Magma, Rocks Classification & Textures MAGMA MAGMA • Larutan silikat yang sangat panas • Mengandung oksida, sulfida serta volatiles (CO2, sulfur, chlorine, fluorin, boron dll) • Temperatur antara 600°C (magma asam) sampai 1250°C (magma basa) JENIS KONVERGEN Plate Tectonic - Igneous Genesis 5 3 1 6 7 4 200 km Continental Crust 400 Oceanic Crust Lithospheric Mantle ? 600 km Sub-lithospheric Mantle Source of Melts ? ? ? 2 Environments of Magma Formation Environments of Magma Formation Stages in ascent • • • • • Eruption (Fragmentation) Vesiculation Renewed ascent Storage – mixing – assimilation – crystallization • Buoyant ascent • Partial melting The Earth’s Interior Crust: Crust Depth (km) Upper Mantle Transition Zone Mantle 60 220 410 660 Lower Mantle Granite/Andesite (felsic) Mantle: Peridotite (ultramafic) Core: 2898 Outer Core (liquid) Metal alloy/liquid Core 5145 Inner Core (solid) 6370 Most important elements Si 14.4% Al Ca S 3.0% 1.4% 1.0% O 50.7% Fe 15.2% Mg 15.3% Figure 1-5. Relative atomic abundances of the seven most common elements that comprise 97% of the Earth's mass. An Introduction to Igneous and Metamorphic Petrology, by John Winter , Prentice Hall. Partial Melting: The Origin of Basalt and Granite Basaltic magma = 50% silica (1100o C) Forms the rock basalt Melting Asthenosphere 40% Silica Partial Melting: The Origin of Basalt and Granite Granitic magma ~ 70% silica (700-900o C) Forms granite (a mixture of quartz and feldspar) Melting Continental Crust (Mainly low melting point minerals such as quartz, feldspar, mica) Urutan pembekuan magma • Pada pembekuan magma, pada awalnya mineral yang terbentuk adalah yang anhydrous (tidak mengandung air) tidak mengandung gugus OH, disebut mineral pyrogenetik. • Cairan selanjutnya akan lebih banyak mengandung komponen gas dan terbentuk mineral-mineral yang mengandung gugusan hydroksil (OH), disebut mineral hydratogenetik. Diferensiasi Magma • Proses diferensiasi meliputi semua kegiatan yang mengakibatkan suatu jenis magma induk yang semula relatif homogen terpecah-pecah menjadi beberapa bagian atau fraksi dengan komposisi yang berbeda-beda. Hal ini disebabkan karena migrasi ion atau molekul dalam larutan magma karena adanya perubahan temperatur dan tekanan. Yang pada akhirnya akan membentuk berbagai jenis batuan beku dengan komposisi yang berbeda-beda pula. Bowen reaction series DIAGRAM FASE • Fase : padat, cair, gas • Diagram fase : menggambarkan kondisi magma pada kondisi P & T tertentu • Parameter penting dalam sistem magma : fase, komponen, variabel intensif DIAGRAM fASE • fase : padat, cair • komponen : komponen terkecil yang diperlukan utk pembentukan fase-fase • dalam sistem (OH, H2O, MgO, NaAlSi3O8, dll) • • variabel intensif : temperatur dan tekanan, jumlah komponen DIAGRAM FASE • • • • • • Rumus fase : F = C – P + 2 F : degree of freedom : jumlah kondisi minimum C : jumlah komponen; P : jumlah fase contoh utk air – es ------ C = 1 (H2O) ; P = 2 (es dan air) F = C – P + 2 ---- F = 1 – 2 + 2 = 1 (unary system) SISTEM 1 KOMPONEN SISTEM 2 KOMPONEN (BINER) DGN TITIK EUTEKTIK h : titik eutektik; titik terendah fase cair ; kondisi terbentuknya 2 komponen SISTEM 2 KOMPONEN SOLID SOLUTION SISTEM 2 KOMPONEN INCONGRUENT MELTING Why storage? stronger crust denser crust Why do some magmas stall and pond in chambers during ascent? Processes during storage in magma chambers Fractional Crystallization http://www.geolsoc.org.uk/webdav/site/GSL/shared/images/geoscientist/Geoscientist%2019.2/7%20 