KINCIR ANGIN SUMBU HORISONTAL BERSUDU BANYAK

advertisement
KINCIR ANGIN SUMBU HORISONTAL
BERSUDU BANYAK
Rancang Bangun Mesin
Untuk memenuhi sebagian persyaratan
Mencapai derajat Sarjana S-1
Program Studi Teknik Mesin
Jurusan Teknik Mesin
Diajukan oleh:
Markus Nanda Andika
( 055214001 )
Y. Teguh Triharyanto
( 055214017 )
Ricky Octavianus Prasetya ( 055214030 )
Kepada
JURUSAN TEKNIK MESIN
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS SANATA DHARMA
YOGYAKARTA
2007
KATA PENGANTAR
Puji syukur kami panjatkan kepada Tuhan Yesus Kristus atas kasih dan
anugerah-Nya, sehingga penulis dapat menyelesaikan tugas Rancang Bangun Mesin
dengan judul “KINCIR ANGIN SUMBU HORISONTAL BERSUDU BANYAK”.
Rancang Bangun Mesin merupakan salah satu mata kuliah prasyarat untuk
mengambil mata kuliah TA yang wajib ditempuh oleh setiap Mahasiswa Jurusan
Teknik Mesin, Fakultas Sains Dan Teknologi, Universitas Sanata Dharma. Rancang
Bangun Mesin ini dapat dikatakan sebagai pelatihan dalam perancangan dan
pembuatan, serta persiapan sebelum mengerjakan tugas pada masa akhir perkuliahan,
yaitu Tugas Akhir
Dalam Rancang Bangun Mesin ini membahas mengenai perancangan dan
pembuatan kincir angin poros horisontal bersudu banyak dan mencari efisiensi
sudunya.
Dalam kesempatan ini penulis mengucapkan terima kasih kepada:
1. Romo Ir. Greg. Heliarko, S.J., S.S., B.S.T., M.A., M.S.C. selaku Dekan Fakultas
Teknik Universitas Sanata Dharma.
2. Bapak Budi Sugiharto, S.T., M.T., selaku ketua Program Studi Teknik Mesin
3. Bapak Ir. Rines, M.T., selaku dosen pembimbing Rancang Bangun Mesin
4. Seluruh staf pengajar Program Studi Teknik Mesin Universitas Sanata Dharma
yang telah mendidik dan memberikan ilmu pengetahuan kepada kami, sehingga
sangat berguna dalam penyelesaian Rancang Bangun Mesin ini.
5. Bapak Purwanto, atas kerjasamanya dalam pembuatan kincir angin ini.
6. Bapak Bakir, yang selalu setia membukakan pintu Lab. saat dibutuhkan.
7. Kedua orang tua , kakak / adik penulis, yang telah banyak memberikan dorongan
dan dukungan, baik secara material maupun spiritual.
8. Rekan-rekan mahasiswa Teknik Mesin, angkatan 2005 khususnya, yang telah
memberikan masukan-masukan dan dorongan dalam penyelesaian Rancang
Bangun Mesin serta laporan ini.
9. Serta semua pihak yang tidak mungkin disebutkan satu per satu yang telah ikut
membantu dalam menyelesaikan Rancang Bangun Mesin serta laporan ini.
Penulis menyadari bahwa masih banyak kekurangan-kekurangan yang perlu
diperbaiki dalam Rancang Bangun Mesin serta laporan ini, untuk itu penulis
mengharapkan masukan dan kritik, serta saran dari berbagai pihak untuk
menyempurnakannya. Semoga Rancang Bangun Mesin serta laporan ini dapat
bermanfaat, baik bagi penulis maupun pembaca.
Yogyakarta, 20 Januari 2008
Penulis
DAFTAR ISI
HALAMAN JUDUL................................................................................................... i
HALAMAN PENGESAHAN.................................................................................. ii
HALAMAN PERNYATAAN....................................................................................v
KATA PENGANTAR.............................................................................................. vi
DAFTAR ISI........................................................................................................... viii
DAFTAR GAMBAR.................................................................................................. x
DAFTAR TABEL..................................................................................................... xi
BAB I. PENDAHULUAN ....................................................................................... 1
1.1. Latar Belakang Masalah ...................................................................... 1
1.2. Tujuan dan Manfaat ............................................................................. 2
1.3. Dasar Teori .......................................................................................... 2
1.4. Deskripsi Alat ..................................................................................... 15
1.5. Batasan Masalah ................................................................................. 17
BAB II. PERANCANGAN KINCIR .................................................................... 19
2.1. Data-Data dari Pembangkit Listrik dengan Kincir Sudu Datar ......... 19
2.2. Perancangan Sudu ………...………….…………………………….. 19
2.3. Perhitungan pada Poros ...................................................................... 20
BAB III. PENGUJIAN DAN ANALISIS DATA .............................................. 30
3.1. Metode Pegumpulan Data ............................................................... 30
3.2. Variabel Pengujian .......................................................................... 30
3.3. Analisa Data .................................................................................... 41
3.3.1. Menghitung daya angin ( Pin ) ................................................ 41
3.3.2. Menghitung koefisien daya ( Cp ) ......................................... 42
BAB IV. PEMELIHARAAN KINCIR ................................................................ 47
4.1. Perawatan periodik........................................................................... 47
4.2. Pelumasan ....................................................................................... 48
BAB V. PENUTUP ................................................................................................ 50
5.1. Kesimpulan ........................................................................................ 50
5.2. Penutup ............................................................................................. 52
.
