RINGKASAN DAN SU~ThfARY Penelitian ini dilakukan

advertisement
RINGKASAN DAN SU~ThfARY
Penelitian ini dilakukan secara eksperimen dan numerik untuk mengkaji pengaruh
gap ratio (SID) pada kondensor dan panjang pipa kapi!er (LJcop) pada unit refrigerasi
(kulkas) terhadap karakteristik aliran dan perpindahan panas konveksi alamiah
Kondensor dengan dua puluh array rube isotermal rersusun in-line menempel dinding
konveksi dalam vertical channel dan enclosure.
Eksperimen dilakukan pada variasi gap ratio 1. 05--1.20 dan variasi panjang pipa
kapiler 2.5-3.5 m dengan memakai refrigeran R-12 pada sistem refrigerasi yang
menggunakan kompresor berkapasitas pendinginan 1/3 hp. Kondensor dil~rakkan
menempel dinding konveksi. Studi numerik dilakukan menggunakan data dari hasil
eksperimen. Selanjutnya dengan software Fluenr 6.2 unruk mendapatkan kara!aeristik
a/iran udara dan perpindahan panas. Pembahasan meliputi velocity velaor, disrribusi
kecepatan udara, tangential velocity dan local Nusselt number.
Hasil eksperimen pada vertical channel memmjukkan bahwa unwk sedap panjang
pipa kapiler yang digunakan, perubahan gap ratio dari 1.05 hingga -1.20 menghasilkan
peningkatan laju pelepasan panas kondensor. Peningkatan tersebut dirandai dengan
semaf...:in rendahnya temperatur refrigeran keluar kondensor. Fenomena ini berlangsung
karena terjadinya peningkatan laju a/iran udara yang melewati vertical ciwnnel
menghasilkan peningkatan . laju pelepasan panas ke udara dalam saluran lebih besar
dibandingkan penurunan. laju·pelepasan panas yang terjadi dari pelat ke udara sekitar.
Meningkatnya laju a/iran udara ddlam saluran disebabkan oleh semaf...:in berkurangnya
pressure drop aliran 'udara yang terjadi dalam saluraii. Peningkatan laju pelepasan panas
kondensor terbesar terjadi pada gap ratio 1.05 · hingga 2.10 yang mencapaf 6%.
Sedangkan laju pelepasan panas kondensor tertinggi terjadi pada gap ratio -1. 20.
Peningkatan gap ratio dari 1.05 menjadi 2.10 menghasilkan penurunan laju perpindahan
panas pelat sekitar 7%. Sedangkan laju pelepasan panas lee udara dalam saluran
meningkat sebesar 8% - 10%. Sementara itu, peningkatan gap ratio dari 2.10 hingga 4. 20
hanya mengakibatkan penurunan laju perpindahan panas pelat sekitar 2% - 4%. COP
sistem mengalami peningkatan seiring dengan bertambahnya gap ratio.
Sementara itu. perubahan panjang pipa kapiler dari 2.5 m hingga 3.5 m
menghasilkan penurunan laju pelepasan panas kondensor. Untuk setiap gap ratio, laju
pelepasan panas kondensor terbesar rerjadi pada pipa kapiler 2.5 m. Fenomma ini
dikarenakan semakin rendahnya temperatur kondensasi refrigeran dengan bertambahnya
panjang pipa kapiler yang digunakan. Penurunan temperatur kondensasi rersebut
menghasilkan penurunan gradien temperarur antara tube kondensor dengan udara dalam
salw·an dan juga antara pelat dengan udara sekitar. Hal ini membawa dampak terhadap
penurunan buoyancy force a/iran yang dapat diketahui dari bilangan Rayleigh yang
semakin rendah. LC'.ju pelepasanpanas kondensor rertinggi dicapai pada penggunaan pipa
kapiler 2.5 m dan terendah pada 3.5 m. Penambahan panjang pipa kapiler berpengaruh
terhadap peningkatan COP sistem. Peningkatan ini disebabkan per.uruncm kerja
kompresor yang lebih besar dibandingkan penurunan laju penyerapan panas di
evaporator. Pada instalasi sistem refrigerasi yang menggunakan pipa kapiler 3.5 m
sebagai alat ekspansi, dihasilkan COP sistem teriinggi yang mencapai 3.61. Sedangkan
COP terendah terjadi pada pipa kapiler 2.5 m dengan gap ratio 1.05 sebesar 2.95.
