BAB II DASAR TEORI 2.1 MIKROKONTROLER AT89C51 2.1.1 Gambaran Umum Mikrokontroler sebagai teknologi semi konduktor, kehadirannya sangat membantu perkembangan didunia elektronika. Arsitektur mikrocontroler banyak kandungan transistor yang terintegrasi, sehingga mendukung dibuatnya rangkaian elektronika yang lebih simpel tetapi dalam rangkaian sebenarnya dengan memakai transistor maka rangkaian ini sangat besar. Mikrokontroler dapat diproduksi secara masal sehingga harganya menjadi lebih murah dibandingkan dengan mikroprosesor, Tetapi tetap memiliki kelebihan yang bisa diandalkan. Mikrokontroler memiliki perbandingan ROM dan RAM nya yang besar, artinya program control disimpan dalam ROM yang ukurannya relative lebih besar, sedangkan RAM digunakan sebagai tempat penyimpan sementara, termasuk register-register yang digunakan dalam mikrokontroler yang bersangkutan. Pengunaan utama dari mikrokontroler adalah untuk mengontrol operasi dari mesin. Strategi kendali untuk mengontrol mesin tertentu dimodelkan dalam program algoritma pengaturan yang ditulis dalam bahasa assembly. Program tersebut selanjutnya di translasi ke kode mesin digital dan disimpan selanjutnya di dalam media penyimpanan digital yang disebut ROM. Mikrokontroler adalah Central processing unit (CPU) yang disertai memori serta sarana Input/output dan dibuat dalam satu chip. Universitas Sumatera Utara 2.1.2 Arsitektur Mikrokontroller AT 89C51 Gambar.2.1. Diagram Blok Mikrokontroler AT89C51 Pada Gambar 2.1. terlihat bahwa terdapat 4 port untuk input output data, serta tersedia pula akumulator, register, RAM, stack pointer, Arithmetic Logic Unit (ALU), pengunci (latch) dan rangkaian osilasi yang membuat 89C51 dapat beroperasi hanya dengan 1 keping IC. Universitas Sumatera Utara Mikrokontroler AT 89C51 merupakan produk ATMEL, memiliki fitur sebagai berikut: 1. Sebuah central processing unit 8 bit 2. Osilator Internal dan rangkaian pewaktu 3. 4 kbyte memori program yang dapat ditulis hingga 1000 kali 4. 128 Byte memori RAM internal 5. 32 jalur input-output (4 buah port parallel I/O) 6. 2 Timer/ counter 16 bit 7. 2 data pointer 8. Lima buah jalur interupsi (dua buah interupsi eksternal dan 3 buah interupsi internal) 9. ISP (In system Programmable) Flash memori 4 Kbyte 10. Port serial full dupleks 11. Kemampuan untuk melaksanakan operasi aritmetika dan operasi logika 12. Kecepatan melaksanakan instruksi per siklus 1 mikrodetik pada frekwensi12MHz. Keluarga mikrokontroler adalah suatu alat elektronika yang paling populer saat ini. Keluarga ini diawali oleh Intel yang mengenalkan IC mikrokontroler type 8051 pada awal tahun 1980-an, 8051 termasuk sederhana dan harganya murah sehingga banyak digemari. Sampai kini sudah ada lebih dari 100 macam mikrokontroler turunan 8051, sehingga terbentuklah sebuah keluarga besar mikrokontroler dan disebut sebagai MCS51. Universitas Sumatera Utara ICAT89C51 hanya memerlukan tambahan 3 kapasitor,1 resistor dan 1 Xtal serta catu daya 5 Volt. Kapasitor 10 µF dan resistor 10 Kohm dipakai untuk rangkaian reset, dengan adanya rangakaian Reset ini AT89C51 otomatis di reset begitu rangkaian menerima catu daya. Xtal dengan frekwensi maksimum 24 Mhz dan 2 kapasitor 30 pico Farad dipakai untuk melengkapi rangkaian osilator pembentuk clock yang menentukan kecepatan kerja mikrokontroler. 2.1.3 Fungsi-fungsi kaki pada Mikrokontroler AT89C51 IC 8051 mempunyai 40 kaki, dengan 32 kaki dipakai sebagai port-port multiguna, kaki sebagai sumber tegangan, kristal, dan kaki-kaki untuk kendali(pembacaan memori). Gambar 2.2. memperlihatkan diagram pin mikrokontroler AT89C51 Berikut adalah fungsi-fungsi kaki mikrokontroler 8051 standar. 