modul xi ipa - WordPress.com

advertisement
STATISTIKA
Matematika
Kelas XI IPA
90
80
70
60
50
40
30
20
10
0
East
West
North
1st Qtr 2nd Qtr 3rd Qtr 4th Qtr
Disusun oleh :
Markus Yuniarto, S.Si
Tahun Pelajaran 2015 – 2016
SMA Santa Angela
Jl. Merdeka No. 24 Bandung
SMA Santa Angela Bandung-XI IPA Semester 2
STATISTIKA
PENGANTAR :
Bahan ajar ini kami susun sebagai salah satu sumber belajar untuk siswa agar dapat
dipelajari dengan lebih mudah. Kami menyajikan materi ini mengacu pada pendekatan
kontekstual dengan diharapkan matematika akan makin terasa kegunaannya dalam
kehidupan sehari-hari.
STANDAR KOMPETENSI : 1. Menggunakan aturan statistika, kaidah pencacahan,
dan sifat-sifat peluang dalam pemecahan masalah.
: 1. Membaca data dalam bentuk table dan diagram
batang, garis, lingkaran dan ogive.
2. Menyajikan data dalam bentuk table dan diagram
batang, garis, lingkaran dan ogive serta
penafsirannya.
TUJUAN PEMBELAJARAN : 1. Siswa dapat membaca sajian data dalam bentuk
diagram garis, diagram lingkaran dan diagram
batang.
2. Siswa dapat mengidentifikasi nilai suatu data yang
ditampilkan pada table dan diagram.
3. Siswa dapat menyajikan data dalam bentuk
diagram batang, garis, lingkaran dan ogive serta
penafsirannya.
4. Siswa dapat menafsirkan data dalam bentuk
diagram batang, garis, lingkaran dan ogive.
5. Siswa dapat membaca sajian data dalam bentuk
table distribusi frekuensi dan histogram.
6. Siswa dapat menyajikan data dalam bentuk table
distribusi frekuensi dan histogram.
KOMPETENSI DASAR
KEGIATAN BELAJAR
:
I. Judul sub kegiatan belajar :
 Menyajikan data ukuran menjadi data statistik diskriptif
 Penyajian data dalam bentuk diagram
 Data Distribusi Frekuensi, Frekuensi Relatif dan Frekuensi Kumulatif
II. Uraian materi dan contoh
2|Page
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
1.
2.
3.
Menyajikan data ukuran menjadi data statistik diskriptif
Memahami Statistik, populasi dan sampel
Statistika adalah ilmu pengetahuan tentang cara-cara pengumpulan data,
penyusunan data, penyajian data serta penarikan kesimpulan.
Statistik adalah kumpulan fakta yang umumnya berbentuk bilangan / agka
dan disajikan dalam bentuk table atau diagram sehingga dapat
menggambarkan suatu masalah.
Populasi adalah keseluruhan objek yang akan diteliti.
Sampel adalah sebagian dari populasi yang benar-benar diteliti
Memahami statistik lima serangkai
Statistik peringkat adalah penyusunan data dari yang terkecil sampai yang
terbesar (diurutkan)
Statistik ekstrim :
 Statstik minimum adalah nilai datum terkecil dilambangkan x1
 Satistik maksimum adalah nilai datum terbesar dilambangkan xn
Kuartil
 Kuartil bawah/pertama (Q1)
 Kuartil kedua / median (Q2)
 Kuartil atas/ketiga (Q3)
Kelima data statistik X1, Q1, Q2, Q3, Xn disebut statistik lima serangkai.
Bagannya sbb:
Q2 =…
Q1 =…
Q3 =…
X1 =…
Xn =…
Memahami jangkauan data, Jangkauan antar kuartil
Jangkauan/ Range adalah selisih mutlak kedua statistik ekstrim/ data
terbesar dikurang data terkecil
J = Xn – X1 = Xmax – Xmin
Jangkauan antar kuartil / Hamparan adalah selisih Q3 dan Q1
H = Q3 –Q1
Jangkauan semi interkuartil/Jangkauan semi antarkuartil/Simpangan
kuartil.
Qd = ½ H=½ (Q3- Q1)
Rataan Quartil (RK)= ½ (Q1 + Q3)
Rataan tiga kuartil (RT)= ¼ ( Q1 + 2Q2 + Q3)
3|Page
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
Penyajian data dalam bentuk diagram
A.
Data Ukuran (Kontinu) dan Data Cacahan(Deskrit)
Data adalah keterangan atau fakta mengenai sesuatu persoalan
Data kualitatif adalah data kategori misal: rusak, baik, senang, puas.