11
sebagai alat ekspansi, dihasilkan COP sistem tertinggi yang mencapai -+.67. Sedangkan
COP terendah terjadi pada pipa kapiler 2.5 m dengan gap ratio 1.05 sebesar 2.95.
Hasil penelitian numerik untuk vertical channel menunjulckan bahwa pada SID 1.05.J.20 untuk panjang pipa kapiler yang sama, diperoleh laju perpindahan panas kondensor
(lfkorrJJ yang meningkat. Pada SID 1.05-2.10 dengan panjang pipa kapiler 3m,
menzmjukkan q1cond meningkat cukup signifikan. Local Nusselt m1mber {Z..iua) di permukaan
wbr1 mempunyai peningkatan besar pada 8 = 0-1800 di sisi dinding konveksi. Sedangkan
distribusi tangential velocity (vJ menunjukkan peningkatan yang cukup besar. Dimana
pada SID 1.05 terjadi blockage effect yang kuat sehingga karakteristik a/iran diantara
wbe didominasi oleh recirculation. Hal ini berdampak kepada gradien temperatur yang
kecil dan tangential velocity (vJ yang sangat lambat. Pada SID 2.IO blockage effect
berkurang drasris. sehingga mampu menghasilkan a/iran udara yang cepat melintasi
bagian dalam channel. Hal ini berdampak positif, menyebabkan tangential velocity (vJ
meningkat pesat dan.. menurunkan disrribusi temperatur dengan gradien yang curam.
Sedangkan pengaruh perubahan SID 3. I 5-..:1.20 menunjukkan qtwnd meningkat dengan
gradien yang sangat landai. Local iYusselr number (Z..iua) mengalami peningkatan yang
kecil dimana pengaruh dinding konveksi semakin berkurang. Sedangkan disrribusi
tangential velocity (vJ menunjukkan peningkatan yang sangat kecil. Karakter a/iran
cenderung sama, udara mengalir ke atas melinrasi bagian dalam channel. Kecepatan
a/iran udara lebih tinggi pada sisi dinding adiabatis disebabkan oleh gaya bouyancy yang
lebih besar.
- Sebaliknya hasil eksperimental pada enclosure menunjui:kan bamva semakin besar
gap ratio dengan panja~g pipa kapiler yang tetap, maka laju perpindaha!f .panas
.
.
.
Qkondensor " Qevaporator, Q pelat dan COP serta harga effectivness semakin kecil.
Sedc;_mgkan untuk kerja kompresornya tidak mengalami perubahan karena tidak
berubahnya temperatur kondensasi di kondensor dan temperatur evaporasf di evaporator
sehingga per5edaan entalpi antara refrigeran keluar dan masuk kompresor juga tidak
berubah. Selafn itu perubahan gap ratio juga tidak mempengaruhi laju alir massa
refrigeran.
Perubahan gap ratio mempengaruhi besarnya temperatur tube rerata · kondensor
dalam enclosure. Gradien temperatur rerata tube kondensor pada gap ratio yang kecil
(SID = 1,05- 2,10) mengalami peningkatan yang tajam, hal ini disebabkan karena pada
gap ratio SID = 1.05 sirkulasi aliran udara disekitar tube kondensor dalam enclosure
semakin cepat, sehingga panas yang dilepaskan kondensor naik yang mengakibatkan
remperatur permukaan tube lebih rendah bila dibandingkan dengan gap ratio SID= 2.10.
Sedangkan pada gap ratio (SID = 3, I 5 - -1, I 0) gradien kerr.aikan temperatur rerata tube
kondensor lebih landai. Hal ini dikarenakan sirkulasi a/iran udara dalam enclosure
semakin rendah akibat luasan volume enclosure yang semakin besar sehingga panas yang
dilepaskan ke dinding konveksi berkurang dan temperatur permukaan tube kondensor
menjadi lebih besar. Pengaruh jarak antara tube kondensor dengan dinding adiabatik
mulai tidak berpengaruh yang ditunjukkan dengan melemahnya sirkulasi a/iran udara
yang mengalir di dalam enclosure. Dengan demikian panas yang dilepaskan oleh tube
rerata kondensor relatif tetap sehingga laju perpindahan panas ~ndensor menjadi relatif
tetap.