1. P1.0-P1.7 (port 1) Port 1 merupakan port 8 bit dua arah (input/output). Port satu bisa diakses per-bit. 2. Port 3 merupakan port 8 bit dua arah (input/output). Selain berfungsi sebagai port I/O, P3 juga mempunyai fungsi khusus seperti pada tabel 2.1. Universitas Sumatera Utara Tabel 2.1. Fungsi khusus port 3 Port Fungsi khusus P3.0 RXD (merupakan masukan untuk port serial) P3.1 TXD (merupakan output dari port serial) P3.2 INT0 merupakan masukan untuk interupsi eksternal 0 P3.3 INT1, merupakan masukan untuk pulsa external 1 P3.4 T0 merupakan masukan untuk pulsa external timer 0 P3.5 T1 merupakan masukan untuk pulsa eksternal timer 1 P3.6 WR merupakan sinyal tulis (write strobe) untuk menulis data eksternal. Aktif rendah P3.7 RD merupakan sinyal baca (Read strobe) untuk membaca data dari memori Eksternal. Aktif rendah. 3. Port2.0-Port2.7 Port 2 mempunyai lebar 8 bit dua arah atau input/output. Selain sebagai input dan output Port 2 memiliki fungsi khusus yaitu pada saat menjalankan program dari memori program eksternal atau pada saat mengakses memori data eksternal yang menggunakan perintah 16 bit. Atau alamat orde tinggi A8-A15. 4. Pin 32 sampai 39 (Port 0) Port 0 merupakan Port keluaran/masukan (I/0). Sebagai Port keluaran,. Port 0 dapat digunakan sebagai masukan-masukan berimpedansi tinggi. Selain sebagai input output P0 memiliki fungsi khusus yaitu sebagai bus data (DO-D7) dan bus alamat orde rendah (A0-A7) yaitu pada saat pemakaian memori exsternal. Universitas Sumatera Utara 5. RST berfungsi sebagai mengembalikan kerja mikro ke awal program yang berada di ROM. 6. XTAL 1 dan XTAL 2 XTAL 1 merupakan keluaran dari rangkaian penguat osilator internal, sedangkan XTAL 2 merupakan masukan kepenguat osilator internal, sebuah kristal dan dua buah kapasitor yang dihubungkan ke pin ini sudah cukup untuk menyediakan sinyal detak (clock) untuk mikrokontroler. 7. VCC dan GND VCC dan GND merupakan pin untuk tegangan DC. Mikrokontroler 8051 standar membutuhkan tegangan DC sebesar 5 Volt agar bisa bekerja dengan baik. 8. Pin 29 (PSEN) PSEN (Program Store Enable) adalah pulsa pengaktif untuk membaca memori luar. Gambar 2.2. Diagram pin Mikrokontroler AT 89C51 Universitas Sumatera Utara 9. ALE/PROG Berfungsi untuk demultiplexer pada saat Port 0 bekerja sebagai data bus (pengaksesan memori eksternal). Pada paruh pertama memory cycle, Pin ALE mengeluarkan sinyal latch yang menahan alamat ke eksternal register. Pada paruh kedua memory cycle, Port 0 digunakan sebagai data bus. Jadi fungsi utama dari ALE adalah untuk memberikan signal ke IC latch (bisa 74CT573) agar menahan/ menyimpan address dari port 0 yang akan menuju memori eksternal, dan selanjutnya port 0 akan mengeluarkan data melalui port 0 juga. 10. EA /VPP EA (Eksternal Access) digunakan untuk memilih penggunaan memori. Jika EA high maka yang dipilih adalah memori internal, jika EA low atau dihubung ke GND maka yang dipilih atau memori yang dipakai adalah memori luar. 2.1.4 a. Register Fungsi Khusus Akumulator ACC digunakan sebagai register utama dalam proses aritmatik dan penyimpanan data sementara. Dalam penulisan instruksi ACC ditulis A. ACC menempati alamat E0h. Register ini bisa diakses per byte maupun per bit. Universitas Sumatera Utara b. Register B Register B menempati alamat F0h. Register ini dipakai