TIM OLIMPIADE MATEMATIKA tk. MAHASISWA PEMBINAAN PESERTA IMC 2015 Sesi Mandiri 24-25 Juli 2015 A. Number Theory 1. (i) Show that n + 1 divides 2n . n (ii) Show that for any prime p and integer k such that 1 ≤ k ≤ p − 1, p divides kp . (iii) Show that for all primes p and integers x, y, we have (x+y)p ≡ xp +y p (mod p). 2. Let f be a polynomial with positive integer coefficients. Prove that if n is a positive integer, then f (n) divides f (f (n) + 1) if and only if n = 1. 3. Misalkan f adalah polinomial berkoefisien real sehingga f (x) rasional untuk setiap x rasional. Haruskah f polinomial berkoefisien rasional? 4. Misalkan f polinomial berkoefisien bilangan bulat sehingga terdapat a, b ∈ Z dengan 31 habis membagi f (a) dan 65 habis membagi f (b). Tunjukkan bahwa terdapat c ∈ Z sehingga 2015 habis membagi f (c). 5. Misalkan Sn menyatakan jumlah n bilangan prima pertama. Buktikan bahwa untuk setiap bilangan asli n terdapat bilangan kuadrat sempurna antara Sn dan Sn+1 . 6. Determine the set of all pairs (a, b) of positive integers for which the set of positive integers can be decomposed into 2 sets A and B so that a · A = b · B. 7. (Putnam 1998) Misalkan A1 = 0, A1 = 1. Untuk n ≥ 2, An didefinisikan sebagai bilangan yang didapatkan dengan menuliskan secara berurutan An−1 dengan An−2 . Jadi, A3 = 10, A4 = 101, A5 = 10110, dan seterusnya. Tentukan semua bilangan asli n sehingga 11 | An . 8. Is the set of positive integers n such that n! + 1 divides (2015n)! finite or infinite? B. Calculus and Analysis 9. Let 0 < a < b. Prove that Rb a 2 2 2 (x2 + 1)e−x dx ≥ e−a − e−b . 10. Let p(x) be a polynomial that is nonnegative for all real x. Prove that for some k, there are polynomials f1 (x), f2 (x), . . . , fk (x) such that p(x) = k X j=1 1 (fj (x))2 . 11. Barisan (xn ) didefinisikan dengan x0 = 0, x1 = 1 dan 1 1 xn + 1 − xn−1 xn+1 = n+1 n+1 untuk setiap n ≥ 1. Buktikan bahwa xn konvergen dan tentukan limitnya. 12. Misalkan a bilangan real pada interval terbuka (0, 1), n bilangan bulat positif lebih 2 dari 1 dan fn : R → R dengan fn (x) = x + xn . Buktikan bahwa an + a2 (fn ◦ fn ◦ · · · ◦ fn )(a) < . | {z } (1 − a)n + a n 13. Define the sequence a0 , a1 , . . . inductively by a0 = 1, a1 = 12 , and an+1 Show that the series ∞ X ak+1 k=0 ak na2n , = 1 + (n + 1)an ∀n ≥ 1. converges and determine its value. 14. Let (an ) ⊂ ( 21 , 1). Define the sequence x0 = 0, xn+1 = an+1 + xn , 1 + an+1 xn for n = 0, 1, 2, . . . . Is this sequence convergent? If yes find the limit. 15. Find all functions f : R → R such that for any a < b, f ([a, b]) is an interval of length b − a. 16. Let f : R → R be a continuous function. A point x is called a shadow point if there exists a point y ∈ R with y > x such that f (y) > f (x). Let a < b be real numbers and suppose that: (i) all the points of the open interval I = (a, b) are shadow points, and (ii) a and b are not shadow points. Prove that: a) f (x) ≤ f (b) for all a < x < b, and b) f (a) = f (b). 17. Let all roots of n degree polynomial P (z) with complex coefficients lie on the unit circle. Show that the roots of 2zP 0 (z) − P (z) lie on the same circle. 18. Misalkan polinomial P (x) memiliki koefisien real dengan akar-akar kompleks yang berbeda-beda z1 , z2 , . . . , zn . Tunjukkan bahwa untuk setiap akar kompleks z dari polinomial P 0 (x), terdapat bilangan real a1 , a2 , . . . , an dengan 0 ≤ ai ≤ 1 untuk setiap i = 1, 2, . . . , n sehingga z = a1 z1 + a2 z2 + · · · + an zn . 