II. TINJAUAN PUSTAKA A. Klasifikasi dan Morfologi Leptophryne cruentata Tschudi, 1838 Kodok merah Leptophryne cruentata Tschudi, 1838 termasuk dalam kelas amphibia. Secara taksonomi kodok merah dapat diklasifikasikan kedalam Kingdom Animalia, Phylum Chordata, Sub Phylum Vertebrata, Kelas Amphibia, Ordo Anura, Famili Bufonidae, Genus Leptophryne dan Spesies Leptophryne cruentata Tschudi, 1838 (Iskandar 1998). Jenis katak lain yang termasuk dalam satu marga dengan L. cruentata adalah L. borbonica. Spesies ini juga dikenal dengan nama Bufo cruentatus atau Cacophryne cruentata (Iskandar 1998). Spesies L. cruentata dikenal dengan nama kodok merah, yang mengacu pada bercak kecil yang berwarna merah yang menjadi ciri jenis ini. Kodok merah berukuran kecil ramping, mempunyai sepasang kelenjar parotoid kecil yang kadang-kadang tidak jelas. Bagian atas kepala tidak mempunyai alur bertulang, moncong meruncing, gendang telinga kecil dan tidak jelas. Ujung jari tangan dan kaki agak membengkak. Jari kaki ketiga dan kelima membentuk jaringan sampai ke benjolan sub artikuler. Bagian kulit punggung berbintik-bintik kecil, sedangkan bagian perut halus dengan sedikit bintik-bintik kecil (van Kampen 1923; Liem 1971; Iskandar 1998; Kurniati 2003). Ukuran kodok merah sangat bergantung pada jenis kelaminnya, yakni pada umumnya individu jantan lebih kecil dibanding individu betina. Ukuran SVL (Snout Venth Length) kodok merah, yakni panjang dari moncong sampai tulang ekor tersebut seperti disajikan pada Tabel 1. Tabel 1 Perbandingan ukuran SVL kodok merah di TNGGP dan TNGHS Pencacah Liem (1971) Iskandar (1998) Kurniati (2003) Kusrini et al. (2007b) SVL ♂ 20,0 – 29,8 mm 20,0 – 30,0 mm 25,0 – 30,0 mm 20,0 – 30,0 mm ♀ 25,0 – 39,0 mm 25,0 – 40,0 mm 25,0 - 40,0 mm B. Habitat dan Penyebaran Habitat adalah suatu komunitas biotik atau serangkaian komunitaskomunitas biotik yang ditempati oleh binatang atau populasi kehidupan. Habitat yang sesuai menyediakan semua kelengkapan habitat bagi suatu spesies selama musim tertentu atau sepanjang tahun. Kelengkapan habitat terdiri dari berbagai macam jenis termasuk makanan, perlindungan, dan faktor-faktor lainnya yang diperlukan oleh spesies hidupan liar untuk bertahan hidup dan melangsungkan reproduksinya secara berhasil (Bailey 1984). Krebs (1978) menyatakan bahwa habitat merupakan kisaran (range) lingkungan dimana spesies berada. Definisi lain dinyatakan oleh Goin & Goin (1971) bahwa habitat tidak hanya menyediakan kebutuhan hidup suatu organisme melainkan tentang dimana dan bagaimana satwa tersebut dapat hidup. Menurut Alikodra (2002), suatu habitat merupakan hasil interaksi dari komponen fisik dan komponen biotik. Komponen fisik terdiri atas: air, udara, iklim, topografi, tanah, dan ruang; sedangkan komponen biotik terdiri atas: vegetasi, mikro fauna, makro fauna dan manusia. Jika seluruh keperluan hidup satwaliar dapat terpenuhi di dalam suatu habitatnya, maka populasi satwaliar tersebut akan tumbuh dan berkembang sampai terjadi persaingan dengan populasi lainnya. Habitat utama amfibi adalah hutan primer, hutan rawa, sungai besar, sungai sedang, anak sungai, kolam dan danau (Mistar 2003). Sebagian katak beradaptasi agar dapat hidup di pohon. Walaupun sangat tergantung pada air, katak pohon seringkali tidak turun ke air untuk bertelur. Katak pohon melakukan kawin