Volcano%20and%20magma%20chamber%20James%20Island2resized.jpg Processes during storage in magma chambers Gravity settling http://www.geolsoc.org.uk/webdav/site/GSL/shared/images/geoscientist/Geoscientist%2019.2/7%20Volcano%20and%20magma%20cham ber%20James%20Island2resized.jpg Gravity settling and cumulates http://www.geol.lsu.edu/henry/Geology3041/lectures/12LayeredMafic/Fig12-15.jpg Buoyancy, sinking: Stoke’s Law 2gr (r s - r l ) V= 9h 2 V = the settling velocity (cm/sec) g = the acceleration due to gravity (980 cm/sec2) r = the radius of a spherical particle (cm) rs = the density of the solid spherical particle (g/cm3) rl = the density of the liquid (g/cm3) h = the viscosity of the liquid (1 c/cm sec = 1 poise) Sinking olivine in basalt Olivine in basalt Olivine (rs = 3.3 g/cm3, r = 0.1 cm) Basaltic liquid (rl = 2.65 g/cm3, h = 1000 poise) V = 2·980·0.12 (3.3-2.65)/9·1000 = 0.0013 cm/sec that’s ~1m per day Sinking x’tal in rhyolite Rhyolitic melt h = 107 poise and rl = 2.3 g/cm3 3 hornblende crystal (rs = 3.2 g/cm , r = 0.1 cm) -7 cm/sec, or 6 cm/year V = 2 x 10 feldspars (rl = 2.7 g/cm3) V = 2 cm/year 4 = 200 m in the 10 years that a stock might cool If 0.5 cm in radius (1 cm diameter) settle at 0.65 meters/year, or 6.5 km in 104 year cooling of stock IGNEOUS ROCKS CLASSIFICATION Ternary diagrams Classification of Igneous Rocks X 10 10 20 %Z 30 20 %Y A Inc 20 10 Z %Z r Inc r% Y Incr %X %X 30 30 30 20 10 %Z Y Figure 2-1a. Method #1 for plotting a point with the components: 70% X, 20% Y, and 10% Z on triangular diagrams. An Introduction to Igneous and Metamorphic Petrology, John Winter, Prentice Hall. Know how to classify a rock Volcanic rocks: aphanitic Ultra-mafic rocks & felsic vs. mafic Classification of Igneous Rocks Plagioclase Anorthosite Figure 2-2. A classification of the phaneritic igneous rocks. b. Gabbroic rocks. c. Ultramafic rocks. After IUGS. lite cto Tro Ga bb ro 90 Olivine gabbro Olivine Dunite 90 Peridotites Plagioclase-bearing ultramafic rocks Pyroxene Lherzolite Olivine (b) 40 Pyroxenites Olivine Websterite Orthopyroxenite 10 (c) 10 Orthopyroxene Websterite Clinopyroxenite Clinopyroxene Classification of Igneous Rocks Phonolite 13 Tephriphonolite Wt.% Na2O+K2O 11 9 Phonotephrite (Foid)ite Trachyte Trachy- Trachydacite andesite Rhyolite Basaltic trachyTephrite Basanite Trachy- andesite 7 basalt 5 Dacite 3 Basalt Basaltic Andesite Andesite Picrobasalt 1 37 41 ULTRABASIC 45 45 49 BASIC 53 57 61 52 INTERMEDIATE 65 63 69 73 77 ACIDIC wt% SiO2 Figure 2-4. A chemical classification of volcanics based on total alkalis vs. silica. After Le Bas et al. (1986) J. Petrol., 27, 745-750. Oxford University Press. Classification of Igneous Rocks Ash (< 2 mm) Glass Lapilli (2-64 mm Tuff Lapillistone Lapilli Tuff 30 30 Vitric Tuff Lapilli -Tuff Breccia 70 Lithic Tuff Crystals Rock Fragments (a) 70 Pyroclastic Breccia or Agglomerate Crystal Tuff Blocks and Bombs (> 64 mm) (b) Figure 2-5. Classification of the pyroclastic rocks. a. Based on type of material. After Pettijohn (1975) Sedimentary Rocks, Harper & Row, and Schmid (1981) Geology, 9, 40-43. b. Based on the size of the material. After Fisher (1966) Earth Sci. Rev., 1, 287-298. TEXTURES IN IGNEOUS ROCKS Textures: result of nucleation+growth Grain size Fast growth a Ocean Drilling Program Crystal zoning Crystal shape Growth order Quartz - feldspar intergrowth Remelting Matrix texture Twinning Replacements North Carolina State University Smith College