Data kuantitatif adalah data berbentuk bilangan missal: data berat badan,
banyak siswa dll.
Ada 2 jenis data kuantitatif:
1. Data ukuran ( kontinu) yaitu data yang diperoleh dengan cara
mengukur. Misal: tinggi menara 30 m, berat badan 50 kg dll.
2. Data cacahan ( deskrit) yaitu data yang diperoleh dengan cara
menghitung. Misal: jumlah siswa kelas XI IPS 1 ada 30 anak,
SMA Santa Angela mempunyai 24 ruang kelas.
B. Diagram Batang, Diagram Lingkaran dan Diagram Garis
1. Diagram Batang adalah penyajian data statistik yang
menggunakan persegi panjang atau batang dengan lebar batang
sama dengan jarak antara batang yang satu dengan yang lainnya,
serta dilengkapi dengan skala sehingga ukuran datanya dapat
dilihat dengan jelas.
90
80
70
60
50
40
30
20
10
0
East
West
North
1st Qtr 2nd Qtr 3rd Qtr 4th Qtr
2. Diagram Lingkaran adalah penyajian data statistik dengan
menggunakan gambar yang berbentuk daerah lingkaran.
3. Diagram Garis adalah penyajian data statistik dengan
menggunakan gambar berbentuk garis lurus.
4. Diagram Batang Daun yaitu teknik penyajian data dalam bentuk
batang dan daun yang bertujuan untuk menampilkan data yang
akurat darai suatu observasi.
5. Diagram Kotak Garis (DKG) adalah diagram yang berupa kotak
dan garis dengan ketentuan sbb:
4|Page
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
 Data statistik yang dipakai untuk menggambar DKG adalah statistik
lima serangkai
 Diagram tersebut berbentuk seperti kotak seperti persegi panjang dan
mempunyai ekor ke kiri dan ke kanan yang berupa garis.
 DKG meliputi jangkauan antar kuartil atau hamparan dan data yang
berada di dalam kotak adalah median dan kuartil bawah (Q1) serta
kuartil atas (Q3).
 Persegi panjang yang mempunyai ekor memeanjang kekiri dan
kekanan mencakup semua data ( kecuali pencilan)
 Pencilan adalah data yang letaknya diluar pagar dalam dan pagar luar
biasanya diberi tanda * .
Q1
Q2
Q3
+
X1
Xn
Data Distribusi Frekuensi, Frekuensi Relatif dan Frekuensi Kumulatif
A. Daftar Distribusi Frekuensi Tunggal
Nilai ulangan matematika dari 40 siswa :
8 5 7 4 4 5 7 7 6 4 7 6 6 5 4 8 8 7 6 5
5 6 7 8 4 5 7 6 7 6 7 7 6 6 8 6 6 4 4 5
Data di atas dapat disajikan dalam bentuk distribusi frekuensi data
tunggal:
Nilai
Turus
Frekuensi
4
7
5
7
6
11
7
10
8
5
Jumlah
∑f = 40
5|Page
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
B. Daftar Distribusi Frekuensi Data Kelompok
Nilai ulangan matematika dari 100 siswa:
Nilai
Frekuensi
30 – 34
3
35 – 39
7
40 – 44
12
45 – 49
17
50 – 54
25
55 – 59
14
60 – 64
13
65 – 69
5
70 – 74
4
Jumlah
∑f = 100
Beberapa istilah yang ada dalam data kelompok:
1. Kelas interval
Kelompok-kelompok data seperti 30 – 34, 35 – 39, …, 70 – 74
disebut kelas interval.
2. Batas kelas
Bilangan 30, 35, …70 disebut batas bawah kelas, sedangkan 34,
39, … ,74 batas atas kelas.
3. Tepi kelas
Tepi bawah = batas bawah - 0,5 satuan terkecil.
Tepi atas = batas atas + 0,5 satuan terkecil.
4. Panjang kelas / lebar kelas
Panjang kelas = tepi atas – tepi bawah kelas
5. Titik tengah kelas
Titik tengah kelas = ½ ( batas bawah + batas atas )
Langkah-langkah untuk membuat daftar distribusi frekuensi data
kelompok:
1. Menentukan jangkauan
J = X max – X min = Xn – X1
2. Menentukan banyaknya kelas interval
Biasanya diambil paling sedikit 5 kelas dan paling banyak 15 kelas.
Atau menggunakan aturan Strungers:
k = 1+ 3,3 log n
k = banyaknya kelas
6|Page
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
n = banyaknya data
Menentukan panjang kelas interval
c = jangkauan .
banyaknya kelas
4. Menentukan batas kelas dimana semua nilai tercakup di dalamnya.