dan menyimpan telurnya di vegetasi/pohon di atas air. Saat menetas berudu katak akan jatuh ke dalam air (Duellman & Heatwole 1998). Selain itu, juga terdapat katak yang menyimpan telurnya di lubang berair pada kayu dan tanah, di punggung betina atau membawa ke daerah dekat air (Duellman & Trueb 1994). Data penyebaran kodok merah disajikan pada Tabel 2. Tabel 2 Data penyebaran kodok merah TAHUN KOLEKSI TOTAL LOKASI 1932 1959 1964 1972 1 Bogor Curug 5 Cibeureum 118 1 1977 1978 5 1 1984 2003 2004 7 6 2 2 Halimun 2 31 Lebak Saat 132 31 Perbawati 8 8 Salak 3 3 1 Sukabumi TOTAL 1 5 149 1 22 1 1 1 2 2 184 Sumber: Kusrini et.al. 2007c Habitat kodok merah yang terdapat di Taman Nasional Gunung Gede Pangrango juga merupakan sungai-sungai berbatu yang berarus cukup deras dan hanya dijumpai dalam hutan primer (Liem 1971). Hal yang sama juga dikemukan oleh Kurniati (2003) di Taman Nasional Gunung Halimun-Salak, kodok merah terdapat di dalam hutan primer pada ketinggian 1500 meter dari permukaan laut, pada kantung-kantung air sungai kecil berbatu dengan arus cukup deras. 1. Komponen Fisik a. Ketinggian Tempat Kenaikan ketinggian suatu tempat, diikuti dengan penurunan dalam kekayaan jenisnya (MacKinnon 1986). Perubahan besar dalam komposisi jenis terjadi bersamaan dengan adanya peralihan dari habitat dataran rendah ke habitat pegunungan. Semakin tinggi letaknya, komposisi jenis dan struktur hutan berubah menjadi terbatas (Alikodra 2002). Seperti di seluruh daerah di dunia, penurunan suhu akibat peningkatan elevasi akan menimbulkan efek zonasi atau efek lingkar yang kasar dalam posisi tegak seperti garis lintang dari khatulistiwa sampai kutub-kutub utara dan selatan (van Steenis 2006). van Steenis (2006), juga menyebutkan bahwa pembagian zonasi berdasarkan ketinggian terbentuk karena perbedaan kondisi suhu dan iklim. Hal ini mengakibatkan perbedaan komposisi baik flora dan fauna pada setiap zonasi. TNGGP memiliki 3 zonasi atau tipe hutan, yaitu sub montana (100-1500 mdpl), montana (1500-2400 mdpl) dan sub alpin (>2400 m dpl) (BTNGP 1996). Hutan submontana memiliki keanekaragaman flora dan fauna yang tinggi. Ketinggian juga berpengaruh pada penyebaran amfibi. Hasil ulasan Morrison & Hero (2003) menunjukkan bahwa populasi amfibi pada daerah yang tinggi cenderung untuk memiliki periode aktivitas dan musim kawin yang pendek, fase larva atau berudu yang lebih panjang, masa metamorfosis atau perubahan bentuk yang lebih lama, masa dewasa yang lama sehingga mencapai kematangan reproduksi pada umur yang lebih tua, jumlah telur tergantung ukuran tubuh serta menghasilkan telur yang lebih besar. b. Suhu Temperatur merupakan faktor yang penting di wilayah biosfer, karena pengaruhnya sangat besar pada segala bentuk kehidupan. Beberapa kegiatan organisme seperti reproduksi, pertumbuhan dan kematian dipengaruhi oleh suhu lingkungannya (Alikodra 2002). Disamping itu, temperatur pada umumnya mempengaruhi perilaku satwaliar serta berpengaruh terhadap ukuran tubuh serta bagian-bagiannya (Alikodra 2002). Organisme berdarah panas yang memiliki organ yang dapat memproduksi dan mengelola suhu tubuhnya seperti mamalia biasanya beraktivitas di siang hari sedangkan organisme yang tidak memiliki mekanisme khusus pengaturan suhu tubuhnya biasanya beraktivitas di malam hari (nokturnal) seperti pada amfibi dan sebagian dari