Untuk gap ratio kecil maka kapasiras re.frigerasi akan naik akibat dari temperatur
keluaran kondensor yang turun. Sehingga pada temperatur evaporator yang konstan akan
rnenghasilkan dampak re.frigerasi yang besar, sehingga kapasitas refrigerasin,va juga
lll
besar. Peningkatan gap ratio mengakibatkan harga Nusselt mengalami penurunan,
dimana pada gap ratio yang /cecil terjadi penurunan yang tajam, hal ini mengambarkan
bahwa jarak antara tube dengan dinding konveksi sangat berpengaruh terhadap
perpindahan panas yang ditandai dengan meningkatnya sirkulasi udara dan vortex yang
terjadi se_makin besar sehingga proses perpindahan panas dari permukaan rube ke dinding
konveksi menjadi lebih b.csar dan bilangan Nusselt juga il. :ut besar.
Peningkatan gap rario akcm menurunkan laju alir panas J·ang dilepas pelat. Untuk
gap ratio (SID= 1.05- 1. 10) memmjukkan gradien penurunan laju perpi,.dahan panas
pelat lebih curam bila dibandingkan dengan gap ratio anwra 2.10 - ~ 20. Hal ini
disebabkan karena adanya sirkulasi aliran udara di dalam enclosure dan sirkulasi udara
antara rube kondensor _1,;ang cepat serra pengaruh pendinginan udara di luar pelat,
sehingga panas yang dilepaskan oleh pelat ke linglcungan sekiwr semakin besar. Untuk
peningkatan gap rario (S.D = 2.10- -+.20) mengakibatkan gradien laju perpindahan panas
pelat tidak berubah. Pengaruh jarak antara rube lcondensor dengan dinding adiabaris
sudah tidak berpengaruh yang dinmjukkan dengan melemahnya sirkulasi udara )iang
mengalir di dalam enclosure dan sirkulasi aliran udara yang terjadi semakin berkurang.
Panas yang dilepaskan oleh tube kondensor ke dinding konveksi terap dengan perubahan
gap ratio, sehingga laju perpindahan panas pelat relatiftetap.
Penambahan panjang pipa kapiler pada enclosure mengalcibatkan tekanan suction
dan discharge kompresor menurun sehingga laju alir massa refrigeran /cecil akibat dari
massa jenis refrigerant ~vang masuk kompresor /cecil. Sedangkan laju perpindahan panas
lcondensor terbesar te1jadi pada gap ratio kecil dan pada panjang pipa kapiler yang
pendek. Penambahan panjang pipa kapiler mengakibatkan harga
.
.
.
.
Qlcondensor,
Qevaporator, Q pelat . W kompresor dan harga effectivness menurun retapi harga COP
mengalami kenaikan.
Dengan memvariasikan panjang pipa kapiler mangakibatkan terjadinya perubahan
remperatur dan. tekanan di evaporator, sehingga laju perpindahan panas evaporator juga
berubah. Pada pipa lcapiler yang pendelc (2,5 m) terjadi kenai/can temperatur dan tekanan
di evaporator serta kenai/can tekanan dan temperatur di kondensor akibat dari tekanan
discharge dan suction kompresor mengalami kenaikan. Sedanglcan untuk pipa kapiler yang
panjang (3.5m) temperarur dan telcanan evaporator lebih /cecil bila dibandingkan dengan
pipa kapiler yang pendek, sehingga untulc panjang pipa kapiler 3.5m laju perpindahan
panas evaporator lebih /cecil.
Pada pipa lcapiler yang pendek (2.5m), laju alir massa refrigeran menjadi lebih besar
sehingga tekanan discharge dan suction mengalami peningkawn. Akibatnya refrigeran
yang masuk ke silinder kompresor menjadi lebih besar sehingga lcompresor bekerja
dengan berat yang berdampalc pada kerja yang diberilcan oleh kompresor ke refrigeran
lebih besar, selain itu efek refrigerasi menjadi lebih /cecil. Berbeda dengan pipa kapiler 3.0
- 3.5 m, dimana laju a/iran massa refrigeran /ebih /cecil dan tekancm discharge dan
suction mengalami penurunan akibatnya kerja yang diberikan Ice re.frigeran lebih /cecil
tetapi dampak refrigerasi yang terjadi lebih besar. Dengan demikian harga COP akan
semalcin nailc dengan bertambahnya panjang pipa kapiler.