5. Menentukan nilai frekuensi tiap kelas dengan turus.
C. Distribusi Frekuensi Relatif
Frekuensi relatif adalah banyaknya data (frekuensi ) yang dihitung
dengan prosen.
Frekuensi Relatif = fi . x 100%
∑fi
3.
Contoh 1 :
Nilai
36 – 44
45 – 53
54 – 62
63 – 71
72 – 80
81 – 89
90 – 98
Jumlah
Frekuensi
2
5
6
12
8
4
3
Frekuensi Relatif (%)
5
12,5
15
30
20
10
7,5
Frekuensi relative untuk kelas pertama = 2 x 100%
40
D. Distribusi frekuensi kumulatif
Ada 2 macam daftar distribusi frekuensi kumulatif yaitu:
1. Daftar distribusi frekuensi kumulatif kurang dari.
2. Daftar distribusi frekuensi kumulatif lebih dari.
E. Histogram, Polygon Frekuensi dan Ogive
 Histogram merupakan diagram batang dimana batang-batangnya
salin dihimpitkan. Apabila tengah tiap sisi atas batang dihubungkan
satu sama lain diperoleh polygon frekuensi.
 Ogive positive merupakan grafik yang disusun berdasarkan table
frekuensi kumulatif kurang dari.
 Ogive negative merupakan grafik yang disusun berdasarkan table
frekuensi kumulatif lebih dari.
7|Page
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
III. Latihan
1. Hasil ulangan matematika dari 15 siswa sbb:
9 7 6 8 9 7 6 4 5 6 8 7 7 8 5
Tentukan:
a. statistik peringkat
b. nilai ekstrim
c. median
d. kuartil bawah dan kuartil atas
e. statistik lima serangkai
2. Diketahui data : 12 30 16 39 46 26 15 36 20
21 27 31 38 19 24 13 15
17 43 45
Tentukan : a. Nilai ekstrim
b. Kuartil atas dan kuarti bawah
c. jangkauan
d. Hamparan
e. Simpangan kuartil
f. Rataan kuartil
g. Rataan tiga kuartil
3. Tabel di bawah ini menunjukkan nilai matematika di suatu kelas.
Nilai
Frekuensi
40 – 46
2
47 – 53
5
54 – 60
7
61 – 67
10
68 – 74
8
75 – 81
6
82 – 88
2
Tentukan :
a. banyaknya interval kelas
b. panjang interval kelas
c. batas bawah interval kelas ke 3
d. batas atas interval kelas ke 2
e. tepi bawah interval kelas ke 4
f. tepi atas interval kelas ke 5
g. frekuensi yang terbesar terletak pada interval kelas ke…
4. Skor nilai ulangan matematika kelas XI IPS SMA Santa Angela sbb:
8|Page
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
32
22
43
47
20
41
21
62
48
54
47
23
49
26
57
45
18
42
19
20
60
41
27
57
45
59
54
46
39
42
48
49
29
47
25
24
41
24
25
36
32
42
37
35
36
24
35
61
56
43
42
54
29
63
30
44
48
17
47
51
31
46
49
38
51
63
59
53
43
44
39
26
32
38
45
69
31
34
42
24
23
52
45
42
42
45
42
38
52
57
24
31
30
34
34
38
33
28
61
24
a. Buatlah daftar distribusi frekuensi data kelompok
b. Gambarlah diagram histogram dan polygon frekuensi
c. Buatlah distribusi frekuensi kurang dari dan lebih dari
d. Gambarlah kurva ogive positif dan ogive negatif.
IV. Tes Formatif 1
( Terlampir)
9|Page
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
STANDAR KOMPETENSI
: 1. Menggunakan aturan statistika, kaidah
pencacahan, dan sifat-sifat peluang dalam
pemecahan masalah.
KOMPETENSI DASAR
: 1.3 Menghitung ukuran pemusatan, ukuran letak,
dan ukuran
penyebaran data serta penafsirannya.
TUJUAN PEMBELAJARAN : 1. Siswa dapat menentukan rataan, median dan
modus.
2. Siswa dapat memberikan tafsiran terhadap
ukuran pemusatan.
3. Siswa dapatmenentukan simpangan rata-rata
dan simpangan baku.
4. Siswa dapat menentukan ragam/varian.
KEGIATAN BELAJAR :
I. Judul sub kegiatan belajar :
 Ukuran pemusatan : Rataan, Modus, Median.
 Ukuran letak : Kuartil dan Desil.
 Ukuran Penyebaran : Jangkauan, Simpangan Kuartil, Variansi dan
Simpangan Baku.
II. Uraian materi dan contoh
A. Memahami Rataan Hitung ( Mean)
1. Rataan Hitung dari data tunggal
n
x
 xi
i 1
n
Contoh 1:
Tentukan rataan hitung dari data:
9 8 4 12 6 9 5 3
n
Jawab:
x
 xi
i 1
n
9  8  4  12  6  9  5  3