bersama-sama dengan Register A pada proses aritmatik (perkalian dan pembagian). Register B juga bisa diakses Per byte dan per bit. c. PSW (Program Status Word) Program Status Word atau PSW berisi bit-bit yang berkaitan dengan kondisi CPU. Status yang tersimpan dalam PSW meliputi : carry bit, auxiliary carry (untuk operasi BCD), dua bit pemilih bank register, overflow flag, parity, dan dua flag status yang bisa didefiniskan sendiri (user definable). d. P0 - P3 (Register Port) Register port merupakan SFR yang mengatur kerja port-port 8051(P0-P3). Register ini merupakan alamat Latch dari masing-masing port. Menulis atau membaca latch ini sama dengan menulis atau membaca latch yang bersangkutan sehingga data data bisa ditulis ke dan dibaca dari masingmasing port 8051. Mov 80h,#45h Sama artinya dengan Mov P0,#45h e. Data Pointer (DPTR) dan Stack Pointer (SP) Data pointer (DPTR) adalah register 16 bit yang biasa dipakai untuk pengalamatan data 16 bit. Misalnya pada saat membaca atau menulis RAM eksternal (dengan perintah MOVX). DPTR menempati dua alamat dalam memori SFR 82h dan 83h. DPTR bisa diakses sebagai register 8 bit Universitas Sumatera Utara dengan nama DPL (DPTR bit 0 - bit 7) dan DPH (DPTR bit 8-bit 15). DPTR tidak bisa diakses per bit. Stack pointer merupakan register 8 bit, dipakai untuk menyimpan data sementara pada saat perintah push, pop dan call, ret. Misalnya suatu rutin yang memakai register A akan memanggil (call) subrutin yang juga memakai register A, maka agar data register A pada rutin pertama tidak dimodifikasi oleh subrutin yang dipanggil, data register A harus disimpan dulu di SP (dengan perintah push). Setelah subrutin selesai dikerjakan, data register A yang tersimpan di SP di baca kembali (melalui perintah pop) dan disimpan di register A. Perintah call akan menyimpan isi PC (program counter) ke dalam SP dan mengambilnya kembali setelah instruksi ret. Pada saat reset SP memiliki alamat 07h, namun karena SP akan ditambahkan satu sebelum data disimpan melalui perintah push, tumpukan data yang disimpan akan dimulai pada alamat 08h. Alamat ini menempati memori internal 8051 SP tidak bisa dialamati per bit. 2.1.5 Struktur Memori Mikrokontroler MCS-51 memiliki kendali yang berbeda untuk mengakses memori RAM atau memori data dan ROM atau memori program. Kendali untuk memori program adalah PSEN dan kendali untuk memori data adalah RD. Mikrokontroler MCS-51 memiliki lebar bus alamat 16 bit, sehingga memori dapat diakses sebesar 2×64 KB. Memori program internal dipakai jika Pin EA dihubungkan ke VCC. Sedangkan kalau EA dihubungkan ke GND maka memori Universitas Sumatera Utara program akan diakses eksternal. Untuk memori data internal MCS-51 adalah sebesar 128 byte. Jika dipakai memori data Eksternal dapat diakses sebesar 64 KB. 2.1.5.1 Memori RAM Pemakaian RAM harus diperhatikan agar tidak tumpang tindih dengan memori stack pointer (SP). Salah satu kesalahan mikrokontroler jika Pemakaian RAM tumpang tindih dengan SP adalah memori pada RAM internal akan hilang jika di reset. Tabel 2.2. memperlihatkan Struktur RAM 128 byte.Memori internal RAM 128 byte bisa dibagi menjadi 3 area: Tabel 2.2. Struktur RAM 128 byte 30H-7FH Area scratch pad 80 byte 20H-2FH Area yang bisa dialamati per Bit (16 byte) 00H-1FH Bank-bank register (32 Byte) 1. Bank-bank Register Bank register dibagi menjadi 4 grup yaitu bank 0 sampai bank 3. masing masing bank menempati alamat sebesar 8 byte. Tabel 2.3. adalah susunan bankbank register. Universitas Sumatera Utara Tabel 2.3 Susunan bank-bank register Alamat Bank Register RS1,RS0 00-07 Bank 0 00 08-0F Bank 1 01 10-17 Bank 2 10 18-1F Bank 3 11 Masing-masing alamat dalam satu grup diberi nama R0-R7. Alamat R0-R7 ditentukan oleh Bank register yang aktif saat itu. Semua alamat R0-R7 bisa di alamati dengan model pengalamatan langsung. R0 dan R1 juga bisa dialamati dengan model pengalamatan tak langsung. Pada model pengalamatan tak langsung R0 dan R1 menyimpan alamat RAM internal yang akan diakses. 