemusatan Data 1. Mean/nilai rata-rata a. Data tunggal Data: x1, x2, x3, …, xn xi x n b. Data berbobot Interval Nilai (xi) a b c d e f f.xi p q r s t ap bq cr ds et f . xi f f .x x f i c. Data berkelompok Interval Nilai (x) f a–c d–f g–i j–l m–o p q r s t Nilai tengah tiap kelas (xt) b e h k n f x f .x f f.xt pb qe rh sk tn f . xt t 2. Modus/nilai yang paling banyak a. Data tunggal a, b, c, d, c, e, a, a a terdapat 3 b terdapat 1 c terdapat 2 d terdapat 1 e terdapat 1 sehingga modusnya a karena muncul paling banyak, yaitu 3 kali b. Data berkelompok Interval f Nilai (xi) a–c 7 d–f 5 g–i 10 j–l 3 m–o 2 f d1 Mo tb d1 d 2 x i Keterangan: Mo = modus tb = tepi bawah kelas modus = nilai dengan frekuensi terbesar dikurangi 0,5 d1 d2 i = frekuensi kelas modus dikurangi frekuensi sebelumnya = frekuensi kelas modus dikurangi frekuensi sesudahnya = interval kelas Latihan 4: Tentukan mean dan modus pada data berikut: 1. 12, 9, 4, 11, 20, 6, 8, 6 2. Perhatikan tabel berikut! Interval F Nilai 0–9 6 10 – 19 5 20 – 29 8 30 – 39 11 40 – 49 5 50 – 59 5 3. Median/nilai tengah a. Data tunggal Urutkan data mulai data terkecil ke data terbesar. Untuk n ganjil, maka Me = X 1 2 ( n 1) Untuk n genap, maka Me = X 1 2 n b. Data berkelompok Interval Nilai (xi) a–c d–f g–i j–l m–o f fk 7 5 10 3 2 f 7 12 22 25 27 1 n 2 1 n fk xi Me tb 2 f Letak kelas Me = Keterangan: Me = median tb = tepi bawah kelas median = nilai dengan frekuensi terbesar dikurangi 0,5 n = banyak data fk = frekuensi kumulatif sebelum kelas median f = frekuensi kelas median i = interval kelas 4. Quartil/nilai dari data tertentu yang dibagi empat bagian a. Data tunggal i i Letak kelas Qi = (n 1) = p + 4 4 i Qi = Xp + (Xp+1 – Xp) 4 b. Data berkelompok Interval Nilai (xi) a–c d–f g–i j–l m–o f fk 7 5 10 3 2 f 7 12 22 25 27 i n 4 i n fk xi Qi tb 4 f Letak kelas Qi = Keterangan: Qi = quartil ke-i tb = tepi bawah kelas quartil = nilai dengan frekuensi terbesar dikurangi 0,5 n = banyak data fk = frekuensi kumulatif sebelum kelas quartil f = frekuensi kelas quartil i = interval kelas 5. Desil/nilai dari data tertentu yang dibagi sepuluh bagian a. Data tunggal i i Letak kelas Di = (n 1) = p + 10 10 i Di = Xp + (Xp+1 – Xp) 10 b. Data berkelompok Interval f fk Nilai (xi) a–c 7 7 d–f 5 12 g–i 10 22 j–l 3 25 m–o 2 27 f i n 10 i n fk xi Di tb 10 f Letak kelas Di = Keterangan: Di = desil ke-i tb = tepi bawah kelas desil = nilai dengan frekuensi terbesar dikurangi 0,5 n = banyak data fk = frekuensi kumulatif sebelum kelas desil f = frekuensi kelas desil i = interval kelas Latihan 5: Tentukanlah median, Q1, Q2, Q3, D4, dan D8 dari data berikut: a. 12, 14, 31, 9, 7, 12, 18, 18, 19, 35, 40, 32, 23, 14 b. Perhatikan tabel berikut: Interval f Nilai 30 – 34 4 35 – 39 8 40 – 44 14 45 – 49 35 50 – 54 26 6. Rentang/jangkauan Rentang = Xmax – Xmin 7. Jangkauan antarquartil/hamparan JAQ = Q3 – Q1 8. Simpangan quartil/jangkauan semiantarquartil 1 SQ = (Q3 Q1 ) 2 9. Rataan tiga 1 RT = (Q1 2Q2 Q3 ) 4 Latihan 6: Tentukanlah rentang, jangkauan antarquartil, simpangan kuartil, dan rataan tiga dari data berikut: 1. 12, 14, 31, 9, 7, 12, 18, 18, 19, 35, 40, 32, 23, 14 2. Perhatikan tabel berikut: Interval f Nilai 30 – 34 4 35 – 39 8 40 – 44 14 45 – 49 35 50 – 54 26 55 – 59 10 E. Penyebaran Data 1. Simpangan rata-rata/deviasi rata-rata a. Data tunggal 1 n SR = xi x n i 1 b. Data berkelompok n f SR = x xi x i 1 n f i 1 2. Simpangan baku/standart deviasi a. Data tunggal S2 = 1 n xi x n i 1 2 b. Data berkelompok f x x n S2 = x i 2 i 1 n f i 1 3. Ragam/variansi a. Data tunggal 2 1 n xi x n i 1 b. Data berkelompok R= S2 = f x x n i R= S2 = x 2 i 1 n f i 1 Latihan 7: Tentukanlah simpangan rata-rata, simpangan baku, dan ragam dari data berikut: 1. 12, 14, 31, 9, 7, 12, 18, 18, 19, 35, 40, 32, 23, 14 2. Perhatikan tabel berikut: Interval f Nilai 30 – 34 4 35 – 39 8 40 – 44 14 45 – 49 35 50 – 54 26 55 – 59 10 Uji Kompetensi: 1. Nilai rata-rata 25 siswa adalah 80. Jika c. 53 nilai Agung dan Anto digabung ratad. 55 ratanya menjadi 80,5. Jumlah nilai e. 57 Agung dan Anto adalah …. 4. Quartil bawah dari 9, 10, 11, 8, 7, 8, 10, a. 100,5 8, 9, 6 adalah …. b. 125,5 a. 6 c. 160,5 b. 7 d. 161,5 c. 8 e. 173,5 d. 9 2. Modus dari data 2, 3, 1, 4, 5, 1, 3, 1, 2, 3, e. 10 2, 5, 5, 4, 4 adalah …. 5. Simpangan baku dari 64, 65, 66, 67, 68 a. tidak ada adalah …. b. 1 a. 3 c. 2 b. 2 d. 3 c. 2 e. 4 d. 3 3. Median dari data 53, 55, 51, 60, 58, 58, e. 4 54, 57, 50 adalah …. a. 50 b. 51 Uraian: Tentukanlah mean, median, modus, Q3, D7, dan simpangan baku dari data berikut: waktu f (menit) 18 – 20 1 21 – 23 8 24 – 26 21 27 – 29 14 30 – 32 6