The Forced Oscillator Behaviour, Displacement, Velocity and Frequency Apriadi S. Adam M.Sc Jurusan Fisika Universitas Islam Negeri Sunan Kalijaga Yogyakarta Update 5 November 2013 A.S. Adam (UIN SUKA) The Forced Oscillator Update 5 November 2013 1 / 41 Overview 1 Vector form of Ohm’s Law 2 The Impedance of a Mechanical Circuit 3 Behaviour of a Forced Oscillator 4 Behaviour of Velocity in Magnitude and Phase versus Driving Force 5 Behaviour of Displacement versus Driving Force 6 Power Supplied to Oscillator by the Driving Force 7 Variation of Pav with ω. Absorption Resonance Curve 8 The Q-Value in Terms of the Resonance Absorption Bandwidth 9 The Q-Value as an Amplification Factor A.S. Adam (UIN SUKA) The Forced Oscillator Update 5 November 2013 2 / 41 Vector form of Ohm’s Law The Forced Oscillator in Circuit Hukum Ohm menyatakan hubungan antara V = IR, dimana V adalah tegangan yang melewati hambatan (resistor) R dan I adalah arus yang mengalir. Relasi tersebut membentuk kondisi dimana tegangan dan arus selalu dalam fase. Keduanya akan mengikuti bentuk kurva sin(ωt + φ) atau cos(ωt + φ) dan nilai φ akan selalu sama untuk arus dan tegangan. Namun, keberadaan salah satu atau keduanya dari dua komponen listrik yang lain, induktansi L dan kapasistansi C, akan memasukkan sebuah fase berbeda antara tegangan dan arus, dan Hukum Ohm dalam bentuk vektor dapat dituliskan V = IZe dimana Ze disebut impedansi, menggantikan resistor, dan merupakan vektor jumlahan dari resistansi efektif dari R, L dan C dalam rangkaian. A.S. Adam (UIN SUKA) The Forced Oscillator Update 5 November 2013 4 / 41 Vector form of Ohm’s Law Ketika tegangan bolak balik Va dengan frekuensi ω melewati sebuah resistor, induktor, dan kondensor, maka kesetimbangan tegangan dapat dituliskan sebagai berikut Va = L dI q + RI + dt C (1) dan arus yang melalui rangkaian adalah I = I0 eiωt . Tegangan yang melalui induktansi dI d(I0 eiωt ) VL = L = L = iωLI dt dt A.S. Adam (UIN SUKA) The Forced Oscillator (2) Update 5 November 2013 5 / 41 Vector form of Ohm’s Law Tapi ωL, berdimensi Ohm, maka nilai efektif resistansi digambarkan oleh sebuah induktansi L terhadap sebuah arus berfrekuensi ω, sehingga hasil ωLI berdimensi tegangan (volt). Informasi yang didapatkan adalah bahwa fase tegangan yang melewati induktansi adalah 90◦ didepan arus yang melewati rangkaian. Dengan cara yang sama, tegangan yang melewati kondensor (kapasitor) adalah Z Z q 1 1 iI VC = = Idt = I0 eiωt dt = − (3) C C C ωC 1/ωC diukur dalam Ohm, yaitu nilai efektif resistansi yang digambarkan oleh kondensor terhadapa arus yang berfrekuensi ω. Tegangan I/ωC melewati kondensor didahului oleh −i dan oleh karena itu terlambat dari arus dengan fase sebesar 90◦ . A.S. Adam (UIN SUKA) The Forced Oscillator Update 5 November 2013 6 / 41 Vector form of Ohm’s Law Sedangkan arus dan tegangan yang melewati resistor se-fase