2. Memori Yang Bisa Dialamati Per-Bit Area ini menempati alamat 20H-2FH (16 Byte) sebagai byte dan 00H07FH (128bit) sebagai alamat bit. Area memori ini berfungsi untuk menyimpan tipe data bolean atau 2 keadaan. Ada 2 cara untuk mengakses memori ini. - Cara mengakses sebagai byte bisa dilakukan dengan pengalamatan langsung, misal. Mov 20H, #20H. Akan menulis data 45 H ke alamat 20H. - Pengaksesan secara bit dilakukan dengan mengakses alamat bit yang bersangkutan,misal. Mov C,13H Universitas Sumatera Utara Akan memindahkan alamat pada bit ke-13 ke bit C (carry). Alamat 13H adalah bit ke-3 dari alamat 22H. Bahasa assembler MCS-51 memiliki penulisan yang lain untuk mengakses bit ke-3 yaitu 22.3H,sehingga Mov C,22.3H 3. Area Memori Scratch Patch Area memori ini yang disebut area scratch patch memory menempati alamat paling atas RAM internal sebesar 80 byte (alamat 30H-7FH). Area ini hanya bisa diakses sebagai byte dengan mode pengalamatan langsung dan tak langsung. 2.1.5.2 Memory ROM ROM (read Only memory) isinya tidak berubah meskipun IC kehilangan catu daya, dipakai untuk menyimpan program, Begitu catu daya ada maka IC akan langsung reset dan akan menjalankan program-program yang ada pada ROM. Sesuai dengan penggunaanya ROM disebut sebagai memori program. Memori ROM hanya sebagai memori program dan tidak bisa di tulis ke ROM saat mikrokontroler sedang bekerja. 2.1.5.3 Antar Muka Memori Eksternal Gambar 2.3. 89C51 mengakses EPROM dan RAM Eksternal Universitas Sumatera Utara Memori program (ROM) dan memori data (RAM) eksternal diakses dengan menggunakan P0 dan P2 sebagai bus data dan bus alamat. P0 akan menyediakan jalur data yang di-multipleks dengan jalur alamat orde rendah (A0A7), dan P2 menyediakan jalur alamat orde tinggi (A8-A15). Konfigurasi pengaksesan memori eksternal ditunjukkkan pada gambar 2.2. (EFROM 64 KB dan RAM 32 KB). Konfigurasi ini memisahkan antara memori program(ROM) dengan Memori data (RAM).Kendali sinyal baca untuk ROM adalah PSEN sedangkan RAM mendapat sinyal baca dan sinyal tulis dari P3.7(RD) dan P3.6(WR), sementara EPROM tidak mendapat sinyal kendali tulis. Pin EA dihubungkan ke ground sehingga 8051 hanya akan melaksanakan perintahperintah yang tersimpan di EPROM eksternal. P0, selain dihubungkan ke jalur data EPROM dan RAM, juga dihubungkan dengan masukan latch agar alamat orde rendah (A0-A7) yang dikeluarkan oleh P0 bisa dipisahkan dari jalur data EPROM. Pada saat P0 mengeluarkan alamat yang valid, ALE akan memberikan pulsa sehingga sehingga IC latch akan menyimpan alamat ini dan memberikannya ke jalur Alamat EPROM dan RAM. Bersamaan dengan itu, P2 akan mengeluarkan alamat orde tinggi (A8-A15) yang secara langsung terhubung dengan jalur alamat EPROM dan RAM. PSEN akan diaktifkan 2 kali setiap satu siklus mesin saat membaca program dari EPROM eksternal. Saat PSEN aktif (berlogika 0) EPROM akan mengeluarkan data yang diterjemahkan sebagai perintah yang harus dijalankan Universitas Sumatera Utara oleh mikrokontroler. Pada