DAFTAR PUSTAKA ............................................................................................. 54
LAMPIRAN............................................................................................................. 55
DAFTAR GAMBAR
Gambar 1.1. Kerapatan sudu....................................................................................... 4
Gambar1.2. Turbin Horisontal secara umum.............................................................. 6
Gambar 1.3. Aliran angin pada sudu........................................................................... 9
Gambar 1.4. Grafik hubungan koefisien daya dan tip speed ratio............................. 9
Gambar 1.5. Jenis-jenis model sudu......................................................................... 11
Gambar 1.6. Penamaan bagian sudu......................................................................... 10
Gambar 1.7. Pergerakan sudu akibat hembusan angin ........................................... 12
Gambar 1.8. Kurva daya tehadap kecepatan angin................................................... 14
Gambar 1.9. Kurva hubungan koefisien daya dengan tip speed ratio………….….. 14
Gambar 1.10. Skema alat.......................................................................................... 15
Gambar 2.1. Skema penampang sudu....................................................................... 19
Gambar 3.1. Grafik hubungan antara sudut sudu dengan tegangan ……............... 35
Gambar 3.2. Grafik hubungan antara sudut sudu dengan arus …………................ 35
Gambar 3.3. Grafik hubungan antara sudut sudu dengan daya ……...…............... 36
Gambar 3.4. Grafik hubungan antara sudut sudu dengan tegangan ……............... 40
Gambar 3.5. Grafik hubungan antara sudut sudu dengan arus …………............... 40
Gambar 3.6. Grafik hubungan antara sudut sudu dengan daya ………….............. 41
DAFTAR TABEL
Tabel 2.1. Baja karbon untuk kontruksi mesin …………………………………… 21
Tabel 3.1. Hasil pengujian dengan sudut 150 ……………………………………... 31
Tabel 3.2. Hasil pengujian dengan sudut 300 ……………………………………... 32
Tabel 3.3. Hasil pengujian dengan sudut 450 ……………………………………... 32
Tabel 3.4. Hasil pengujian dengan sudut 600 ……………………………………... 33
Tabel 3.5. Hasil pengujian dengan sudut 750 ……………………………………... 33
Tabel 3.6. Hasil pengujian dengan sudut 850 ……………………………………... 34
Tabel 3.7. Hasil rata pengujian dengan variasi sudut …………….……..……….. 34
Tabel 3.8. Hasil pengujian dengan sudut 150 ……………………………………... 36
Tabel 3.9. Hasil pengujian dengan sudut 300 ……………………………………... 37
Tabel 3.10. Hasil pengujian dengan sudut 450 …………………..………………... 37
Tabel 3.11. Hasil pengujian dengan sudut 600 ………………………..…………... 38
Tabel 3.12. Hasil pengujian dengan sudut 750 ………………………..…………... 38
Tabel 3.13. Hasil pengujian dengan sudut 850 …………………………..………... 39
Tabel 3.14. Hasil rata pengujian dengan variasi sudut …………………….……... 39
Tabel 3.15. Hasil Cp pada pengujian kincir dengan dengan 8 sudu ……..………. 46
Tabel 3.16. Hasil Cp pada pengujian kincir dengan dengan 4 sudu ……..………. 46
BAB I
PENDAHULUAN
1.1. Latar Belakang Masalah
Dewasa ini, penggunaan energi terutama energi listrik diperlukan sekali oleh
masyarakat yang sudah maju maupun yang sedang berkembang dalam jumlah
yang besar, namun diusahakan dengan biaya serendah mungkin. Banyak sekali
energi alternatif dari alam terutama di Indonesia yang dapat dimanfaatkan untuk
menghasilkan listrik. Salah satu contoh alternatif energi yang dapat dipilih
adalah angin, karena angin terdapat dimana-mana sehingga mudah didapat serta
tidak membutuhkan biaya besar. Karena energi listrik tidak dihasilkan langsung
oleh alam maka untuk memanfaatkan angin ini diperlukan sebuah alat yang yang
bekerja dan menghasilkan energi listrik. Alat yang dapat digunakan adalah kincir
angin. Kincir angin ini akan menangkap energi angin dan menggerakkan
generator yang nantinya akan menghasilkan energi listik. Kincir angin yang
penulis gunakan adalah kincir angin bersudu banyak dengan poros horisontal.
Kincir ini dapat ditingkatkan efisiensinya untuk mendapat koefisien daya yang
maksimal. Salah satunya dengan pengunaan sudu berjumlah banyak. Sudu yang
dipakai adalah delapan sudu.
Koefisien daya yang maksimal ini akan meningkatkan jumlah watt (daya)
yang dihasilkan sehingga untuk mendapatkan jumlah watt tertentu cukup dengan
menggunakan jumlah kincir angin yang lebih sedikit.
1.2. Tujuan dan Manfaat
Tujuan :
a. Mengetahui koefisien daya kincir.
b. Mengetahui perbandingan daya yang dihasilkan oleh kincir dengan
variasi jumlah sudu dan sudut.
c. Menggunakan kincir angin poros horisontal untuk pembangkit listrik
d. Untuk meningkatkan dan mengembangkan kreatifitas mahasiswa
dalam bidang ilmu pengetahuan dan teknologi (IPTEK)
Manfaat :
a. Kincir angin ini dapat digunakan sebagai salah satu aplikasi
pemanfaatan energi terbarukan.
b. Dalam pembuatan skala besar mampu menghasilkan energi listrik
yang besar, dan dapat diterapkan dalam masyarakat.
1.3. Dasar Teori
1.3.1. Energi - energi yang terdapat dalam angin
Secara sederhana, energi potensial yang terdapat pada angin dapat
memutarkan sudu – sudu yang terdapat pada kincir, dimana sudu – sudu
ini terhubung dengan poros dan memutarkan poros yang telah terhubung
dengan generator dan menimbulkan arus listrik.
Kincir dengan ukuran besar dapat digabungkan bersama – sama
sebagai pembangkit energi tenaga angin, dimana akan memberikan daya
ke dalam sistem transmisi kelistrikan.
1.3.2. Hubungan daya (power) dan energi (energy)
Energi adalah ukuran kesanggupan suatu benda untuk melakukan usaha.
Force = massa x percepatan
F
= m x a
, (Pounds, Newtons)
Energi = kerja (W) = gaya (F) x jarak (d), (kilowatt hours, Joules)
(1.1)
(1.2)
Daya adalah usaha yang dilakukan per satuan waktu.
Power = P = W / time (t), (kilowatts, Watts, Horsepower)
(1.3)
Power = Torque (Q) x Rotational Speed (Ω)
(1.4)
1.3.3. Energi kinetik angin
Energi kinetik adalah energi yang dimiliki suatu benda akibat
gerakkannya.
Energi kinetik = kerja (W) = ½mV2
Dimana :
(1.5)
M = massa dari benda yang bergerak
V = kecepatan dari benda yang bergerak
Angin yang menggerakkan sudu merupakan udara yang bergerak dan
mempunyai massa, sehingga dapat dituliskan sebagai berikut :
= berat jenis (ρ) x volume (Area x distance)
=ρxAxd
= (kg/m3) (m2) (m) = kg
1.3.4. Daya angin (power)
Daya angin adalah daya (watt) yang dibangkitkan oleh angin tiap luasan,
sehingga daya angin dapat digolongkan sebagai energi potensial.
Pada dasarnya daya angin merupakan angin yang bergerak per satuan
waktu sehingga dapat dirumuskan sebagai berikut :
Daya = kerja / waktu
= energi kinetik / waktu
= ½ . m . V2 / t
= ½.(ρ.A.d.).V2/t
= ½ . ρ . A . V2 . (d/t) Î d/t = V
= ½ . ρ . A . V3
(1.6)
ΩR
a
DD
A
Gambar 1.1. Kerapatan sudu
Beberapa hal yang harus diingat :
a. Daerah sapuan (A) = π . R2 (m2) daerah dari sapuan berbentuk
lingkaran oleh rotor.
b. ρ = kerapatan udara = 1,2 - kg/m3
Contoh perhitungan daya yang terdapat di angin :
Daya angin
= ½ . ρ . A .V3
Kecepatan angin = V = 5 meters (m) per second (s), m/s
Kerapatan udara = ρ = 1,0 kg/m3
Jari – jari sudu = R = 0,2 m = daerah sapuan = A = 0,125 m2
Daya angin
= ½. ρ . A .V3
= (0,5) . (1,0) . (0,125) . (5)3
= 7,85 Watt
Satuan energi
= (kg/m3)x (m2)x (m3/s3)
= (kg-m)/s2 x m/s
= N-m/s = Watt
1.3.5. Dasar turbin angin
Dasar dari alat untuk merubah energi angin adalah turbin angin.
Meskipun masih terdapat susunan dan perencanaan yang beragam,
biasanya turbin digolongkan ke dalam dua macam tipe (horisontal dan
vertikal) dan yang paling banyak digunakan adalah Turbin dengan sumbu
x (axis) horisontal. Turbin jenis ini mempunyai rotasi horisontal terhadap
tanah (secara sederhana sejajar dengan arah tiupan angin).
Gambar 1.2. Turbin horisontal secara umum
Prinsip dasar kerja dari turbin angin adalah mengubah energi mekanis
dari angin menjadi energi putar pada kincir, selanjutnya putaran kincir
digunakan untuk memutar generator, yang akhirnya akan menghasilkan
listrik.
Sebenarnya prosesnya tidak mudah, karena terdapat berbagai macam subsistem yang dapat meningkatkan safety dan efisiensi dari turbin angin,
yaitu :
1. Gearbox
Alat ini berfungsi untuk mengubah putaran rendah pada kincir menjadi
putaran tinggi. Biasanya Gearbox yang digunakan sekitar 1:60.
