PTI 206 Logika Semester I 2007/2008 Ratna Wardani 1 Deduksi z Definisi: s :≡ Socrates (filsuf Yunani kuno); H(x) :≡ “x is human”; M(x) :≡ “x mortal”. z Premis: H(s) Socrates manusia. ∀x( H(x)→M(x)) Semua manusia pasti mati. 2 Deduksi Kesimpulan valid yang dapat diambil: z H(s)→M(s) z z z z z z [Instantiate universal.] If Socrates is human then he is mortal. ¬H(s) ∨ M(s) Socrates is inhuman or mortal. H(s) ∧ (¬H(s) ∨ M(s)) Socrates is human, and also either inhuman or mortal. (H(s) ∧ ¬H(s)) ∨ (H(s) ∧ M(s)) [Apply distributive law.] F ∨ (H(s) ∧ M(s)) [Trivial contradiction.] H(s) ∧ M(s) [Use identity law.] M(s) Socrates is mortal. 3 Contoh Lain z Definisi: H(x) :≡ “x is human”; M(x) :≡ “x is mortal”; G(x) :≡ “x is a god” z Premis: {∀x (H(x) → M(x)) (“Humans are mortal”) and {∀x( G(x) → ¬M(x)) (“Gods are immortal”). z Buktikan ¬∃x (H(x) ∧ G(x)) (“No human is a god.”) 4 Derivasi z∀x (H(x)→M(x)) and (∀x G(x)→¬M(x).) z∀x (¬M(x)→¬H(x)) [Contrapositive.] z∀x ([G(x)→¬M(x)] ∧ [¬M(x)→¬H(x)]) z∀x (G(x)→¬H(x)) [Transitivity of →.] z∀x (¬G(x) ∨ ¬H(x)) [Definition of →.] z∀x (¬(G(x) ∧ H(x))) [DeMorgan’s law.] z¬∃x (G(x) ∧ H(x)) [An equivalence law.] 5 Derivasi z Universal Instantiation (UI) { Aturan bagaimana ∀ dieliminasi dg operasi Instansiasi ∀x( A) S tx ( A) { Ex. 1 ( ) ∀x f ( x ) = x − 2 ⇒ S 3 x 4 ( f (4) = 4 3 ) − 2 = 62 { Ex.2 ∀x (cat(x) ⇒ hastail(x)) cat(Tom) ⇒ hastail(Tom) 6 Derivasi z Derivasi dg Universal Instantiation (UI) zEx. H(x) :≡ “x is human”; M(x) :≡ “x mortal”. S :≡ Socrates (filsuf Yunani kuno); Prove : ∀x (H(x) ⇒ M(x)), H(S) ├ M(S) zDerivation 1. ∀x (H(x) ⇒ M(x)) premise 2. H(S) premise 3. (H(S) ⇒ M(S) SxS 4. M(S) 2,3 MP all humans are mortal Socrates is human If Socrates is human, he is mortal Socrates is mortal 7 Derivasi z Derivasi dg Universal Instantiation (UI) zEx. f(x,y) :≡ “x is the father of y”; s(x,y) :≡ “x is the son of y”. d(x,y) :≡ “x is the daughter of y”. D :≡ Daug; P :≡ Paul Prove : ∀x (f(D,x) ⇒ s(x,D) ∨ d(x,D)), f(D,P), ¬d(P,D) ├ s(P,D) zDerivation 1. ∀x (f(D,x) ⇒ s(x,D) ∨ d(x,D)) premise 2. f(D,P) premise 3. ¬d(P,D) premise 4. f(D,P) ⇒ s(P,D) ∨ d(P,D) SxS 5. s(P,D) ∨ d(P,D) 2,4 MP 6. s(P,D) 3,5 DS 8 Derivasi z Universal Generalization (UG) { Aturan bagaimana ∀ digeneralisasi :Statement yg berlaku lokal menjadi statement yg berlaku global A ∀x( A) { Ex. 2 ∀x (P(x)) ∀x (P(x) ⇒ Q(Tom) ∀x (Q(x)) P(x) :≡ ‘x mhs TI’; Q(x) :≡ ‘x menyukai programming’ 9 Derivasi z Derivasi dg Universal Generalization (UG) zProve : ∀x P(x), ∀x (P(x) ⇒ Q(x)) ├ ∀x Q(x) zDerivation 1. ∀x P(x) premise 2. ∀x (P(x) ⇒ Q(x)) premise 3. P(x) 1, Sxx UI 4. P(x) ⇒ Q(x) 2, Sxx UI 5. Q(x) 3,4 MP 6. ∀x Q(x) 5 UG zProve : ∀x ∀yP(x,y) ├ zProve : ∀x P(x) ├ ∀y ∀xP(x,y) ∀y P(y) 10 Derivasi z Existential Generalization (EG) { Aturan bagaimana ∃ digeneralisasi S tx ( A) ∃x( A) { Ex. 1 C :≡ ‘bibi Cordelia’; P(x) :≡ ‘x berumur lebih dari 100 tahun’; P(C ) ∃xP( x ) { Ex.2 Setiap orang yang menang 1 milyar pasti kaya Mary menang 1 milyar Ada orang yang kaya 11 Derivasi z Derivasi dg Existential Generalization (EG) zEx. W(x) :≡ “x memenangkan 1 milyar”; R(x) :≡ “x orang yang kaya”. M :≡ “Mary”; Prove : ∀x (W(x) ⇒ R(x)), W(M) ├ ∃xR(x) zDerivation 1. ∀x (W(x) ⇒ R(x)) premise 2. (W(M) ⇒ R(M) 1, SxM 3. W(M) premise 4. R(M) 2,3 MP 5. ∃xR(x) 4 EG 12 Derivasi z Existential Instantiation (EI) { Aturan bagaimana ∃ dieliminasi ∃x( A) S tx ( A) { Ex. 1 P(x) :≡ ‘x does somersaults’; ∃xP(x) :≡ ‘somebody makes somersaults’; S tx P(x ) = P(t ) { Ex.2 Seseorang menang 1 milyar Setiap orang yg memiliki 1 milyar pasti kaya Ada seseorang yang kaya 13 Derivasi z Derivasi dg Existential Instantiation (EI) zEx. W(x) :≡ “x memenangkan 1 milyar”; R(x) :≡ “x orang yang kaya”. b :≡ “x” Prove : ∀x (W(x) ⇒ R(x)), ∃x W(x) ├ ∃xR(x) zDerivation 1. ∃x W(x) premise 2. W(b) 1, EI 3. ∀x (W(x) ⇒ R(x)) premise 4. W(b) ⇒ R(b) 3, Sxb 5. R(b) 2,4 MP 6. ∃xR(x) 4, EG 14