atau ωL = 1/ωC. Kuantitas ωL dan 1/ωC disebut reaktansi dan tanda kurung (ωL − 1/ωC) sering dituliskan Xe . Hukum Ohm dapat dituliskan V = IZe = I[R + i(ωL − 1/ωC)] dengan Ze = R + i(ωL − 1/ωC) dan besarnya impedansi 2 #1/2 1 Ze = R2 + ωL − ωC " A.S. Adam (UIN SUKA) The Forced Oscillator (4) Update 5 November 2013 7 / 41 Vector form of Ohm’s Law Vektor Ze boleh dinyatakan dalam besar dan fasenya yaitu Ze = Ze eiφ = Ze (cos φ + i sin φ) sehingga cos φ = R , Ze sin φ = Xe Ze dan Xe R dimana φ adalah beda fase antara total tegangan yang melintasi rangkaian dan arus yang yang melewati rangkaian. Nilai dari φ bisa positif atau negatif, bergantung pada nilai relatif ωL dan 1/ωC: Ketika ωL > 1/ωC, φ positif, tapi frekuensinya bergantung dari komponen-komponennya, yang menunjukkan bahwa φ dapat berubah tanda dan ukuran. Besar Ze juga bergantung frekuensi dan mempunyai nilai minimum Ze = R ketika ωL = 1/ωC. tan φ = A.S. Adam (UIN SUKA) The Forced Oscillator Update 5 November 2013 8 / 41 Vector form of Ohm’s Law Dalam bentuk vektor Hukum Ohm, jika V = V0 eiωt dan Ze = Z0 eiφ , maka kita punya V0 eiωt V0 i(ωt−φ) I= = e (5) Z0 eiωt Z0 dengan amplitudo arus V0 /Z0 yang lebih lambat dari tegangan dengan sudut fase φ. A.S. Adam (UIN SUKA) The Forced Oscillator Update 5 November 2013 9 / 41 The Impedance of a Mechanical Circuit The Impedance of a Mechanical Circuit Impedansi mekanis didefinisikan sebagai gaya yang diperlukan untuk menghasilkan kecepatan dalam osilator, yaitu Zm = F/v atau F = vZm . Impedansi mekanis dituliskan sebagai k Zm = b + i ωm − = b + iXm ω (6) dimana Zm = Zm eiφ dan tan φ = Xm /b. φ merupakan beda fase antara kecepatan dan gaya. Besar Zm = [b2 + (ωm − k/ω)2 ]1/2 . Massa berkelakuan seperti induktansi, menghasilkan positif reaktansi mekanis sedangkan konstanta pegas berkelakuan seperti kapasistansi. A.S. Adam (UIN SUKA) The Forced Oscillator Update 5 November 2013 11 / 41 Behaviour of a Forced Oscillator Behaviour of a Forced Oscillator Tinjau osilator mekanis (sistem pegas massa) bermassa m, konstanta pegas k dan koefisien redaman b yang digerakkan oleh gaya F0 cos ωt, dengan F0 amplitudo gaya. Ini analog dengan rangkaian RLC ketika diterapkan tagangan bolak-balik V0 dalam rangkaian. Persamaan gerak mekanis yaitu kesetimbangan gaya, sebagai berikut mẍ + bẋ + kx = F0 cos ωt (7) dan persamaan tegangan dalam kasus listrik q Lq̈ + Rq̇ + = V0 cos ωt C A.S. Adam (UIN SUKA) The Forced Oscillator (8) Update 5 November 2013 13 / 41 Behaviour of a Forced Oscillator Solusinya terdiri atas dua bentuk yaitu (1) Transient, bentuk yang lenyap seiring bertambahnya waktu, seperti yang didiskusikan pada bab sebelumnya, persamaan mẍ + bẋ + kx = 0 memiliki solusi 2 2 x = Ce−bt/2m ei(k/m−b /4m )t (9) (2) Steady state, menggambarkan kelakuan dari osilator setelah bentuk transient lenyap. Kedua bentuk tersebut berkontribusi terhadap