2. Generator
Ini adalah salah satu komponen terpenting dalam pembuatan sistem turbin
angin. Generator ini dapat mengubah energi gerak menjadi energi listrik.
Prinsip kerjanya dapat dipelajari dengan menggunakan teori medan
elektromagnetik. Singkatnya, (mengacu pada salah satu cara kerja
generator) poros pada generator dipasang dengan material ferromagnetik
permanen. Setelah itu disekeliling poros terdapat stator yang bentuk
fisisnya adalah kumparan-kumparan kawat yang membentuk loop. Ketika
poros generator mulai berputar maka akan terjadi perubahan fluks pada
stator yang akhirnya karena terjadi perubahan fluks ini akan dihasilkan
tegangan dan arus listrik tertentu. Tegangan dan arus listrik yang
dihasilkan ini disalurkan melalui kabel jaringan listrik untuk akhirnya
digunakan oleh masyarakat. Tegangan dan arus listrik yang dihasilkan
oleh generator ini berupa AC(alternating current) yang memiliki bentuk
gelombang kurang lebih sinusoidal.
3. Rotor blade
Rotor blade atau sudu adalah bagian rotor dari turbin angin. Rotor ini
menerima energi kinetik dari angin dan dirubah kedalam energi gerak
putar.
4. Tower
Tower atau tiang penyangga adalah bagian struktur dari turbin angin
horizontal yang memiliki fungsi sebagai struktur utama penopang dari
komponen sistem terangkai sudu, poros, dan generator.
1.3.6. Daya turbin angin
Daya turbin angin adalah daya yang dibangkitkan oleh rotor turbin
angin akibat mendapatkan daya dari hembusan angin. Daya turbin angin
tidak sama dengan daya angin dikarenakan daya turbin angin terpengaruh
oleh koefisien daya.
Koefisien daya adalah prosentase daya yang terdapat pada angin yang
dirubah ke dalam bentuk energi mekanik
P = Cp . ½ . ρ . A . V3
(1.7)
Pemeriksaaan sesungguhnya dari contoh perhitungan daya yang
terdapat pada angin adalah daya maksimal dari turbin dengan 0,2 m dapat
dihasilkan dari angin berkecepatan 5 m/s yaitu :
7.85 Watt x 0.5926 (Betz Limit) = 4.65 Watt
Di dalam rangkaian turbin angin yang berputar selain
terdapat
bilangan Cp yang mempengaruhi, terdapat pula koefisien Cd yang
mempengaruhi sudu dalam menghasilkan daya. Coeffisient of drag (Cd)
adalah koefisien dari gaya tarik (drag). Cd pada dasarnya adalah
kecenderungan suatu benda untuk mempertahankan diri pada kondisi yang
ada dari gaya geser atau gaya tekan yang timbul.
Cd dapat berupa benda bergerak ke arah atau di dalam arah aliran
fluida yang dapat berupa gas atau cair. Setiap benda mempunyai angka
koefisien Cd yang berbeda – beda.
Semakin halus dan bundar suatu benda maka Cd akan semakin kecil.
Besarnya koefisien Cd tidak dipengaruhi oleh ukuran dari benda namun
dari sudut posisi laju benda terhadap fluida, (untuk lingkaran Cd = 1,2).
Gambar 1.3. Aliran angin pada sudu
1.3.7. Kemungkinan Maksimum koefisien daya
0. 60
0. 50
0. 40
Cp
0. 30
B e tz - W ith o ut W ak e R o ta tio n
W ith W ak e R o ta tio n
0. 20
0. 10
0. 00
0
1
2
3
4
5
6
7
T ip S p ee d R a tio
8
9
10
Gambar 1.4. Grafik hubungan koefisien daya dan tip speed ratio
untukberbagai model kincirmaksimal yang dapat dihasilkan
Menurut Betz, seorang insinyur Jerman, besarnya energi yang
maksimum dapat diserap dari angin adalah hanya 0,59259 dari energi
yang tersedia. Sedangkan hal tersebut juga dapat dicapai dengan daun
turbin yang dirancang dengan sangat baik serta dengan kecepatan keliling
daun pada puncak daun sebesar 6 kali kecepatan angin. Pada dasarnya
turbin angin untuk generator listrik hanya akan bekerja antara suatu
kecepatan angin minimum, yaitu kecepatan start Cs, dan kecepatan
nominalnya Cr.
1.3.8. Perbandingan kecepatan pada ujung sudu – tip speed Ratio
Tip-speed ratio adalah perbandingan dari kecepatan ujung sudu –sudu
yang berputar dengan kecepatan dari aliran udara
λ=
ΩR
V
(1. 8)
dimana,
Ω = kecepatan rotasi dalam radians /sec
R = jari – jari Rotor
V = kecepatan aliran angin
1.3.9. Blade Planform - soliditas
Blade planform (sudu) adalah bentuk dari permukaan sudu. Soliditas
adalah perbandingan dari luasan sudu dengan daerah sapuan sudu. Lihat
gambar 1.1 (gambar kerapatan sudu).
Soliditas rendah (0,10) = kecepatan tinggi, momen puntir rendah
Soliditas tinggi (> 0,80) = kecepatan rendah, momen puntir tinggi
Soliditas berpengaruh terhadap daya yang dihasilkan turbin angin.
Jumlah sudu sedikit memiliki soliditas yang rendah, akan tetapi memiliki
kecepatan yang tinggi, begitu pula sebaliknya.
1.3.9.1. Model – model sudu - Blade Planform
Persegi
taper linier
panjang
terbalik
taper linier
Gambar 1.5. Jenis–jenis model sudu
Model sudu yang paling baik adalah yang mendekati
bentuk streamline, dalam pengujian digunakan bentuk taper
linear terbalik sebagai bentuk yang mendekati kondisi
streamline.
1.3.9.2. Prinsip – prinsip sudu
Turbin angin menggunakan prinsip prinsip aerodinamika
seperti halnya pesawat.
α
VR
Gambar 1.6. Penamaan bagian sudu
Keterangan :
α = sudut kontak = sudut antara garis tengah – cord line dan
arah dari angin, VR .
VR = kecepatan angin yang terdeteksi oleh sudu – vektor
jumlah dari V (aliran angin) dan ΩR (kecepatan ujung –
ujung sudu).
1.3.9.3. Sifat – sifat sudu
Sifat-sifat sudu mempengaruhi kecepatan putar sudu :
a. Gaya angkat tegak lurus dengan arah gerakan. Kita berharap
dapat membuat gaya angkat yang besar.
b. Gaya tarik sejajar dengan arah gerakan. Kita menginginkan
gaya ini kecil.
α = low
α = medium < 10 degrees
α = high stall
Gambar 1.7. Pergerakan sudu akibat hembusan angin
Dalam membuat sudu yang baik ada beberapa hal yang harus
diperhatikan, diantaranya :
a. Berbentuk kurva gradual - Gradual curves
b. Sudut ekor yang tajam - Sharp trailing edge
c. Sudut depan yang bundar - Round leading edge
d. Perbandingan ketebalan dengan chord - Low thickness to
chord ratio
e. Permukaan yang halus - Smooth surfaces
1.3.10. Syarat – syarat perhitungan produksi energy
Di dalam perhitungan energi dari turbin angin mempertimbangkan
faktor-faktor berikut :
a. Daya angin = ½ . ρ . A . V3
b. Betz Limit = secara teori mempunyai efesiensi 59% maksimal
c. Koefisien tarik = Cd
d. Daya rata – rata
= daya maksimal yang dapat dihasilkan
generator.
e. Faktor kapasitas = energi sesungguhnya / energi maksimal
f. Kecepatan angin masuk dimana energi mulai dihasilkan.
g. Kecepatan angin terakhir dimana produksi energi berakhir.