8
= 7
10 | P a g e
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
2. Rataan hitung dari data berkelompok
n
x
 x i fi
i 1
n
 fi
i 1
keterangan : xi = titik tengah interval kelas ke i
fi = frekuensi interval kelas ke i
Contoh 2 :
Diketahui distribusi frekuensi :
Nilai
Frekuensi
41 – 50
2
51 – 60
5
61 – 70
14
71 – 80
10
81 – 90
6
91 – 100
2
Tentukan rataan hitung dari table diatas.
Jawab:
Nilai
Frekuensi
Titik tengah
( fi )
( xi )
41 -50
2
45,5
51 -60
5
55,5
61 – 70
14
65,5
71 – 80
10
75,5
81 – 90
6
85,5
91 – 100
2
95,5
39
x
Fi .xi
91
277,5
917
755
513
191
2744,5
2744 ,5
 70,37
39
11 | P a g e
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
B. Menentukan rataan hitung dengan rataan sementara
1. Dengan simpangan rata-rata(Median Deviasi)
Langkah-langkah :
a. pilih rataan sementara (xs) dapat diambil dari salah satu
titik tengah
b. Tentukan simpangan (di) dari tiap-tiap nilai (xi) terhadap
rataan sementara yang dipilih, dengan rumus di = xi - xs
c. Rataan sesungguhnya ( yang dicari ) dapat dihitung
menggunakan rumus :
x  xs 
fi . di
n
 fi
1
Contoh 3 :
Lengkapilah daftar distribusi frekuensi di bawah ini. Kemudian
hitunglah rataan hitungnya dengan mengambil rataan sementara xs =
162
T. badan (cm)
f
xi
di = xi - xs
fi . di
152 – 154
6
153
-9
…
155 – 157
13
…
…
…
158 – 160
12
…
…
…
161 – 163
22
162
0
0
164 – 166
10
…
…
…
167 – 169
11
…
…
…
170 – 172
4
…
…
…
173 – 175
2
…
…
…
∑f = 80
∑=…
x  xs 
fi . di
n
 fi
1
= 162 + …
=…
2. Dengan pengkodean (ui) atau Metode Coding/Step Deviasi
Langkah-langkah :
a. Pilih rataan sementara (xs) dapat diambil dari salah satu
titik tengah
12 | P a g e
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
b. Tentukan kode (ui) dari tiap-tiap nilai (xi) terhadap rataan
sementara yang dipilih, dengan rumus ui 
xi  x s
c
c. Rataan sesungguhnya ( yang dicari ) dapat dihitung
menggunakan rumus :
 n
  f i . ui
x  x s   i 1n