solusi awal, tapi untuk sekarang kita fokuskan pada steady state. Untuk memulainya, kita tuliskan kembali persamaan gaya dalam bentuk vektor dan bentuk cos ωt digantikan dengan eωt , mẍ + bẋ + kx = F0 eωt (10) Solusi vektor x akan memberikan besar dan fase berkenaan dengan gaya penggerak F0 eωt . Awalnya kita coba solusi x = Aeωt , dimana A bisa kompleks, sehingga aoluai tersebut bisa jadi memiliki komponen-komponen didalam dan diluar fase karena gaya penggerak. Kecepatan dan percepatannya adalah ẋ =Theiωx , Oscillator ẍ = −ω 2 x Forced A.S. Adam (UIN SUKA) Update 5 November 2013 (11) 14 / 41 Behaviour of a Forced Oscillator Persamaan (10) menjadi −Aω 2 m + iωAb + Ak eωt = F0 eωt (12) yang mana benar untuk semua t ketika A= F0 iωb + (k − ω 2 m) atau A= −iF0 ωZm (13) Sementara −iF0 ei(ωt−φ) x= ωZm (14) dimana Zm = [b2 + (ωm − k/ω)2 ]1/2 . A.S. Adam (UIN SUKA) The Forced Oscillator Update 5 November 2013 15 / 41 Behaviour of a Forced Oscillator Bentuk vektor perilaku steady state ini, memberikan tiga informasi dan secara lengkap mendefinisikan besar posisi x dan fasenya, yang sesuai dengan gaya penggerak setelah bentuk transient lenyap. Informasi itu adalah 1 2 3 Bahwa perbedaan fase φ ada, antara x dan gaya, oleh karena bagian reaktif (ωm − k/ω) impedansi mekanis. Bahwa sebuah tambahan perbedaan yang diperkenalkan oleh faktor −i dan bahkan jika φ nol, posisi x akan ketinggalan dari F0 cos ωt dengan sudut 90◦ . Bahwa maksimum amplitudo dari posisi x adalah F0 /ωZm . Bisa dicek bahwa secara dimensi, ini benar, karena kecepatan x/t mempunyai dimensi F0 /Zm . Digunakan F0 eiωt untuk menyatakan bagian riil F0 cos ωt sehingga bisa diperoleh nilai sebenarnya dari x. A.S. Adam (UIN SUKA) iF0 ei(ωt−φ) x=− ωZm iF0 [cos(ωt − φ) + i sin(ωt − φ)] =− ωZm F0 iF0 (15) =− cos(ωt − φ) + sin(ωt − φ) 16 / 41 Update 5 November 2013 ωZm The Forced Oscillator ωZm {z } | {z } | F0 cos ωt F0 sin ωt Behaviour of a Forced Oscillator Kedua solusi ini memenuhi syarat bahwa beda fase total antara posisi dan gaya adalah φ ditambah suku −π/2yang diperkenalkan oleh faktor −i. Ketika φ = 0, posisi x = (F0 /ωZm ) sin ωt tertinggal dari gaya F0 cos ωt dengan sudut persis 90◦ . Kecepatan ayunan paksa dalam steady state dapat dituliskan v = ẋ = F0 i(ωt−φ) e Zm (16) Dari sini kita dapat mengetahui dua hal yaitu 1 2 Karena didepan tidak mengandung i, maka kecepatan dan gaya berbeda fasenya hanya oleh φ, dan ketika φ = 0 kecepatan dan gaya sefase. Amplitudo kecepatan adalah F0 /Zm , yang mana kita harapakan dari definisi diawal tentang impedansi mekanis yaitu Zm = F/v. Bagian riil dari vektor kecepatan adalah v= A.S. Adam (UIN SUKA) F0 cos(ωt − φ) Zm The Forced Oscillator Update 5 November 2013 17 / 41 Behaviour of a Forced Oscillator Jadi kecepatan selalu eksak 90◦ didepan dari posisi dalam fase dan berbeda dari gaya hanya oleh sudut fase φ, dimana tan φ = ωm − k/ω Xm = b b sehingga gaya F0 cos ωt memberikan posisi dan kecepatan x= F0 sin (ωt − φ) , ωZm A.S. Adam (UIN SUKA) v= F0 cos(ωt − φ) Zm The Forced Oscillator Update 5 November 2013 18 / 41 Behaviour of Velocity in Magnitude and Phase versus Driving Force Velocity in Magnitude and Phase versus Driving Force Amplitudo kecepatan yaitu F0 F0 = 2 Zm [b + (ωm − k/ω)2 ]1/2 sehingga besarnya kecepatan akan bervariasi dengan frekeunsinya ω karena ωZm juga bergantung pada frekuensi. A.S. Adam (UIN SUKA) The Forced Oscillator Update 5 November 2013 20 / 41 Behaviour of Velocity in Magnitude and Phase versus Driving Force Pada frekuensi rendah, suku −k/ω adalah suku paling besar dalam Zm dan impeddansi dikatakan stiffness controlled. Pada frekuensi yang tinggi, ωm merupakan suku yang dominan dan impedansi dikatakan mass controlled. Pada frekuensi ω0 dimana ω0 m = kω0 , impednasi memiliki nilai minimumnya Zm = b dan merupakan besaran riil dengan reaktansi nol. Kecepatan F0 /Zm kemudian meiliki nilai maksimum v = F0 /b, dan ω0 dikatakan sebagai frekuensi kecepatan resonansi. Catatan bahwa tan φ = 0 pada ω0 , kecepatan dan gaya sefase. Ketika ωm > k/ω, φ positif, kecepatan v akan tertinggal dari gaya karena −φ tampak dalam bentuk kosinus. Ketika gaya penggerak berfrekuensi ω sangat tinggi dan ω → ∞, maka φ → 90◦ dan kecepatan tertinggal dari gaya karena jumlah. Ketika ωm < k/ω, φ negatif, kecepatan v didepan dari gaya dalam fasenya, dan pada frekuensi penggerak yang rendah seperti ω → ∞ maka suku k/ω → ∞ dan φ → -90◦ . Pada frekuensi ω0 , ω0 m = kω0 dan φ = 0, sehingga kecepatan dan gaya sefase. A.S. Adam (UIN SUKA) The Forced Oscillator Update 5 November 2013 21 / 41 Update 5 November 2013 22 / 41 Behaviour of Velocity in Magnitude and Phase versus Driving Force A.S. Adam (UIN SUKA) The Forced Oscillator Behaviour of Displacement versus Driving Force Behaviour of Displacement versus Driving Force Frequency ω Fase posisi F0 sin (ωt − φ) ωZm pada waktu kapanpun, eksak 90◦ dibelakang dari kecepatan. Sementara grafik φ versus ω tetap sama, beda fase total antara posisi dan gaya, yaitu menyangkut perlambatan tambahan 90◦ yang diperkenalkan oleh operator −i. Pada frekuensi rendah, dimana φ = −π/2 radian dan kecepatan didepan dari gaya, posisi dan gaya sefase, seperti apa yang diharapkan. Pada frekuensi tinggi, posisi tertinggal dari gaya oleh π radian dan secara eksak keluar dari fase, sehingga gambar kurva menunjukkan sudut fase antara posisi dan gaya ekuivalen dengan kurva φ versus ω, digeser sebesar π/2 radian. Amplitudo dari posisi x = F0 /ωZm , dan pada frekuensi rendah Zm = [b2 + (ωm − k/ω)]1/2 , sehingga x ≈ F0 /k. Pada frekuensi tinggi A.S. Adam (UIN SUKA) The Forced Update 5 November 2013 2 m, Oscillator Zm → ωm, sehingga x ≈ F0 /ω yang mana cenderung menuju nol 24 / 41 seperti ω yang menjadi sangat besar. Pada frekuensi