Gambar 1.8. Kurva daya terhadap kecepatan angin saat
menggerakkan sudu
1.3.11. Hubungan antara koefisien daya dengan tip speed ratio
Tip speed ratio mempengaruhi besaran koefisien daya. Hubungan ini
digambarkan sebagai berikut :
a. Koefisien daya bergantung pada perbandingan ujung sudu.
b. Ditandai dengan kurva Cp berbanding dengan perbandingan
kecepatan ujung sudu - Tip Speed Ratio Curve.
0.4
Cp
0.3
0.2
0.1
0.0
0
2
4
6
8
T ip Speed Ratio
10
12
Gambar 1.9. Kurva hubungan koefisien daya dengan tip speed ratio
1.4 Deskripsi Alat
Gambar 1.10. Skema alat
Keterangan gambar :
1. Sudu
Sudu berfungsi sebagai “penangkap” energi potensial yang terdapat pada
angin
2. Jari-jari sudu
Jari
–
jari
sudu
berfungsi
sebagai
rangka
penguat
sudu
serta
menghubungkannya dengan puli
3. Puli
Puli berfungsi sebagai rotor hub (pusat dari kedudukan sudu) dan
menghubungkan dengan mekanisme poros utama yang ada dibelakangnya.
4. Bearing (pertama).
Bearing atau bantalan berfungsi sebagai penumpu poros supaya dapat
berputar dengan baik.
5. Chasing (penutup)
Chasing atau penutup berfungsi sebagai pelindung dan juga sebagai
penambah nilai estetika dari turbin angin
6. Poros
Poros berfungsi sebagai penyalur daya dari putaran sudu ke roda penggerak
dan diteruskan ke generator.
7. Bearing (kedua)
Bearing atau bantalan berfungsi sebagai penumpu poros supaya dapat
berputar dengan baik.
8. Roda penggerak
Roda penggerak berfungsi untuk mentransmisikan daya dari poros ke
generator.
9. Dudukan generator
Dudukan generator berfungsi sebagai pemegang generator.
10. Ekor
Ekor berfungsi penyesuai arah kedudukan sudu terhadap arah datangnya
sumber angin.
11. Kerangka atas
Kerangka atas berfungsi sebagai tempat kedudukan keseluruhan mekanisme
berada dan berfungsi menurut kedudukannya.
12. Generator
Generator berfungsi sebagai pembangkit energi listrik.
13. Bearing (ketiga)
Bearing ketiga berfungsi tumpuan
berputarnya kerangka atas untuk
menyesuaikan arah datangnya angin.
14. Lampu
Lampu berfungsi sebagai beban untuk menandakan ada atau tidak adanya
arus listrik yang ditimbulkan oleh generator yang bekerja.
15. Poros sumbu vertikal
Poros sumbu vertikal berfungsi sebagai tumpuan mekanisme poros diatasnya
untuk menyesuaikan arah putaran angin.
16. Tiang utama
Tiang utama berfungsi sebagai penyangga keseluruhan mekanisme yang ada
diatasnya.
17. Foundations (dasar)
Foundations atau dasar berfungsi sebagai tumpuan dari tiang penyangga.
1.5 Batasan Masalah
Batasan masalah dalam Rancang Bangun Mesin ini yaitu:
a. Merancang dan membuat kincir angin poros horisontal dengan jumlah sudu
banyak (delapan dan empat sudu).
b. Mencari koefisien daya kincir angin.
c. Konstruksi kincir diharapkan mampu menahan angin yang bertiup dengan
kecepatan maksimum 7 m/s.
d. Konstruksi kincir ini dapat berputar ke segala arah (dalam sumbu vertikal),
menyesuaikan arah datangnya angin.
e. Bentuk sudu yang digunakan adalah sudu datar, dengan tipe sudu linear
terbalik.
BAB II
PERANCANGAN KINCIR
2.1. Data-Data dari Pembangkit Listrik dengan Kincir Sudu Datar
Efisiensi angin dipengaruhi oleh kecepatan angin dan jenis angin tersebut,
serta titik rancangan dan jenis kincir yang digunakan. Pengambilan data yang
diperlukan untuk pengamatan dilakukan dengan menggunakan kincir angin
dengan dimensi sebagai berikut:
Gambar 2.1. Skema penampang sudu
2.2. Perancangan Sudu
Bahan sudu
= Mika
Diameter sudu
=1m
Lebar tiap sudu
= 0,23 m (atas),
Panjang tiap sudu = 0,4 m
0,13 m (bawah)
Luas tiap sudu =
sisi atas + sisi bawah
x tinggi
2
=
0,23 + 0,13
x 0,4
2
= 0,072 m2
2.3. Perhitungan pada Poros
Menurut pembebanannya maka poros diklasifikasikan ke dalam beberapa jenis
sebagai berikut:
a. Poros trasmisi adalah bagian mesin yang berputar, biasanya bentuk
penampangnya bulat, digunakan untuk memindahkan daya melalui
putaran.
Penerusan daya dilakukan melalui roda gigi, kopling, puli sabuk, sprocket
rantai.
b. As atau gandar bentuknya seperti poros tetapi biasanya tidak berputar, tidak
memindahkan torsi, dan digunakan untuk
menumpu roda yang berputar,
pulley, roda gigi dsb.
c. Spindle (poros mesin) adalah poros pendek yang merupakan bagian yang
menyatu dengan mesinnya.
Hal-hal penting di dalam perhitungan poros:
1. Tegangan dan kekuatan
2. Kekuatan
a. Kekuatan statis
b. Kekuatan kelelahan
c. Keandalan
3. Defleksi dan ketegaran (rigidity)
a. Defleksi bengkok
b. Defleksi puntir
c. Slope pada bantalan dan elemen-elemen penumpu poros
d. Defleksi geser akibat beban melintang pada poros pendek
4. Keterangan-keterangan poros
Di dalam perhitungan gaya pada poros kincir angin horizontal bersudu
banyak di dapatkan data-data sebagai berikut:
Bahan poros = S 35 C
Tabel 2.1 Baja Karbon untuk kontruksi Mesin ( Sularso,2004, hal. 3)
Standar dan
Lambang
macam
Perlakuan
panas
Kekuatan
tarik
(kg/mm2)
Keterangan
Baja karbon
S30C
Penormalan
48
kontruksi mesin
S35C
Penormalan
52
(JIS G 4501
S40C
Penormalan
55
S45C
Penormalan
58
S50C
Penormalan
62
S55C
Penormalan
66
Batang baja yang
S35C-D
-
53
Ditarik dingin,
difinis dingin
S45C-D
-
60
digerinda, dibubut,
S55C-D
-
72
atau gabungan
antara hal-hal
tersebut
Diameter poros (ds) = 19 mm
1. Daya yang ditransmisikan (P)
P = ½ x ρ x A x v 3 x Cd
= ½ x 1 kg/m3 x
( )
⎛π 1 m 2 ⎞
⎜⎜
⎟ x (7 m/s)3 x 1,2
4 ⎟
⎝
⎠
= 0,161553 kW
2. Putaran poros (n1) = 361 rpm
3. Faktor koreksi (fc) = 1,2
4. Daya rencana (Pd) = fc x P
= 1,2 x 0,161553 kW
= 0,1938 kW
5. Momen rencana (T) = 9,74 x 105 x Pd
n1
= 9,74 105 x 0,1938 kW
= 522,88 kg.mm
6. Gaya-gaya akibat roda gigi
Ft
Fr
361 rpm
a. Gaya tangensial (Ft) =
102 Pd
;
v
v=
π × d1 × n1
;
60 × 1000
dengan d1 = diameter roda penggerak, m = modul
Ft =
102 × 0,1938 kW
= 10,74 kg
π × 97,4 × 361
60 × 1000
b. Gaya radial (Fr) = 0,364 x Ft
= 0,364 x 10,74 kg
= 3,91 kg
c. Gaya aksial (FA)
Gaya aksial pada pengujian ini adalah gaya yang searah dengan
datangnya angin dan ditahan di bantalan RA. Dalam pengujian gaya
aksial tidak dianalisa karena besarnya gaya aksial tidak dipakai dalam
perhitungan kincir.
