Catatan Kuliah MA2081 Statistika Dasar “Orang Cerdas Belajar Statistika” Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MAK6281 Topik Statistika IV Jadwal kuliah: Senin, 13-; Rabu, 9Silabus: - Statistika deskriptif - Peluang - Peubah acak dan fungsi peluang/distribusi - Distribusi diskrit dan kontinu - Distribusi sampel - Statistika inferensi: selang kepercayaan - Statistika inferensi: uji hipotesis - Analisis variansi - Analisis regresi dan korelasi Buku teks: Ronald Walpole, Raymond Myers, Sharon Myers, Keying Ye, 2007, Probability and Statistics for Engineers and Scienctists. Penilaian: - Ujian 2 kali (75%); UTS - 9 Maret 2015, Pukul 13.00 - Kehadiran/PR/Tugas (15%) - Praktikum (10%) 2 Bab 1 - Statistika Deskriptif Silabus: Jenis data, ukuran pusat/lokasi, ukuran penyebaran, koefisien variasi, observasi luar, data kelompok, distribusi frekuensi, grafik Statistika adalah ilmu yang digunakan untuk mengumpulkan, mengorganisasi, melakukan inferensi dan menafsirkan data. Secara singkat, statistika adalah ilmu/pekerjaan untuk meyimpulkan tentang suatu fenomena pada populasi menggunakan sampel. Kajian awal dan utama dalam analisis data adalah statistika deskriptif. Kita dapat menghitung berbagai statistik dan membuat grafik serta memberikan interpretasi. Kesimpulan yang diberikan dalam statistika deskriptif bersifat subyektif; walau demikian, kesimpulan yang salah akan terlihat. Tujuan yang ingin dicapai dalam memahami statistika deskriptif, secara detil, adalah 1. membedakan jenis data dan memahami data 2. menghitung dan memaknai ukuran lokasi/pusat 3. membedakan variansi dan koefisien variasi 4. mengamati observasi luar 5. memahami data kelompok 6. menentukan distribusi frekuensi 7. membuat dan menafsirkan grafik Data, Jenis Data, Memahami Data Data adalah hasil observasi tunggal (datum) yang didapat baik secara langsung (observasi/survey, praktikum) ataupun tidak langsung (buku, koran, internet). Data merupakan sumber utama analisis data. Pengumpulan, pengorganisasian dan pengolahan data merupakan pekerjaan statistika yang menuntut kerapian dan detil. 3 Dalam praktiknya, data yang kita kumpulkan dapat dikelompokkan menjadi data kategorik atau data numerik. Hal ini merujuk pada sifat data yang memiliki label (kategorik) atau memiliki nilai (numerik). Data dapat pula dibedakan menjadi jenis data berikut: • nominal (jenis kelamin, golongan darah) • ordinal (tingkat kecemasan, tingkat nyeri) • rasio/interval (denyut nadi, tekanan darah, nilai ujian) Latihan: Perhatikan kalimat-kalimat berikut. Tentukan jenis datanya (nominal, ordinal, rasio/interval). (a) “dr. KS, SpD. mengatakan bahwa penyakit Noor sudah kronis, bukan akut” (b) Wanda dan Windi berdebat tentang harga mobil yang kiranya layak untuk mobil yang hendak mereka beli (c) “Apakah anda lahir pada bulan September?” Diskusi: Perhatikan data jarak tempuh (dalam meter) ke sekolah dari beberapa siswa di suatu daerah. Table 1: Data jarak tempuh ke sekolah dari beberapa siswa. Siswa1 2 3 4 5 Jarak 3265 3260 3245 3484 4146 Siswa6 7 8 9 10 Jarak 3323 3649 3200 3031 2069 Siswa11 12 13 14 15 Jarak 2581 2841 3609 2838 3541 Siswa16 17 18 19 20 Jarak 2759 3248 3314 3101 2834 Apakah analisis data rasio/interval akan lebih “kaya” dibandingkan dengan data nominal/ordinal? Apa yang bisa kita katakan tentang data tersebut? Dapatkah data numerik diubah menjadi data kategorik? 