tinggi, kemudian, Behaviour of Displacement versus Driving Force amplitudo posisi hampir nol oleh karena massa terkontrol atau efek dari inersial. x= Kecepatan resonnasi terjadi ketika ω02 = k/m, dimana Zm dari kecepatan amplitudo minimum, tetapi posisi resonansi akan terjadi, saat x = (F0 /ωZm ) sin(ωt − φ), ketika pembagi ωZm minimum. Ini terjadi ketika d d (ωZm ) = ω[b2 + (ωm − k/ω)]1/2 = 0 dω dω 2ω b2 + 2m(ω 2 m − k) = 0 Solusinya ω=0 A.S. Adam (UIN SUKA) atau 2 ω = The Forced Oscillator ω02 b2 − 2m2 Update 5 November 2013 25 / 41 Behaviour of Displacement versus Driving Force Posisi resonansi terjadi ketika frekuensi sedikit lebih kecil dari ω0 , frekuensi kecepatan resonansi. Untuk b yang kecil atau massa m besar, terdapat dua resonansi, terjadi ketika frekuensinya ω0 . Frekuensi posisi resonansi diberikan oleh ωr = k b2 − m 2m2 1/2 dan posisi maksimum adalah xmax = F0 ωr Zm Nilai ωr Zm (dengan mudah dapat ditunjukkan) sama dengan ω 0 b dimana k b2 b2 2 ω = − = ω0 − m 4m2 4m2 02 A.S. Adam (UIN SUKA) The Forced Oscillator Update 5 November 2013 26 / 41 Update 5 November 2013 27 / 41 Behaviour of Displacement versus Driving Force Sehingga nilai dari posisi resonansi x adalah xmax = F0 ω0b dimana ω0 = A.S. Adam (UIN SUKA) b2 2 ω0 − 4m2 The Forced Oscillator 1/2 Behaviour of Displacement versus Driving Force A.S. Adam (UIN SUKA) The Forced Oscillator Update 5 November 2013 28 / 41 Power Supplied to Oscillator by the Driving Force Power Supplied to Oscillator by the Driving Force Berkaitan dengan sistem osilasi untuk kasus steady state dengan, gaya penggerak harus digantikan dengan energi yang hilang dalam setiap kali vibrasi karena adanya faktor redaman. Dalam kasus steady state, amplitudo dan fase osilator penggerak teratur sesuai dengan amplitudo dan fase mereka, sehingga rerata daya yang disediakan oleh gaya penggerak sama dengan yang terdisipasi oleh gaya hambat/gesek. Daya yang tersedia adalah hasil kali gaya penggerak dengan kecepatan pada saat/waktu itu, yakni F02 P= cos ωt cos(ωt − φ) Zm (17) Rerata daya Pav = A.S. Adam (UIN SUKA) Usaha total per getaran periode osilasi The Forced Oscillator (18) Update 5 November 2013 30 / 41 Power Supplied to Oscillator by the Driving Force Bukti: T Z Pav = 0 Pdt T Z T F02 = Zm T cos ωt cos(ωt − φ) cos ωt cos(ωt − φ) 0 F02 cos φ = 2Zm (19) Daya yang disediakan oleh gaya penggerak tidak tersimpan dalam sistem, akan tetapi terdisipasi sebagai usaha dalam sistem yang bergerak, yaitu gaya hambat/gesek bẋ. Laju kerja yang dilakukan oleh gaya hambat adalah F02 bẋẋ = bẋ = b 2 cos2 (ωt − φ) Zm 2 A.S. Adam (UIN SUKA) The Forced Oscillator Update 5 November 2013 31 / 41 Power Supplied to Oscillator by the Driving Force Rerata nilai ini dalam jangka waktu satu periode osilasi F02 1 bF02 = cos φ 2 Zm2 2Zm untuk b = cos φ Zm Ini membuktikan bahwa pernyataan diawal bahwa daya yang tersedia sama dengan