7. Perhitungan defleksi pada poros
A. Pengambaran BMD
a. Akibat Ft (horisontal)
Dimisalkan arah Ft dari bawah
A
B
C
Ft = 10,74 kg
RA
RB
AB = 0,17 m, BC = 0,06 m
Σ MA = 0
Ft x (AB + BC) = RB x AB
10,74 kg x (0,17 m + 0,06 m) = RB x 0,17 m
RB = 14,53 kg
Σ Fy = 0
RA = RB – Ft
= 14,53 kg – 10,74 kg
= 3,79 kg
MB1
+
A
B
C
Penggambaran dari sisi kanan
MB1 = Ft x BC = 10,74 kg x 0,06 m = 0,6444 kg.m
MA = Ft x (BC+AB) – RB x AB
= 10,74kg (0,06 m+0,17) – 14,53 kg x 0,17m
=0
b. Akibat Fr (vertikal)
A
B
C
Fr = 3,91 kg
RA
RB
AB = 0,17 m, BC = 0,06 m
Σ MA = 0
Fr x (AB + BC) = RB x AB
3,91 kg x (0,17 m+0,06 m) = RB x 0,17 m
RB = 5,29 kg
Σ Fy = 0
RA = RB – Fr
= 5,29 kg – 3,91 kg
= 1,38 kg
MB2
+
A
B
C
Penggambaran dari sisi kanan
MB2 = Fr x BC = 3,91 kg x 0,06 m = 0,2346 kg.m
MA = Fr x (BC + AB) – RB x AB
= 3,91 kg (0,06 m + 0,17 m) – 5,29 kg x 0,17 m
=0
2
2
M B1 + M B2 =
M resultan =
0.6444 2 + 0.2346 2 = 0,6858 kg,m
B. Analisis luas momen
Akibat Ft
a. Diagram M/EI
M/EIBC
M/EIAB
+
A
B
C
4
4
π × d AB
π × 0.019
=
= 6 x 10-9 m4
IAB =
64
64
4
IBC =
π × d BC
π × 0.01125 4
= 7,863 x 10-10 m4
=
64
64
b. Batang AB
M/EIAB
yA= 0
A
θB
θA
M/EIAB =
yB = 0
B
0,6444
= 0,005545
1.937 × 1010 × 60 × 10 −10
Σ MA = 0
yA + (½ x AB x M/EIAB) x 2/3 x AB + θB x AB – yB = 0
θB = −
M AB
×
EI 3
= - 0,005545 x 0,17/3
= - 3,142 x 10-4 rad
c. Batang BC
M/EIBC
C
yB=0
θB
M/EIBC
θC
yC
0.6444
= 0,0423
1.937 × 1010 × 7.864 × 10 −10
Σ MC = 0
yB + θB x BC = (½ x BC x M/EIBC x 2/3 x BC) + yC
- 1,8852 x 10-5 = 5,076 x 10-5 + yC
yC = - 6,9612 x 10-5 m ; tanda (-) menunjukkan arah yaitu ke atas.
Akibat Fr
a. Diagram M/EI
M/EIBC
M/EIAB
+
A
B
C
4
IAB =
π × d AB
π × 0.019 4
=
= 6 x 10-9 m4
64
64
IBC =
π × d BC
π × 0.01125 4
=
= 7,863 x 10-10 m4
64
64
4
b. Batang AB
M/EIAB
yA= 0
A
θA
M/EIAB
B
yB = 0
θB
0.2346
= 0,0020186
1.937 × 1010 × 60 × 10 −10
Σ MA = 0
yA + (½ x AB x M/EIAB) x 2/3 x AB + θB x AB – yB = 0
θB = −
M AB
×
EI 3
= - 0,0020186 x 0,17/3
= - 1,144 x 10-4 rad
c. Batang BC
M/EIBC
C
yB=0
θB
M/EIBC
θC
yC
0,2346
= 0,0154
1,937 × 1010 × 7,864 × 10 −10
Σ MC = 0
yB+ θB x BC = (½ x BC x M/EIBC x 2/3 x BC)+yC
- 6,864 x 10-6 = 18,48 x 10-6 + yC
yC = - 2.5344 x 10-5 m ; tanda (-) menunjukkan arah yaitu ke atas
yC resultan =
2
2
y C1 + y C2 =
= 7,41 x 10-5 m (↑)
(- 6,9612x 10 -5 ) 2 + (−2,5344 × 10 −5 ) 2
BAB III
PENGUJIAN DAN ANALISIS DATA
3.1 Metode Pegumpulan Data
Penyusunan laporan kincir angin sumbu horisontal bersudu banyak ini
menggunakan beberapa sumber sebagai acuan teoritis di dalam membuat kincir
angin dan menganalisa data-data yang diperoleh melalui pengujian.
Di dalam penyusunan digunakan pengumpulan data melalui beberapa
pengujian pada tingkat sudut sudu yang berbeda sehingga didapatkan beberapa
data yang dibandingkan untuk mengetahui pada sudut sudu manakah yang akan
memberikan koefisien daya (Cp) yang paling besar.
3.2 Variabel Pengujian
Pengujian kincir angin sumbu horisontal bersudu banyak menggunakan
beberapa variable pengujian. Berikut ini adalah beberapa variable pengujian :
Posisi sudut sudu diatur pada:
a. 150
d. 600
b. 300
e. 750
c. 450
f. 850
Dari pengujian kincir angin tersebut didapatkan beberapa data yang diperlukan untuk
membandingkan pada sudut sudu yang akan memberikan hasil yang paling maksimal
pada beberapa posisi kincir ditandai dengan semakin cepatnya putaran poros dan
lampu menyala terang hingga maksimal.
a. Pengujian pada kincir angin dengan sudu 8 buah
dengan :
n1 = putaran roda penggerak (rpm)
n2 = putaran kepala dinamo (rpm)
v = tegangan (volt)
I = arus (ampere)
Tabel 3.1. Hasil pengujian dengan sudut sudu 150
No.
percobaan
1
2
3
4
5
6
7
8
9
10
n1
(rpm)
78,9
73,7
75,3
74,9
73,6
75,4
74,8
77,5
76,5
79,4
n2
(rpm)
290,4
258,3
275
267,5
257,9
276,8
263,2
288,1
277,9
292,6
v
(volt)
1,376
1,210
1,325
1,3
1,086
1,337
1,215
1,375
1,369
1,396
I
(ampere)
1,87
1,25
1,5
1,49
1,2
1,5
1,3
1,75
1,6
1,92
P
(watt)
2,57312
1,5125
1,9875
1,937
1,3032
2,0055
1,5795
2,40625
2,1904
2,68032
nilai rata-rata
76,000
274,770
1,299
1,538
1,997708
Tabel 3.2. Hasil pengujian dengan sudut sudu 300
No.