  fi
 1


c



Keterangan : ui = 0, ± 1, ± 2, …
c = panjang interval kelas
Contoh 4 :
Dengan menggunakan table distribusi frekuensi pada contoh di atas,
hitunglah rataan hitung dengan cara pengkodean.
T badan (cm)
f
xi
fi . u i
xi  x s
ui 
152 – 154
155 – 157
158 – 160
161 – 163
164 – 166
167 – 169
170 – 172
173 - 175
 n
  f i . ui
x  x s   i 1n

  fi
 1
6
13
12
22
10
11
4
2
∑f = 80
153
…
…
162
…
…
…
…
c
-3…
…
…
0
…
…
…
…
…
…
0
…
…
…
…
∑=…


c = 162 + …



C. Menentukan Modus, Median, dan Kuartil.
1. Modus
Modus adalah nilai datum yang paling banyak muncul atau nilai
datum yang mempunyai frekuensi terbesar.
Contoh 5 :
Diketahui nilai ulangan matematika 10 siswa sbb:
5 6 6 6 7 8 8 8 9 10
Jawab:
13 | P a g e
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
Modus (Mo) = 6 dan 8
Modus dat kelompok ditentukan dengan rumus
 d1
M o  L  
 d1  d2

.c

Keterangan :
Mo = Modus
L = Tb = tepi bawah kelas modus
d1 = selisih frekuensi kelas modus dengan frekuensi kelas
sebelumnya
d2 = selisih frekuensi kelas modus dengan frekuensi kelas
sesudahnya.
c = panjang interval kelas
Contoh 6 :
Tentukan modus dari data daftar distribusi frekuensi di bawah ini.
Nilai
Frekuensi
50 – 54
6
55 – 59
9
60 – 64
12
65 – 69
15
70 – 74
20
75 – 79
10
80 – 84
8
∑ f = 80
Jawab :
Kelas Modus 70 -74
L = Tb = 69,5
D1 = 20 -15 = 5
d2 = 20 – 10 = 10
c=5
M o  69,5 
5
.5
5  10
= 69,5 + 1,67
= 71,17
2. Median, Kuartil dan Desil
Median adalah nilai tengah setelah data diurutkan.
Quartil ada 3 yaitu : Q1 (kuartil bawah), Q2( Median ) ,
Q3 ( kuartil atas)
Untuk data kelompok dapat diperoleh dengan rumus :
14 | P a g e
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
 in n 
   fi 
4 1 
Qi  Li  
.c


fi




Ket : Li = tepi bawah yang memuat kuartil bawah Qi
(∑f ) = jumlah frekuensi sebelumquartil bawah Qi
fi = frekuensi kelas yang memuat kuarti bawah Qi
i
= 1,2,3
Contoh 7 :
Dari table distribusi frekuensi di bawah ini tentukan Q1, Median atau Q2 dan
Q3.
Nilai
frekuensi
F. kumulatif
15 – 19
3
3
20 - 24
6
9
25 – 29
10
19
30 – 34
15
34
35 – 39
8
42
40 – 44
5
47
45 – 49
3
50
∑ f = 50
Jawab :
Q1 terletak pada data ke ¼ . 50 = 12,5 yaitu pada kelas 25 – 29.
Q1 = 24,5 + (12,5 – 9)/10 . 5
= 24,5 + 1,75 = 26,25
Q2 terdapat pada data ke ½ . 50 = 25 yaitu pada kelas 30 -34.
Q2 = 29,5 + (25 – 19)/15 . 5
= 29,5 + 2
= 31,5
Q3 = 34,5 + (37,5 – 34)/8. 5
= 34,5 +17,5/8
= 34,5 + 2,19
= 36,69
Desil adalah suatu nilai yang membagi data menjadi sepuluh bagian
yang sama banyak ( setelah data diurutkan). Cara menentukan Desil:
a. Untuk data tunggal, dapat ditentukan dengan :
15 | P a g e
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
Di 
i n  1
10
b. Untuk data kelompok, dapat ditentukan dengan :
 in n