4 Diskusi: Data peserta ujian di beberapa sekolah di suatu kecamatan tercatat dalam diagram batang dan daun sebagai berikut. Untuk membaca data, kita perhatikan kolom disebelah kiri garis yang menyatakan “angka puluhan” dan angka-angka disebelah kanan garis yang menyatakan “angka satuan”. Sebagai contoh, “3—5” berarti jumlah peserta ujian di sekolahg tertentu adalah 35 orang. 0 1 2 3 357889 02 5 Apakah data dalam bentuk diagram batang dan daun cukup informatif? Dapatkah data numerik tersebut diubah menjadi data kategorik? Ukuran Pusat/Lokasi dan Penyebaran Setelah data dikumpulkan dan diorganisasikan, kita dapat memberikan tafsiran sederhana melalui ukuran atau statistik. Beberapa ukuran yang dikenal antara lain mean dan variansi/deviasi standar yang menyatakan nilai tengah dan simpangan data. Ukuran atau statistik yang melekat pada data dapat dibagi menjadi • Ukuran pusat/lokasi: mean (aritmetik), median, modus • Ukuran penyebaran: jangkauan, variansi/deviasi standar, kuartil Misalkan data sampel adalah x 1 , x2 , . . . , x n , dimana xi menyatakan titik sampel ke-i. Mean (aritmetik) didefinisikan sebagai n ∑ x̄ = i=1 n xi . 5 Sifat-sifat mean (a) Untuk suatu konstanta k, n ∑ k xi = · · · i=1 (b) Jika yi = xi + k maka ȳ = x̄ + k. Buktikan! (c) Jika yi = k xi maka ȳ = · · · . Median atau median sampel seringkali dikatakan sebagai nilai tengah. Dengan demikian, menghitung median haruslah dilakukan pada data yang sudah diurutkan. Definisi median adalah (a) Observasi ke-((n + 1)/2), (n ganjil), atau (b) Nilai tengah dari observasi ke-(n/2) dan ke-((n/2) + 1), (n genap) Diskusi: Bagaimana (perbandingan) nilai mean dan median untuk data yang (i) simetrik, (ii) menceng ke kanan, (iii) menceng ke kiri? Modus atau Mode adalah ukuran pusat yang menyatakan nilai observasi yang paling sering muncul. Menentukan modus dapat dilakukan pada data tanpa diurutkan (meskipun lebih mudah apabila diurutkan lebih dahulu). Latihan: 1. Tentukan ukuran lokasi/pusat dari contoh data diatas 2. Diketahui suatu data tentang jumlah saudara (kandung, angkat, tiri) dari 20 orang siswa sekolah menengah. Apabila setiap titik data ditambah tiga maka nilai mean dan jangkauan menjadi... Ukuran penyebaran menyatakan seberapa jauh data menyebar dari mean. Misalkan kita memiliki dua data sampel. Kedua sampel memiliki mean yang sama, namun mungkin saja memiliki penyebaran data yang berbeda. Beberapa ukuran penyebaran yang dikenal antara lain: 6 1. Jangkauan (Range): R = xmaks − xmin 2. Variansi atau variansi sampel: n ∑ 2 s = (xi − x̄)2 i=1 n−1 Catatan: Deviasi standar atau simpangan baku adalah akar kuadrat dari variansi. 3. Kuartil: Umumnya kita kenal kuartil pertama dan ketiga, dinotasikan dengan K1 dan K3 . Apa yang dapat kita katakan tentang kuartil kedua atau K2 ? 