percobaan
1
2
3
4
5
6
7
8
9
10
nilai rata-rata
n1
(rpm)
130,1
138,6
134,5
134,2
136,3
137
137,1
137,5
138,5
135,9
135,97
n2
(rpm)
535,4
580,8
547,3
538,1
552,2
554,1
565,8
572,9
579,2
548,5
557,43
v
(volt)
2,349
2,546
2,39
2,38
2,48
2,482
2,497
2,503
2,542
2,471
2,464
I
(ampere)
0,67
0,98
0,74
0,62
0,82
0,94
0,94
0,95
0,96
0,75
0,837
P
(watt)
1,57383
2,49508
1,7686
1,4756
2,0336
2,33308
2,34718
2,37785
2,44032
1,85325
2,062368
Tabel 3.3. Hasil pengujian dengan sudut sudu 450
No.
percobaan
1
2
3
4
5
6
7
8
9
10
n1
(rpm)
208,6
214,1
211
212,8
217,2
215,1
214,9
211,4
214,1
227,6
n2
(rpm)
817,1
855,4
820,8
843,8
886,5
885,3
884
831,7
854,9
891,6
v
(volt)
3,38
3,506
3,42
3,450
4,06
3,59
3,54
3,43
3,48
4,23
I
(ampere)
0,61
0,68
0,64
0,65
0,72
0,71
0,69
0,64
0,67
0,72
P
(watt)
2,0618
2,38408
2,1888
2,2425
2,9232
2,5489
2,4426
2,1952
2,3316
3,0456
nilai rata-rata
214,680
857,110
3,609
0,673
2,428588
Tabel 3.4. Hasil pengujian dengan sudut sudu 600
No.
percobaan
1
2
3
4
5
6
7
8
9
10
n1
(rpm)
271,1
279,6
271,4
271,1
271,6
274,4
275
271,5
276,8
290,2
nilai rata-rata
275,27
n2
(rpm)
1100,2
1205
1113
1110
1122
1148
1158
1120
1160
1233
v
(volt)
4,98
5,28
4,93
4,91
5,03
5,12
5,17
4,95
5,17
5,39
I
(ampere)
0,49
0,53
0,49
0,49
0,51
0,52
0,52
0,51
0,52
0,54
1146,920
5,093
0,512
P
(watt)
2,4402
2,7984
2,4157
2,4059
2,5653
2,6624
2,6884
2,5245
2,6884
2,9106
2,607616
Tabel 3.5. Hasil pengujian dengan sudut sudu 750
No.
percobaan
1
2
3
4
5
6
7
8
9
10
nilai ratarata
n1
n2
v
I
P
(rpm)
(rpm)
(volt)
(ampere)
(watt)
232,8
232
233
232,9
234,1
233,2
234,3
234,2
231,9
235,8
1012
1011
1014
1014
1018
1016
1020
1019
1010
1026
4,45
4,42
4,47
4,45
4,48
4,470
4,530
4,48
4,42
4,56
0,52
0,49
0,58
0,56
0,59
0,58
0,59
0,59
0,46
0,59
2,314
2,1658
2,5926
2,492
2,6432
2,5926
2,6727
2,6432
2,0332
2,6904
233,420
1016,0
4,473
0,555
2,482515
Tabel 3.6. Hasil pengujian dengan sudut sudu 850
No.
percobaan
1
2
3
4
5
6
7
8
9
10
nilai ratarata
n1
(rpm)
84,4
83,2
85,3
87,3
85,8
84,9
87,7
83,1
87,2
85,4
n2
(rpm)
338,8
315,8
316,3
314,7
338,8
282,9
328,9
317,9
320,2
329,1
85,430
320,34
v
(volt)
1,378
1,422
1,421
1,415
1,362
1,426
1,425
1,345
1,389
1,399
I
(ampere)
1,4
1,42
1,46
1,43
1,42
1,38
1,45
1,39
1,49
1,49
P
(watt)
1,9292
2,01924
2,07466
2,02345
1,93404
1,96788
2,06625
1,86955
2,06961
2,08451
1,398
1,433
2,003621
Tabel 3.7. Hasil rata – rata pengujian dengan variasi sudut
sudut sudu 8
(derajat)
n1
(rpm)
n2
(rpm)
v
(volt)
I
(ampere)
P
(watt)
15
76
274,77
1,29
1,538
1,997708
30
135,97
557,43
2,464
0,837
2,062368
45
214,68
857,11
3,609
0,673
2,428588
60
275,27
1146,92
5,093
0,512
2,607616
75
233,42
1016
4,473
0,555
2,482515
85
85,43
320,34
1,398
1,433
2,003621
Gambar 3.1. Grafik hubungan antara sudut sudu dengan tegangan yang
dihasilkan
Gambar 3.2. Grafik hubungan antara sudut sudu dengan arus yang
dihasilkan
Gambar 3.3. Grafik hubungan antara sudut sudu dengan daya yang
dihasilkan
b. Pegujian pada kincir angin dengan sudu 4 buah
Tabel 3.8. Hasil pengujian dengan sudut sudu 150
No. percobaan
1
2
3
4
5
6
7
8
9
10
n1
(rpm)
65,3
63,4
65,8
64,5
63,3
65,2
63,6
65,7
64,8
66,6
n2
(rpm)
285,2
278
287,6
279,6
268,4
284,3
278,9
286,5
280,9
297,3
v
(volt)
0,884
0,846
0,896
0,861
0,845
0,876
0,86
0,89
0,875
0,897
I
(ampere)
2,15
2,08
2,7
2,12
2,01
2,15
2,11
2,2
2,15
2,89
P
(watt)
1,9006
1,75968
2,4192
1,82532
1,69845
1,8834
1,8146
1,958
1,88125
2,59233
nilai rata-rata
64,820
282,670
0,873
2,256
1,969488
Tabel 3.9. Hasil pengujian dengan sudut sudu 300
No. percobaan
n1
(rpm)
n2
(rpm)
v
(volt)
I
(ampere)
1
2
3
4
5
6
7
8
9
10
112,3
123,4
118,5
120,4
119,5
118,8
119,8
117,2
122,9
119,7
484,9
498,8
485,1
489,8
485,5
485,4
489,7
485
498,4
489,2
1,322
1,99
1,389
1,282
1,182
1,135
1,282
1,335
1,99
1,198
1,38
1,52
1,39
1,45
1,41
1,4
1,45
1,39
1,52
1,42
1,82436
3,0248
1,93071
1,8589
1,66662
1,589
1,8589
1,85565
3,0248
1,70116
1,411
1,433
2,021247
nilai rata-rata
119,250 489,180
P
(watt)
Tabel 3.10. Hasil pengujian dengan sudut sudu 450
No. percobaan
n1
(rpm)
n2
(rpm)
v
(volt)
I
(ampere)
1
2
3
4
5
6
7
8
9
10
160,4
162,1
164,9
162,3
169,9
163,7
164,8
163,3
166,6
162,2
658,2
660,2
675,8
660,9
683,9
668,6
675,1
667,8
679,4
660,5
2,8
2,82
3,183
2,916
3,246
3,071
3,100
3,056
3,234
2,9
0,6
0,63
0,87
0,66
0,91
0,83
0,86
0,73
0,9
0,64
1,68
1,7,766
2,76921
1,92456
2,95386
2,54893
2,666
2,23088
2,9106
1,856
3,033
0,763
2,313874
nilai rata-rata
164,020 669,040
P
(watt)
Tabel 3.11. Hasil pengujian dengan sudut sudu 600
No. percobaan
n1
(rpm)
n2
(rpm)
v
(volt)
I
(ampere)
P
(watt)
1
2
3
4
5
6
7
8
9
10
272,3
263,9
262,4
269,2
278,5
270,7
264,5
275,2
269,5
284,4
1173
1125
1050
1128
1189
1157
1126
1178
1155
1238
5,22
4,83
4,83
4,88
5,260
5,18
4,87
5,23
4,95
5,480
0,52
0,48
0,45
0,49
0,54
0,51
0,49
0,53
0,51
0,55