   f i 
10 1
.c
Di  Li  


fi




Li = tepi bawah kelas desil ke-i
n= banyak data
fi = frekuensi desil ke-i
f-i = frekuensi sebelum kelas desil ke-i
Contoh 8 :
Tentukan D2 dan D7 dari data :3 4 10 5 7 6 5 6 7 4 7 6
Jawab :
Data diurutkan terlebih dahulu dari yang terkecil sampai yang terbesar :
3 4 4 5 5 6 6 6 7 7 7 10
D2 teletak pada urutan nilai ke 2(12+1)/10 = 2,6
D2 = x2 + 0,6 ( x3-x2 )
= 4 + 0,6 (4 -4)
=4+0=4
D7 terletak pada urutan nilai ke 7(12+1)/10 =9,1
D7 = x9 + 0,1 (x10 – x9)
= 7 + 0,1 (7-7)
=7+0=7
Contoh untuk data kelompok.
Tentukan Desil ke 7 dari data dibawah ini
Nilai
Frekuensi
50 – 54
6
55 – 59
9
60 – 64
12
65 – 69
15
70 – 74
20
75 – 79
10
80 – 84
8
∑ f = 80
16 | P a g e
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
Jawab:
Nilai
50 – 54
55 – 59
60 – 64
65 – 69
70 – 74
75 – 79
80 – 84
Frekuensi
6
9
12
15
20
10
8
F. Komulatif
6
15
27
42
62
72
80
D7 terletak pada data ke 7/10 x 80 = 56.
Kelas D7 pada interval 70 – 74
Fk = 42
F7 = 20
D7 = 69,5 + 56 – 42 . 5
20
= 69,5 + 3,5
= 73
D. Menentukan Simpangan Rata-rata, Ragam, Simpangan Baku.
1. Simpangan Rata-rata ( Deviasi Rata-rata )
a. Untuk data tunggal
SR 
1 n
 xi  x
n i 1
b. Untuk data kelompok
SR 
1 n
 x i  x . fi
n i 1
2. Simpangan Baku (Deviasi Standart)
Simpangan baku adalah akar pangkat dua dari nilai ragam yang
memilikisatuan yang sama dengan data.
Untuk data tunggal :
S
1 n
2
 x i  x 
n i 1
Untuk data kelompok :
17 | P a g e
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
S
1 n
2
 fi x i  x 
n i 1
3. Ragam / Variansi
Ragam adalah kuadrat dari simpangan baku dan dinotasikan dengan
S2
Jika x1, x2,...,xn mempunyai variansi S12 dan y1,y2,...ym mempunyai
variansi S22, maka variansi gabungan tersebut adalah:
S gab2 
nS12  mS 22
nm
III. Latihan
1. Hasil ulangan matematika dari 15 siswa sbb:
9 7 6 8 9 7 6 4 5 6 8 7 7 8 5
Tentukan nilai rata rata dari data diatas.
2. Tabel di bawah ini menunjukkan nilai matematika di suatu kelas.
Nilai
Frekuensi
40 – 46
2
47 – 53
5
54 – 60
7
61 – 67
10
68 – 74
8
75 – 81
6
82 – 88
2
Tentukan :
a) Nilai rata –rata dengan menggunakan rumus data kelompok
b) Nilai rata –rata dengan menggunakan rataan sementara
c) Nilai rata –rata dengan menggunakan coding
d) Q1 dan Q3
e) Median atau Q2
3. Dengan menggunakan data pada table no 2 , tentukan:
a. Simpangan Rata-rata
b. Ragam/Varian
c. Simpangan Baku
4. Jika sejumlah n data mempunyai variansi sampel 20, (n + m) data
mempunyai variansi sampel 30, serta m data mempunyai variansi
sampel 50. Tentukan perbandingan antara m dan n!
IV. Tes Formatif 1
( Terlampir)
18 | P a g e
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
1. Berat badan dari 40 siswa dalam kg tercatat pada tabel di samping. Rataan berat badan