Perubahan par.jang pipa kapiler mempenganthi temperatur perrmtkaan tube
kondensor. Dimana pada pipa lcapiler yang pendelc (2,5m). volume gas yang masulc Ice
silinder kompresor menjadi lebih besar sehingga laju a/iran massa refrigeran menjadi
lebih tinggi. Hal ini mengakibatlcan peningkatan temperatur permukaan tube kondensor
yang diikuti oleh peningkatan rekanan kondensor dan evaporator. Dengan meningkatnya
IV
remperatur tube maka panas yang dilepas oleh kondensor akan semakin besar. Sedangkan
pada penambahan panjang pipa kapiler yaitu 3.0 - 3. 5m volume refrigeran yang dihisap
o.leh kompresor menjadi lebih kecil yang mengafdbatkan penurunan tekanan kondensor
dan evaporalOr sehingga temperatur permukaan tube kondensor menjadi kecil dan panas
yang dilepas oleh kondensor akan semakin menurun.
Peningkatan pipa kapiler juga akan menurzmkan laju alir panas yang dilepas pelaE
Perubahan panjang pipa kapiler memberikan pengaruh yang lebih besar terhadap laju
perpindahan panas kondensor dibandingkan dengan perubahan gap ratio.
Sebaliknya hasil numerik pada enclosur~ memm.fukkan bahwa peningkatan gap ratio
pada panjang pipa kapiler yang sama, mengakibatkan laju perpindahan panas semakin
menurun. Pada SID 1.05-2.10 mengakibatkan pemtnmcm laju perpindahan panas yang
signifikan. L'v"usselt number lokal yang terjadi dipermukaan tube menunjukkan perubahcm
.vano-.:;, cukup besar pada 8 = 0° -18f1' disisi dinding konveksi. Sedangkan kecepatan
rangensial pada permukaan tube terjadi perubahan yang signifikan. Dimana pada S/D
!.05 walaupun kecepatan tangensial lambat akibat blockage a/iran tetapi gradien
temperatur yang terjadi sangat besar. Pada SID 2.10 menghasilkan tangential velocity di
permukaan tube lebih besar tetapi gradien temperatur lebih kecil. Karafaer aliran yang
terjadi pada gap ratio 1.05 dan 2.10 masih didominasi oleh a/iran yang berputar (vorceks)
di antara tube. Pengaruh perubahan gap ratio 3.15 ke .:1.20, terjadi penurunan laju
perpindahan panas yang sangat kectl. Sedangkan perubahan Nusselt number laical yang
terjadi dipermukaan tube cenderung merata dimana pengaruh dinding konveksi mulai
berkurang. Pengaruh perubahan penampang aliran anwra tube dengan dinding vertikal
akibat membesarnya gap ratio dart 3.15 sld 4.20 cidak memberikan perubahan yang besar
terhadap tangential velocity yang terjadi di permukaan tube. Karakter aliran cenderung
sama, yaitu udara bebas bergerak dari bagian bawah enclosure Ice alas di sisi dinding
adiabatis akibat gaya bouyancy (density kecil) dan sebalif..:nya pada dinding konveksi
al.:-ibat gaya grafitasi (density besar).
Untuk pengaruh peningkatan panjang pipa kapiler dart 2.5 m menjadi 3.5m
mengakitbatkan siklus re.frigerasi bergeser ke kiri bcr.vah, karena terjadinya penurunan
tekan dan temperatur kerja refrigeran. Konsekuensinya laju perpindahan panas
mengalami penurunan dengan gradien yang curam. Disrribusi .local Nusselt number (Nu 8)
mengalami penurunan yang cukup besar. Pola a/iran udara relatif sama, tetapi
intensitasnya sedikit menurun dengan meningkamya panjang pipa kapiler. Profil
temperatur udara gap tube mempunyai pola yang serupa untuk variasi panjang pipa
kapiler. Namun harganya mengalami penurunan yang besar, af..:ibat memtnmnya
temperatur operasi dari sistem refrigerasi.
Kata kunci:
Konveksi alamiah, kondensor, vertical channel. gap ratio, paY'.jang pipa kapiler.
local i'iusselt number.
\'
CAP AlAN INDIKATOR KINERJA
Melalui penelitian yang telah dilaksanakan selama 3 tahun dengan periode 2004
sampai dengan 20D6 maka diperoleh heberapa capaian indikator kinerja yang terdiri atas:
CAPAIAl~'
Tahun
INDIKJ\.TOR KINERJA
2{)0-t
2005
I
2006
I
4 Prototype
1 sistem refri.
4 orang
4 Prototype
l sistem refri.
2 orang
Deseminasi
2 makalah
5 rnakalah
Jurnal
1 makalah
Perala tan
Lulusan S2
HAKI
I
I
I
I
I
-
VI
2 makalah
-
I
I
I
I
I
2 Prototype
l sistem refri.
2 orang
(In oro!ITess)
2 rnakalah
2 makalah
(In print)
Submitted
Download