2,7144
2,3184
2,1735
2,3912
2,404
2,6418
2,3863
2,7719
2,5245
3,014
nilai rata-rata
271,060
1151,9
5,073
0,507
2,572011
Tabel 3.12. Hasil pengujian dengan sudut sudu 750
No. percobaan
n1
(rpm)
n2
(rpm)
v
(volt)
I
(ampere)
P
(watt)
1
2
3
4
5
6
7
8
9
10
317,5
347,7
346,2
353,4
351,6
361
354,8
358,7
359,1
341,8
1060
1159
1152
1192
1171
1347
1245
1289
1290
1149
6,33
6,520
6,51
6,56
6,54
6,78
6,59
6,65
6,760
6,49
0,32
0,36
0,35
0,42
0,42
0,49
0,44
0,44
0,45
0,34
2,0256
2,3472
2,2785
2,7552
2,7468
3,3222
2,8996
2,926
3,042
2,2066
6,573
0,403
2,648919
nilai rata-rata
349,180 1,205,400
Tabel 3.13. Hasil pengujian dengan sudut sudu 850
1
2
3
4
5
6
7
8
9
10
n1
(rpm)
215,1
214,5
207,7
200
202,9
198,8
201,2
204,1
203,1
190,3
n2
(rpm)
921,1
928,2
911,8
845,5
895,2
902,8
901,7
865,8
944,6
861,1
v
(volt)
4,06
3,676
3,598
3,859
3,563
3,824
3,830
3,803
3,896
2,503
I
(ampere)
0,71
0,58
0,56
0,66
0,49
0,61
0,64
0,59
0,7
0,43
P
(watt)
28,826
213,208
201,488
254,694
174,587
233,264
24,512
224,377
27,272
107,629
nilai rata-rata
203,77
897,780
3,661
0,597
2,185736
No. percobaan
Tabel 3.14. Hasil rata – rata pengujian dengan variasi sudut
sudut sudu 4
n1
n2
v
i
P
(derajat)
(rpm)
(rpm)
(volt)
(ampere)
(watt)
15
64,82
282,67
0,876
2,256
1,969488
30
119,25
489,18
1,411
1,433
2,021547
45
164,02
669,04
3,033
0,763
2,313874
60
271,06
1151,9
5,073
0,507
2,572011
75
349,18
1205,4
6,573
0,403
2,648919
85
203,77
897,78
3,661
0,597
2,185736
Gambar 3.4. Grafik hubungan antara sudut sudu dengan tegangan yang
dihasilkan
Gambar 3.5. Grafik hubungan antara sudut sudu dengan arus yang
dihasilkan.
Gambar 3.6. Grafik hubungan antara sudut sudu dengan arus yang
dihasilkan.
3.3 Analisis data
3.3.1 Menghitung daya angin
Dari tabel sebelumnya dapat dilihat besarnya daya yang dihasilkan dari
angin tergantung dari berbagai variasi kecepatan angin dan sudut sudu. Bila
kecepatan angin yang digunakan dalam perhitungan adalah v = 7 m/s, maka
didapatkan daya angin :
Daya angin (power)
daya
= ½ x ρ x A x V3
= ½ x1.2 kg/mm3 x (3,14 x 0,25 m2 ) x (7 m/s)3
= 161,553 watt
= 0,161553 kW
Hasil perhitungan daya angin pada kecepatan angin 7 m/s adalah daya
pada angin yang tersedia dan merupakan daya potensial. Daya pada angin ini
bukanlah daya yang dibangkitkan oleh kincir angin horizontal bersudu
banyak. Untuk mendapatkan daya pada kincir angin yang sesungguhnya
maka harus dikalikan terlebih dahulu dengan efesiensi daya (coefficient of
power) atau dengan bilangan betz limits.
Daya Kincir
Daya kincir adalah daya yang dapat dibangkitkan oleh kincir, ditandai
dengan menyalanya lampu pengujian dan terukur multimeter akibat adanya
daya listrik untuk mendapatkan harga tegangan dan arus listrik.
3.3.2 Menghitung koefisien daya (Cp) yang dihasilkan
Koefisien daya, Cp, adalah perbandingan antara daya yang dibangkitkan
oleh kincir (dilihat dari harga tegangan dikalikan arus) dengan daya dari
angin yang tersedia untuk tiap luasan area.
Pada kincir dengan delapan sudu
a. Sudut 150
Cp =
=
Daya kincir
Daya angin
1,997708 watt
161,553 watt
= 0, 012
b. Sudut 300
Daya kincir
Cp =
Daya angin
2,062368 watt
=
161,553 watt
= 0, 012
c. Sudut 450
Cp =
=
Daya kincir
Daya angin
2,428588 watt
161,553 watt
= 0, 015
d. Sudut 600
Cp =
=
Daya kincir
Daya angin
2,607616 watt
161,553 watt
= 0, 016
e. Sudut 750
Cp =
=
Daya kincir
Daya angin
2,482515 watt
161,553 watt
= 0, 015
f. Sudut 850
Daya kincir
Cp =
Daya angin
2,003621 watt
=
161,553 watt
= 0, 012
Pada kincir dengan empat sudu
a. Sudut 150
Daya kincir
Cp =
Daya angin
1,969488 watt
=
161,553 watt
= 0, 012
b. Sudut 300
Cp =
=
Daya kincir
Daya angin
2,021547 watt
161,553 watt
= 0, 012
c. Sudut 450
Cp =
=
Daya kincir
Daya angin
2,313874 watt
161,553 watt
= 0, 014
d. Sudut 600
Cp =
=
Daya kincir
Daya angin
2,572011 watt
161,553 watt
= 0, 015
e. Sudut 750
Cp =
=
Daya kincir
Daya angin
2,648919 watt
161,553 watt
= 0, 016
f. Sudut 850
Cp =
=
Daya kincir
Daya angin
2,185736 watt
161,553 watt
= 0, 013
Dari perhitungan Cp di atas dapat dianalisa dalam tabel berikut:
Tabel 3.15. Hasil Cp pada pengujian kincir dengan 8 sudu
sudut sudu 8
(derajat)
15
30
45
60
75
85
Cp
0, 012
0, 012
0, 015
0, 016
0, 015
0, 012
Tabel 3.16. Hasil Cp pada pengujian kincir dengan 4 sudu
sudut sudu 4
Cp
(derajat)
15
0, 012
30
0,012
45
0, 014
60
0, 015
75
0, 016
85
0, 013
Dari tabel di atas dapat dilihat bahwa perubahan sudut mempengaruhi
besarnya Cp. Pada kincir dengan delapan sudu nilai Cp akan maksimal pada
sudut 600, pada sudut di atas 600 harga Cp akan turun. Sedangkan pada kincir
dengan 4 sudu harga Cp yang paling tinggi pada sudut 750. Hal ini
menunjukkan adanya pergeseran titik maksimum sebesar 150. Semakin
besarnya harga Cp menunjukkan sudu berfungsi maksimal sebagai
penangkap angin.