saat mengakses RAM, PSEN berada pada logika tinggi. Penulisan ke RAM dilakukan dengan mengaktifkan sinyal tulis (RD=1 dan WR=0), CPU akan mengirimkan data ke RAM setelah terlebih dahulu mengirimkan alamat RAM. Yang akan dituliskan. Sementara itu, pembacaan dilakukan dengan mengaktifkan sinyal baca (RD=0 dan WR=1), CPU akan memberikan alamat RAM yang akan dibaca, mengaktifkan sinyal baca dan membaca data RAM dari jalur data. Osilator Osilator berfungsi untuk menyediakan sinyal clock dan pewaktuan bagi semua perangkat internal 8051. Untuk menyediakan sinyal Clock digunakan dengan dua cara yaitu: 1. Dengan menggunakan pembangkit frekwensi eksternal seperti pada gambar 2.4. Gambar.2.4. Pemakaian osilator eksternal - Pin Xtal satu pada mikrokontroler 8051 dihubungkan ke keluaran pembangkit frekwensi eksternal. - Pin Xtal dua dibiarkan mengambang. Universitas Sumatera Utara - Pin Ground pada pembangkit frekwensi eksternal dihubungkan ke Ground pada mikrokontroler 8051. 2. Dengan menggunakan Kristal dan 2 kapasitor 30 pF dan 47 pF, Seperti pada gambar 2.5. Hal yang paling mendasar dari osilator sebenarnya adalah untuk menentukan siklus mesin. Siklus mesin adalah waktu minimum yang diperlukan oleh mikrokontroler untuk menjalankan satu perintah. Siklus mesin ini akan menentukan kecepatan mikrokontroler (seberapa cepat mikrokontroler menjalankan suatu perintah). Satu siklus mesin mikrokontroler 8051 adalah 12 kali periode frekwensi osilator (dengan frekwensi 12 Mhz), maka satu siklus mesin adalah 1/12 dikali 12 Mhz. Gambar 2.5 Pembangkit sinyal clock internal Jadi kecepatan satu siklus mikrokontroler 8051 jika frekwensi pada XTAL1 12 Mhz adalah 1 Mhz atau 1 mikro detik. Berarti untuk melakukan satu perintah mikrokontroler 8051 hanya dalam satu mikro detik. Atau 1 juta perintah dalam satu detik. Universitas Sumatera Utara 2.1.6 Central Processing Unit (CPU) CPU terdiri atas dua bagian, yaitu unit pengendali (control unit) serta unit aritmetika dan logika (ALU). Fungsi utama unit pengendali adalah mengambil, mengkode, dan melaksanakan urutan instruksi sebuah program yang tersimpan dalam memori. Unit pengendali menghasilkan dan mengatur sinyal pengendali yang diperlukan untuk menyerempakkan operasi, aliran, dan instruksi program.Unit aritmetika dan logika berfungsi untuk melakukan proses perhitungan yang diperlukan selama program dijalankan serta mempertimbangkan suatu kondisi dan mengambil keputusan yang diperlukan untuk instruksi-instruksi berikutnya. 2.2 Penggunanaan Softwere 8051 IDE Softwere 8051 IDE ini digunakan untuk menulis program dalam bahasa assembler. Setelah program assembler selesai ditulis kemudian di-save dan di assemble. Program di assemble dengan tujuan untuk mengecek kesalahan penulisan. Jika masih ada kesalahan penulisan, maka softwere 8051 memberi peringatan, sehingga program dapat diubah sampai tidak ada pesan peringatan lagi. 2.3 Penggunaan Softwere Downloader Softwere downloader digunakan agar downloader dapat mendownload program assembler ke mikrokontroler AT89C51. Softwere dapat dijalankan jika Universitas Sumatera Utara komputer terhubung dengan alat downloader beserta mikrokontroler yang digunakan. Cara menggunakan softwere downloader adalah dengan meng-klik open file untuk mengambil program assembler dari hasil kompilasi, kemudian klik Auto programming untuk mengisikan hasil kompilasi tersebut ke mikrokontroler. 