4. Kuantil atau persentil:... Sifat-sifat variansi: Diketahui data sampel x1 , . . . , xn memiliki variansi s2x . Jika data sampel (a) yi = xi + k, (b) yi = k xi , untuk suatu konstanta k, maka s2y = . . . Variansi versus Koefisien Variasi: Kita dapat menghitung suatu ukuran yang mengaitkan ukuran penyebaran (deviasi standar) dengan ukuran lokasi (mean), yaitu koefisien variasi (coefficient of variation atau CV): CV = 100% × (s/x̄) 7 yang tidak dipengaruhi unit ukuran yang dipakai. CV bermanfaat untuk membandingkan variabilitas beberapa sampel yang berbeda relatif terhadap nilai mean-nya. Dapat pula kita membanding CV dari beberapa variabel. Latihan: Data pada tabel berikut menyatakan berbagai faktor yang mempengaruhi masalah pada sistem jantung dan peredaran darah anak. Tentukan CV dan berikan interpretasinya. Table 2: Faktor risiko kardiovaskular pada anak. Tinggi (cm) Berat (kg) Tekanan darah (mm Hg) Kolesterol (mg/dL) n 364 365 337 395 mean 142.6 39.5 104 160.4 s 0.31 0.77 4.97 3.44 CV(%) Mengamati Observasi Luar Observasi luar atau pencilan atau outlier adalah nilai/observasi yang “menyimpang” dari nilai-nilai/observasi yang lain. Observasi luar dapat ditentukan/dihitung dengan melihat apakah ada nilai/observasi yang LEBIH BESAR dari K3 + 1.5 (K3 − K1 ) atau LEBIH KECIL dari K1 − 1.5 (K3 − K1 ), dengan K1 dan K3 adalah kuartil pertama dan ketiga seperti telah dijelaskan sebelumnya. Dalam praktiknya, observasi luar dapat menyatakan sesuatu yang baik/jelek. Misalnya, seseorang dengan tingkat kecerdasan (IQ) yang sangat tinggi (jauh diatas rata-rata alias observasi luar) adalah baik. Seringkali observasi luar diabaikan dalam 8 analisis data meskipun sesungguhnya cara ini tidaklah tepat. Mendeteksi observasi luar adalah sesuatu yang sangat menantang dalam statistika. Diskusi: Sekelompok observasi x1 , . . . , xn memiliki observasi luar xj untuk suatu j. Dapatkah kita membandingkan mean dengan dan tanpa observasi luar? Mungkinkah terdapat lebih dari satu observasi luar? Data Kelompok Pandang data sampel dengan 275 observasi. Ukuran sampel tersebut terlalu besar sehingga menampilkan data apa adanya menjadi tidak efisien. Dengan demikian, data sampel dapat dikelompokkan. Pengelompokan ini dapat pula terjadi (harus dilakukan) karena tingkat keakuratan data yang diambil tidak dapat diperoleh dengan baik. Pengelompokan data memberikan masalah: Berapa banyak kelompok atau interval kelas (class intervals) yang ingin kita buat? Berapa lebar interval (interval width)? Salah satu formula yang bisa kita pakai adalah Formula Sturges, dimana banyaknya interval kelas adalah k = 1 + (3.322 × log10 n), dimana n adalah besar sampel. Lebar intervalnya: w = R/k, dengan R adalah jangkauan. Untuk contoh data sampel dengan 275 observasi, kita peroleh: k ≈ 8, w = (63 − 18)/8 = 5.625 Dengan demikian, lebar kelas interval adalah 5 atau 10. Diketahui obervasi terkecil dan terbesar, berturut-turut, adalah 18 dan 63. Jadi, kelas interval yang bisa dibuat 9 adalah: 10-19 20-29 30-39 40-49 50-59 60-69 Memahami Grafik Tampilan visual (baca: grafik) dari data merupakan salah satu cara untuk memahami dan menginterpretasi data. Grafik bersifat menarik, memudahkan dalam membentuk pola, dan prediktif. Beberapa tampilan visualn untuk data adalah diagram pencar (scatter diagram), diagram bar/batang (bar chart), diagram batang dan daun (stem-and-leaf plot), histogram, box-plot. Diagram pencar merupakan bentuk grafik yang sederhana namun cukup informatif. Diagram ini berupa titik-titik yang menggambarkan nilai observasi. Pola atau kecenderungan data dapat dilihat dengan melihat grafik ini. Diagram batang dan daun memiliki ke-khas-an berupa tampilan nilai utama/pertama (batang) dan nilai satuan/kedua (daun). Diagram ini membantu kita untuk menghitung kuantil/persentil data dengan mudah. 10