BAB IV
PEMELIHARAAN KINCIR
Kegiatan pemeliharaan dan servis instalasi kincir angin sangat penting dan
mutlak dilakukan. Kegiatan pemeliharaan secara periodik dapat dibagi sebagai
berikut:
4.1. Pemeliharaan periodik
Pengawasan sehari-hari dengan tujuan untuk memeriksa secara menyeluruh
kondisi dan bekerjanya kincir.
Pemeliharaan periodik berupa :
a. Baling-baling
Keadaan mika sudu harus selalu diperiksa, bila mengalami keretakan
maka perlu diganti dan diperiksa pula kekencangan mur dan baut
pengikat mika dan sudu.
b. Poros
Poros diusahakan dipilih dari bahan yang kuat dan tahan korosi.
Perawatannya diberi pelumas pada bagian yang terhubung dengan
bantalan dan di tempatkan pada rumahan untuk melindungi dari pengaruh
luar.
c. Bantalan
Bantalan adalah elemen mesi yang menumpu dan menerima beban dari
poros dan baling-baling yang terus berputar. Bantalan diberi pelumas agar
gesekan dengan poros dapat diperkecil dan komponen dapat bekerja
secara halus dan panjang umur.
d. Kerangka
Untuk mencegah kerangka dari pengaruh korosi maka perlu dilakukan
pengecatan
e. Generator penghasil listrik
Pemeriksaan generator bertujuan untuk mengetahui keadaan generator
dan arus yang dihasilkan. Pemberian pelumas secukupnya pada gigi
pinion untuk mengurangi gesekan yang timbul.
4.2. Pelumasan
Pemberian minyak pelumas antara dua permukaan bantalan dan poros yang
bersinggungan, dengan tekanan sehingga saling bergerak atau bergesekan
satu terhadap dengan yang lain disebut pelumasan.
Tujuan pelumasan adalah:
a. Mengurangi keausan dengan menurunkan gesekan.
b. Mendinginkan permukaan dengan mengurangi panas yang
diakibatkan oleh gesekan.
c. Membersihkan permukaan dengan mencuci butiran logam yang
dihasilkan keausan.
d. Merapatkan ruangan yang kosong.
e. Bahan pelumas harus mencegah karat, mencuci kotoran dan
serpihan keausan sehingga melindungi permukaan bahan juga
menghindarkan dari penegangan lebih.
Dengan melakukan peralatan secara teratur dapat membuat alat tetap
dalam kondisi baik dan dapat bekerja dalam waktu yang lama. Karena pada
umumnya kincir ini ini ditempatkan di luar dan hampir semua komponen
terbuat dari logam sehingga mudah terpengaruh oleh suhu dan cuaca sekitar.
BAB V
KESIMPULAN DAN PENUTUP
5.1 Kesimpulan
Dari perhitungan-perhitungan dan percobaan diatas, secara singkat dapat
diambil kesimpulan-kesimpulan.
1. Sumber energi adalah angin dengan kecepatan 7 m/s
2. Ukuran kincir =
Sudu =
a. Bahan sudu = mika - acrylic
b. Lebar tiap sudu
bawah = 0,13 meter
atas
= 0,23 meter
c. Tinggi tiap sudu = 0,4 meter
d. Diameter keseluruhan = 1 meter
e. Diameter rangka sudu = 0,08 meter
Poros =
a. Bahan
= poros Baja Karbon S 35 C
b. Panjang poros
= 0,33 meter
c. Diameter poros
= 0,19 meter
d. Diameter puli
= 0,2 meter
Kerangka
Tinggi kerangka = 1,5 meter
Ekor
= 0,4 x 0.3 meter
Bahan pelumas = gemuk,
5.1.1. Kincir
Kincir merupakan sebagai penerus putaran dari aliran air yang mengalir,
sehingga kincir dapat berputar. Kincir tersebut mengubah tenaga potensial
untuk menghasilkan putaran, putaran tersebut diteruskan untuk memutarkan
generator. Putaran pada kincir juga tergantung dari kecepatan air mengalir,
semakin cepat aliran air maka semakin cepat pula putaran yang dihasilkan
kincir tersebut. Maka dari itu bantalan putar pada kincir perlu mendapatkan
perawatan ekstra untuk menjaga agar putaran pada kincir dapat terjaga
dengan baik dari aus dan korosi.
5.1.2. Poros
Pada saat kincir berputar ada suatu poros untuk menahan agar kincir dapat
berputar dengan stabil. Dari situ pula poros berperan untuk menahan dari
beban puntir dan lentur, sehingga kelelahan tumbukan tegangan diameter
poros di perkecil. Untuk mendapatkan suatu poros yang dapat menghindari
kejadian tersebut dilakukan suatu perhitungan untuk memilih diameter
poros yang cocok untuk menahan dari beban puntir dan lengkung tersebut.
5.1.3 Bantalan
Dari situ pula dapat dilakukan untuk memilih berbagai macam bantalan
untuk menahan beban yang diterima dari suatu poros. Ada berbagai macam
bantalan, untuk memilih bantalan tersebut dapat ditentukan melalui
diameter poros yang digunakan. Dalam perawatan bantalan juga harus
mendapatkan perawatan, bahwa bantalan tersebut juga dapat yang
mengakibatkan suatu kincir berputar dengan kecepatan tinggi. Maka
bantalan tersebut harus mendapatkan pelumasan yang cukup untuk
menghindari dari temperatur yang tinggi akibat gesekan pada bantalan yang
berputar dengan kecepatan tinggi.
5.1.4. Roda penggerak
Dalam hal ini roda penggerak berperan sebagai penerus putaran dari kincir
ke generator.
5.1.5 Generator
Generator merupakan komponen listrik yang mengubah gerakan atau energi
menjadi listrik.
5.2. Penutup
Penulis mengucapkan puji syukur kepada Tuhan Yang Maha Esa, atas
rahmatNya sehingga Rancang Bangun Mesin dapat diselesaikan. Baik dalam
perancangan maupun dalam pembuatan alat.
Penulis menyadari bahwa masih benyak kekurangan dalam perancangan
dan pembuatan alat, pleh karena itu kritik dan saran dari Pembaca sangat
Penulis harapkan untuk kemajuan. Penulis juga mohon maaf apabila dalam
menyajikan Rancang Bangun Mesin ini terdapat penulisan yang tidak
berkenan.
Dan akhir kata, semoga Rancang Bangun Mesin ini dapat berguna
bagi pembaca.
Daftar Pustaka
Arismunandar, W. Penggerak Mula Turbin. Bandung: ITB PRESS
Makalah Hasim Hanafie, PT Bumi Energi Equatorial, 2007,
Nieman, G. 1984. Elemen Mesin. Jakarta: Erlangga.
Sudibyo, Roda Gigi I, Surakarta: ATMI
Sularso, 1980. Dasar Perancangan dan Pemilihan Elemen Mesin. Jakarta: Pradnya
Paramita
www.wikipedia.org
Gambar 1. Kincir Angin tampak dari depan
Gambar 2. Kincir Angin tampak dari samping
Gambar 3. Roda otoped sebagai roda penggerak dinamo sepeda
Gambar 4. Dinamo sepeda sebagai penghasil arus
Gambar 5. Sudu – sudu kincir angin
Gambar 6. Puli sebagai dudukan sudu – sudu kincir
Gambar 7. Blower angin
Download