tersebut adalah …
Berat (kg)
fi
a. 46,20
35 – 39
4
b. 47
40 – 44
11
c. 47,25
45 – 49
12
d. 47,50
50 – 54
7
e. 49,50
55 – 59
4
60 – 64
2
2. Perhatikan tabel berikut!
Nilai rata-ratanya adalah …
Nilai
Frekuensi
40 – 49
4
50 – 59
6
60 – 69
10
70 – 79
4
80 – 89
4
90 – 99
2
a. 65,83
b. 65,95
c. 65,98
d. 66,23
e. 66,25
3. Nilai rata-rata dari data pada histogram berikut adalah …
19 | P a g e
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
Frekuensi
8
5
4
2
a. 55,35
b. 55,50
c. 56,36
d. 56,50
Nilai
85,5
74,5
63,5
52,5
41,5
0
30,5
1
e. 57,35
4. Rata-rata dari diagram berikut yang disajikan pada gambar berikut 55,8.
Nilai p = ...
a. 8
c. 10
e. 13
b. 9
d. 12
5. Perhatikan tabel berikut
Modus dari data pada tabel adalah …
Umur Frekuensi
a. 31,75
b. 32,0
20 –
4
c. 32,5
24
d. 33,25
25 –
7
e. 33,5
29
20 | P a g e
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
30 –
11
34
6. Distribusi nilai ulangan matematika di kelas XIIA :
Nilai
Frekuensi
50 – 54
2
55 – 59
4
60 – 64
8
65 – 69
16
70 – 74
10
75 – 79
2
Modus dari data pada tabel adalah …
a. 64,5 + 6  86
d. 64,5 – 6  886
e. 64,5 – 5  886
b. 64,5 + 5  86
c. 64,5 + 5  886
7. Perhatikan diagram berikut!
f
10
6
3
4
13,5 18,5 23,5 28,5 33,5 Nilai
Modus dari data pada histogram di atas adalah …
a. 25,0
c. 26,0
e. 27,0
b. 25,5
d. 26,5
21 | P a g e
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
8. Perhatikan diagram berikut!
Modus dari data pada gambar adalah …
a. 13,05
c. 13,75
e. 14,25
b. 13,50
d. 14,05
9. Perhatikan grafik berikut
40
34
30
Kumulatif
Frekuensi Kumulatif
56
48
50
19
20
8
10
Nilai
0
0
24,5 29,5 34,5
39,5 44,5
49,5i
Nilai median dari data tersebut adalah …
a. 34,5
c. 37,5
e. 43,5
b. 37,0
d. 42,0
10. Perhatikan tabel berikut!
Data
Frekuensi
10 – 19
2
20 – 29
8
30 – 39
12
40 – 49
7
50 – 59
3
Median dari data pada tabel adalah …
10  10
a. 34,5 + 1612
b. 34,5 +
c. 29,5 +
22 | P a g e
16 10  9
12
16 10  9
12
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
d. 29,5 +
e. 38,5 +
1610
12
1610
12
 10
 10
11. Perhatikan tabel distribusi frekuensi berikut:
Nilai median dari data pada tabel tersebut adalah …
Skor
Frekuensi
a. 30,50
b. 32,50
10 – 19
8
c. 32,83
20 – 29
12
d. 34,50
30 – 39
10
e. 38,50
40 – 49
13
50 – 59
7
I. Tes Formatif 3
( Terlampir)
II. Daftar pustaka
Tim penulis MGMP Matematika SMA kota Semarang, Matematika
SMA / MA XI A IPA, ( Semarang : CV. Jabbaar Setia, 2008)
Tim penyusun KREATIF Matematika, Matematika SMA/MA kelas XI
IPA semester gasal, ( Klaten, Viva Pakarindo, 2007)
Simangunsong Wilson, Matematika dasar, ( Jakarta: Erlangga, 2005)
Tim Penyusun, Matematika SMA Program IPA, ( Klaten: CV Sahabat)
23 | P a g e
marcoes
SMA Santa Angela Bandung-XI IPA Semester 2
24 | P a g e
marcoes
Download