daya yang terdisipasi! Dalam rangkaian listrik, daya diberikan oleh VI cos φ, dimana V dan I adalah nilai akar perata kuadrat instan dari tegangan dan cos φ sebagai faktor daya. V02 V2 VI cos φ = cos φ = cos φ Ze 2Ze karena A.S. Adam (UIN SUKA) V0 V=√ 2 The Forced Oscillator Update 5 November 2013 32 / 41 Variation of Pav with ω. Absorption Resonance Curve Variation of Pav with ω Rerata daya yang tersedia Pav maksimum ketika cos φ = 1, yaitu, ketika φ = 0 dan ωm − k/ω = 0 atau ω02 = k/m. Gaya dan kecepatan sefase dan Zm memiliki nilai minimumnya b, maka Pav (max) = F02 /2b. A.S. Adam (UIN SUKA) The Forced Oscillator Update 5 November 2013 34 / 41 Variation of Pav with ω. Absorption Resonance Curve Seperti halnya kurva posisi versus ω, kurva ini juga mengukur respon dari osilator; ketajaman dari puncaknya pada resonansi adalah juga ditentukan oleh nilai dari konstanta redaman b, yang mana merupakan satu-satunya bentuk yang tetap dalam Zm pada frekuensi resonansi ω0 . Puncak maksimum terjadi pada frekuensi kecepatan resonansi ketika daya yang diserap oleh sistem dari gaya penggerak maksimum; yang diketahui sebagai kurva penyerapan osilator. A.S. Adam (UIN SUKA) The Forced Oscillator Update 5 November 2013 35 / 41 The Q-Value in Terms of the Resonance Absorption Bandwidth The Q-Value in Terms of the Resonance Absorption Bandwidth Ketajaman resonansi didefinisikan dengan rasio Q= ω0 ω0 = ω2 − ω1 ∆ω dimana ω1 dan ω2 adalah frekuensi yang dipilih ketika daya yang tersedia 1 Pav = Pav (maksimum) 2 Perbedaan frekuensi ∆ω = ω2 − ω1 disebut sebagai lebar-pita (bandwidth) resonansi. Sekarang 1 1 Pav = bF02 /2Zm2 = Pav (maksimum) = F02 /2b 2 2 ketika Zm2 = 2b2 , yakni ketika b2 + Xm2 = 2b2 The atau Xm = ωm − k/ωUpdate = ±b Forced Oscillator 5 November 2013 A.S. Adam (UIN SUKA) 37 / 41 The Q-Value in Terms of the Resonance Absorption Bandwidth Jika ω2 > ω1 , maka ω2 m − k/ω2 = +b ω1 m − k/ω1 = −b Dengan mengeliminasi k antara kedua persamaan diatas memberikan ω2 − ω1 = b/m sehingga Q = ω0 m/b dan ω1 = ω0 − b/2m danω2 = ω0 + b/2m. Faktor kualitas sebuah rangkaian listrik diberikan oleh Q= ω0 L R dimana ω02 = (LC)−1 Untuk nilai Q yang tinggi, dimana konstanta redaman b kecil, frekuensi ω 0 dalam definisi Q = ω 0 m/b bergerak sangat dekat terhadap frekuensi ω0 dan dua definisi Q menjadi ekuivalen. A.S. Adam (UIN SUKA) The Forced Oscillator Update 5 November 2013 38 / 41 The Q-Value as an Amplification Factor The Q-Value as an Amplification Factor Kembali pada posisi pada resonansi Amaks F0 = 0 ωb k b2 dimana ω = − m 4m2 02 Pada frekuensi rendah (ω → 0) posisi memiliki nilai A0 = F0 /k, sehingga Amaks 2 Q2 = A0 [1 − 1/4Q2 ] Untuk Q yang besar Amaks ≈Q A0 A.S. Adam (UIN SUKA) The Forced Oscillator Update 5 November 2013 40 / 41 Update 5 November 2013 41 / 41 The Q-Value as an Amplification Factor A.S. Adam (UIN SUKA) The Forced Oscillator