2.4. Mode-Mode Pengalamatan Data atau operan bisa berada di tempat yang berbeda sehingga dikenal beberapa cara untuk mengakses data tersebut. Inilah yang dikenal sebagai mode pengalamatan. Beberapa mode pengalamatan yang dikenal antara lain: 2.4.1 Mode Pengalamatan Segera (immediate addressing mode) Mode pengalamatan ini menggunakan konstanta. Data konstanta ini merupakan data yang menyatu dengan instruksi. Contoh instruksinya: MOV A, #20 h Instruksi tersebut diatas mempunyai arti bahwa data konstantanya, yaitu 20h perlu disalin ke akumulator. Tanda ‘#’ dipakai untuk menunjukan bahwa data berupa konstanta. 2.4.2. Mode Pengalamatan Langsung (direct addressing mode) Cara ini dipakai untuk menunjuk data yang berada di suatu lokasi memori. Contoh instruksinya: MOV A, 30h Instruksi ini mempunyai arti agar data pada alamat 30h diambil dan dipindahkan ke akumulator. Bila diperhatikan, maka kita akan bisa lihat bahwa Universitas Sumatera Utara instruksi diatas tidak menyertakan tanda ‘#’. Tanpa tanda ‘#’, maka data diartikan sebagai alamat memori. 2.4.3 Mode Pengalamatan Tidak Langsung (indirect addressing mode) Mode pengalamatan ini dipakai untuk mengakses data yang alamatnya berada dalam suatu register. Contoh instruksi: MOV A, @R0 Arti dari instruksi tersebut adalah data yang alamatnya berada di register R0 disalin ke akumulator. Tanda “@” menyatakan bahwa alamat lokasi data berada dalam suatu register. Jadi data tersebut sendiri tidak berada di R0. Yang berada di R0 adalah alamatnya. 2.4.4 Mode Pengalamatan Register (register addressing mode) Mode pengalamatan ini dipakai untuk mengakses suatu data yang tersimpan dalam register. Contoh instruksi: MOV A, R0 Arti dari instruksi diatas adalah bahwa data pada register R0 disalin ke akumulator. Jadi, berbeda dengan mode pengalamatan tidak langsung yang menjadikan register sebagai tempat penyimpanan alamat data, maka pada mode pengalamatan register ini, data disimpan langsung di register. 2.4.5 Mode Pengalamatan Berindeks Mode pengalamatan ini dipakai untuk mengakses data yang tersimpan dalam memori program. Seperti yang telah dibahas sebelumnya, memori program bisa menyimpan data yang bisa diakses hingga 64 Kb. Keuntungan dari Universitas Sumatera Utara menyimpan data di memori program adalah karena memori program berupa ROM (non-volatile) sehingga data tersimpan terus menerus. Contoh instruksi: MOVC, A, @A + DPTR Arti instruksi diatas adalah data yang lokasinya disimpan di A+ DPTR dipindahkan ke akumulator. Perhatikan bahwa perintah yang digunakan adalah MOVC, bukan MOV. MOVC menandakan bahwa data yang diakses berada di memori program sedangkan MOV digunakan untuk mengakses memori data. 2.5 Bus-Bus Pada AT89C51 1. Bus Alamat Bus alamat berfungsi sebagai lintasan saluran pengalamatan antara alat dengan sebuah computer. Pengalamatan ini harus ditentukan terlebih dahulu untuk menghindari terjadinya kesalahan pengiriman sebuah instruksi dan terjadinya bentrok antara dua buah alat yang bekerja secara bersamaan. 2. Bus Data Bus data merupakan sejumlah lintasan saluran keluar-masuknya data dalam suatu mikrokontroler. Pada umumnya saluran data yang masuk sama dengan saluran data yang keluar. 