2 C. Combinatorics 19. For every positive integer n, let p(n) denote the number of ways to express n as a sum of positive integers. For instance, p(4) = 5 because 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1. Also define p(0) = 1. Prove that p(n) − p(n − 1) is the number of ways to express n as a sum of integers each of which is strictly greater than 1. 20. 200 students participated in a math contest. They had 6 problems to solve. Each problem was correctly solved by at least 120 participants. Prove that there must be 2 participants such that every problem was solved by at least one of these two students. 21. For a partition π of {1, 2, 3, 4, 5, 6, 7, 8, 9}, let π(x) be the number of elements in the part containing x. Prove that for any two partitions π and π 0 , there are two distinct numbers x and y in {1, 2, 3, 4, 5, 6, 7, 8, 9} such that π(x) = π(y) and π 0 (x) = π 0 (y). 22. Given a positive integer n, what is the largest k such that the numbers 1, 2, . . . , n can be put into k boxes so that the sum of the numbers in each box is the same? (When n = 8, the example {1, 2, 3, 6}, {4, 8}, {5, 7} shows that the largest k is at least 3.) 23. In a round robin tournament, a cyclic 3−sets occurs occasionally, that is a set {a, b, c} of three teams where a beats b, b beats c, and c beats a. If 23 teams play in a round robin tournament (without ties), what is the largest number of cyclic 3−sets that occur? 24. Call a subset S of {1, 2, . . . , n} mediocre if it has the following property: Whenever a and b are elements of S whose average is an integer, that average is also an element of S. Let A(n) be the number of mediocre subsets of {1, 2, . . . , n}. [For instance, every subset of {1, 2, 3} except {1, 3} is mediocre, so A(3) = 7.] Find all positive integers n such that A(n + 2) − 2A(n + 1) + A(n) = 1. 25. Misalkan n, m adalah bilangan bulat positif dengan n ≥ 2m dan f (n, m) menyatakan banyaknya string biner dengan panjang n yang memuat blok 01 sebanyak m buah. Sebagai contoh, barisan 100 01 01 11 01 1 memuat 3 buah blok 01. Buktikan bahwa n+1 f (n, m) = . 2m + 1 26. An alien race has three genders: male, female and emale. A married triple consists of three persons, one from each gender who all like each other. Any person is allowed to belong to at most one married triple. The feelings are always mutual ( if x likes 3 y then y likes x). The race wants to colonize a planet and sends n males, n females and n emales. Every expedition member likes at least k persons of each of the two other genders. The problem is to create as many married triples so that the colony could grow. a) Prove that if n is even and k ≥ 1/2 then there might be no married triple. b) Prove that if k ≥ 3n/4 then there can be formed n married triple ( i.e. everybody is in a triple). D. Matrix 27. a) Show that ∀n ∈ N0 , ∃A ∈ Rn×n : A3 = A + I. b) Show that det(A) > 0, ∀A fulfilling the above condition. 28. Let n ≥ 2 be an integer. What is the minimal and maximal possible rank of an n × n matrix whose n2 entries are precisely the numbers 1, 2, . . . , n2 ? 29. Let A, B ∈ Cn×n with ρ(AB − BA) = 1. Show that (AB − BA)2 = 0. 30. Let A, B ∈ Rn×n satisfying A2 + B 2 = AB. Show that if AB − BA is invertible, then n is divisible by 3. 31. Let n be a fixed positive integer. Determine the smallest possible rank of an n × n matrix that has zeros along the main diagonal and strictly positive real numbers off the main diagonal. 32. Does there exist a real 3 × 3 matrix A such that tr(A) = 0 and A2 + At = I? (tr(A) denotes the trace of A, At the transpose of A, and I is the identity matrix.) 33. Let A, B ∈ Mn (C) be two n × n matrices such that A2 B + BA2 = 2ABA Prove there exists k ∈ N such that (AB − BA)k = 0n 4