3. Bus Kontrol Bus control atau bus pengendali ini berfungsi untuk menyerempakkan operasi mikrokontroler dengan operasi luar. 2.6 Amplitudo Shift Keying (ASK) Universitas Sumatera Utara Modulasi dapat diartikan dengan mengatur atau menyetel. Dalam bidang telekomunikasi, modulasi berarti mengatur suatu parameter dari suatu pembawa (carrier) berfrekuensi tinggi dengan pertolongan sinyal informasi yang berfrekuensi lebih rendah. Modulasi amplitudo juga berarti suatu bentuk modulasi dengan cara memvariasikan amplitudo sinyal pembawa secara proposional berdasarkan frekuensi sinyal masukan, dengan frekuensi sinyal pembawa tetap konstan. Tujuan utama dari proses modulasi adalah untuk mengefisiensikan dimensi antena, karena kebanyakan sinyal - sinyal informasi yang dikirimkan mempunyai orde kilohertz (kHz). Radiasi elektromagnetis yang efisien menggunakan dimensi antena yang besarnya sama dengan panjang gelombang (_) dari sinyal yang sedang dipancarkan. Hubungan antara frekuensi (f) dan panjang gelombang (_) adalah: c λ = = ..................................................... (1) f Gelombang pembawa selalu berbentuk sinusoida, perubahan antara tegangan dan waktu dari gelombang dapat dinyatakan dengan Persamaan 2.2: sin( ) max e = Ec w t +q c .......... (2) Parameter - parameter yang dapat dimodulasi adalah: 1. Ec maks untuk modulasi amplitudo (AM) 2. fc (atau _c=2_fc) untuk modulasi frekuensi (FM) 3. _ untuk modulasi fasa (PM) Universitas Sumatera Utara Pada modulasi amplitudo, proses modulasi dilakukan dengan cara mengubah - ubah amplitudo gelombang pembawa sinusoidal. Sinyal yang memodulasi ditunjukkan oleh Persamaan 2.3 : Em= Em t m c sin wc max = ............................. (3) Pada sebuah situasi, sinyal baseband yang ditransmisikan memiliki dua kemungkinan nilai informasi yaitu antara nol (0) dan satu (1). Karena kemungkinan nilai informasinya tersusun dari dua keadaan tersebut, maka selanjutnya sistem ini dikenal dengan ASK biner atau kadang lebih disukai dengan menyebutnya sebagai BASK yang merupakan singkatan dari binary amplitude shift keying. Bentuk sinyal termodulasi dalam hal ini dapat didekati dengan sebuah persamaan matematik: v(t) = Vc/2 [1 + mvm(t)]cos(2_ct).............. (4) dengan : v(t) = sinyal termodulasi Vc= amplitudo sinyal pembawa vm = sinyal pemodulasi yang bernilai 1 atau 0 m = indek modulasi Wc = 2μfc = frekuensi pembawa dalam nilai radian Dihasilkan dua bentuk sinyal, dengan nilai vm(t) = 0 atau 1 untuk mengirimkan nilai informasi biner nol (0) atau satu (1). vm(t) bisa juga bernilai 1 atau –1, sehingga dapat dipertimbangkan sebagai data bipolar ternormalisasi. Indek modulasi (m) dapat bernilai 0< m < Universitas Sumatera Utara (a) (b) (c) Gambar 2.6 Bentuk gelombang ASK dengan indek modulasi (a) m = 0 (b) m = ½ (c) m = 1 Sistem binary ASK memiliki dua macam amplitudo yang mungkin membawa informasi, yaitu high untuk nilai informasi ‘1’ dan low untuk nilai informasi ‘0’. Hanya satu bit untuk setiap pengiriman sebuah simbol. Untuk meningkatkan laju bit, dapat dilakukan dengan cara mengirimkan lebih dari satu bit untuk setiap simbol yang akan dikirimkan, sehingga tidak perlu memperbesar lebar pita pada sistem komunikasi yang digunakan. Karena tetap menggunakan teknik dasar ASK dan setiap simbol tersusun lebih dari satu bit, Universitas Sumatera Utara teknik ini dikenal sebagai M - ary ASK. Dengan M menyatakan banyaknya kemungkinan amplitudo yang digunakan untuk mewakili setiap informasi yang dikirimkan. Nilai M ini berkaitan dengan jumlah bit/simbol yang dikirimkan. Suatu teknik mendapatkan bit digital untuk data yang menggunakan Amplitudo sebagai sinyal pembawanya. Dalam proses modulasi ini kemunculan frekuensi gelombang pembawa tergantung pada ada atau tidak adanya sinyal informasi digital. Gambar 2.7: sinyal ASK Gambar 2.8 Modulasi Digital Universitas Sumatera Utara Modulasi digital merupakan proses penumpangan sinyal digital (bit stream) ke dalam sinyal carrier. Modulasi digital sebenarnya adalah proses mengubah-ubah karakteristik dan sifat gelombang pembawa (carrier) sedemikian rupa sehingga bentuk hasilnya (modulated carrier) memiliki ciri-ciri dari bit-bit (0 atau 1).Pada dasarnya dikenal 3 sistem modulasi digital yaitu: ASK, FSK, dan PSK. Amplitude Shift Keying (ASK) adalah modulasi yang menyatakan sinyal digital 1 sebagai suatu nilai tegangan tertentu (misalnya 1 Volt) dan sinyal digital 0 sebagai sinyal digital dengan tegangan 0 Volt. Sinyal ini yang kemudian digunakan untuk menyala-mati-kan pemancar, kira-kira mirip sinyal morse. Mekanisme kerja : Apabila sinyal data mempunyai perbedaan dengan sinyal pembawa maka bit digital adalah 1, dan apabila sinyal data sama dengan sinyal pembawa maka bit digital adalah 0. Frequency Shift Keying (FSK) atau pengiriman sinyal digital melalui penggeseran frekuensi. Metode ini merupakan suatu bentuk modulasi yang memungkinkan gelombang modulasi menggeser frekuensi output gelombang pembawa. Pergeseran ini terjadi antara harga-harga yang telah ditentukan semula dengan gelombang output yang tidak mempunyai fase terputus-putus. Phase Shift Keying (PSK) atau pengiriman sinyal digital melalui pergeseran fase. Metode ini merupakan suatu bentuk modulasi fase yang memungkinkan fungsi pemodulasi fase gelombang termodulasi di antara nilainilai diskrit yang telah ditetapkan sebelumnya. Dalam proses modulasi ini fase Universitas Sumatera Utara dari frekuensi gelombang pembawa berubah-ubah sesuai dengan perubahan status sinyal informasi digital. Sudut fase harus mempunyai acuan kepada pemancar dan penerima. 2.6.1 Pemancar TLP434A Modul RF buatan LAIPAC ini sering sekali digunakan sebagai alat untuk komunikasi data secara wireless. Biasanya kedua modul ini dihubungkan dengan mikrokontroler atau peralatan digital yang lainnya. Input data adalah serial dengan level TTL (Transistor Transistor Logic). Jarak pancar maksimum dari modul RF ini adalah 100 meter tanpa halangan dan 30 meter di dalam gedung. Ukuran ini dapat dipengaruhi oleh faktor antena, kebisingan, dan tegangan kerja dari pemancar. Panjang antena yang digunakan adalah 17 cm, dan terbuat dari kawat besi. Pin 1: GND Pin 2: Data in Pin 3: Vcc Pin 4: Antena (RF Output) Frequency 315, 418 and 433.92 Mhz Modulation : ASK Universitas Sumatera Utara Operation Voltage : 2- 12 Vdc Gambar.2.9. TLP434 Tabel.2.7 Data seat TLP434A s Parameter Vcc Min Typ Max 2.0 - 12.0 Icc 1 Operating supply voltage Peak current(2v) Uni t V - - 1.64 mA Icc 2 Peak current - - 19.4 mA Vh Input high voltage Vcc+0.5 V Input low voltage Vcc0.5 - Vcc VI - 0.3 V F0 Apsolute Frekuwensi RF Otput power50 ohm Idata= 100uA(high) Idata= 0 uA(low) 315MhZ modul 314.8 315 315.2 Vcc = 9v-12v - 16 - Vcc = 5v-6v - 14 - External 512 4.8K 200k MH z dB m dB m Bps P0 DR Data Rate Contions Universitas Sumatera Utara Encoding Gambar.2.10. Aplikasi TLP434A HT 12E Rangkaian Pemancar Gambar 2,11. Blok diagram pemamcar Tabel.2.8 data seat RPL434A Simbol Parameter Vcc Operating supply Conditions Min Typ Max Unit 3.3 5.0V 6.0 V Universitas Sumatera Utara voltage Itot Operating current Vdata Data out Idata=+200uA - 4.5 Vcc- - mA Vcc V 0.5 Gambar.2.12.B Aplikasi RLP434A Rangkain Penerima HT 12D AT 89C51 Gambar.2.13. Blok diagram pemancar Rangkai pemancar TPL434A dan rangkain penerima RLP434A ini bayak digunakan pada robot dan alat komkunikasi buatan manusia. Universitas Sumatera Utara