kelas reptil. Kebanyakan amfibi dapat beraktivitas pada kondisi suhu yang beragam. Banyak faktor yang mempengaruhi pemilihan suhu pada amfibi, tergantung pada jenis, umur dan fase kehidupan, serta pengalaman suhu harian pada masingmasing individu yang berbeda (Stebbins & Cohen 1995). Suhu pada amfibi dipengaruhi oleh lingkungannya karena amfibi tidak memiliki organ khusus untuk memproduksi panas dan mengatur panas pada tubuhnya. Oleh karena itu suhu juga mempengaruhi kehidupan dan penyebaran amfibi. Amfibi memiliki kisaran toleransi suhu yang besar. Perbedaan toleransi ini mengakibatkan perbedaan kebutuhan suhu yang berbeda pada lingkungannya. Beberapa jenis dapat bertahan hidup di daerah yang dingin dan beberapa jenis lainnya dapat hidup pada suhu yang ekstrim tinggi. Beberapa jenis salamander dapat ditemukan beraktivitas pada suhu sekitar 00C bahkan dibawah 00C (Duellman & Trueb 1994), dan beberapa jenis amfibi lainnya dapat hidup diatas suhu 280C bahkan ada satu jenis amfibi yang dapat hidup pada suhu 400C yakni jenis African Foam-Nest Frog (Chiromantis) (Shoemaker et al. 1989 dalam Stebbins & Cohen 1995). Menurut Kusrini (2007a) suhu udara di Taman Nasional Gunung Gede Pangrango berkisar antara 100-230C dan kelembabannya 43-100%. c. Jarak dari sungai atau sumber air Amfibi hidup di dua alam. Sebagian hidupnya berada di lingkungan berair dan sebagian lagi hidup di darat. Dalam masa perkembangbiakan dari berudu sampai katak berkaki kebanyakan ordo anura hidup di dalam air. Heyer et al. (1994) menyatakan bahwa kebanyakan dari larva amfibi hidup di habitat akuatik, termasuk air yang mengalir (sungai besar dan kecil), air yang tidak mengalir (kolam dan danau), serta tempat lainnya seperti lubang pohon, ketiak daun, dan lainnya. Larva anura yang hidup di terestrial biasanya menempati daerah dengan iklim mikro yang mengandung kelembaban tinggi seperti lumut, di bawah atau di dalam kayu yang membusuk dan di lubang pohon. Selama di dalam air, larva bernafas dengan insang dan akan bernafas dengan paru-paru ketika sudah keluar dari air menuju darat. Hal ini menunjukkan bahwa fungsi air bagi kehidupan amfibi khususnya katak dan kodok sangat penting. 2. Komponen Biotik a. Penutupan tajuk Penutupan memiliki pengaruh yang kuat terhadap kodok. Kodok bersembunyi di daerah yang gelap seperti di bawah rimbunan daun, di lubanglubang pohon dan sebagainya yang tidak tersentuh sinar matahari. Penutupan lahan berhubungan langsung dengan suhu dan kelembaban relatif. Hutan dengan penutupan tajuk yang tinggi dapat menyediakan iklim mikro yang lebih dingin karena menyediakan naungan dan mencegah penguapan yang berlebihan (Casey 2001). van Steenis (2006) menyebutkan bahwa vegetasi terutama hutan, sangat penting peranannya bagi perbaikan iklim yang menguntungkan lahan, bagi pembentukan tanah, pencegahan erosi angin, dan pembentukan relung ekologi tertentu bagi tanaman. b. Makanan Menurut Alikodra (2002), semua organisme memerlukan sumber energi melalui makanan. Organisme yang makanannya beranekaragam akan lebih mudah untuk menyesuaikan diri dengan keadaan lingkungannya. Menurut Jaafar (1994), katak merupakan satwa karnivor yang memanfaatkan jenis serangga sebagai pakan Jenis-jenis serangga yang dimanfaatkan juga beragam. Menurut Duelman & Trueb (1994) amfibi hanya memakan jenis serangga yang bergerak. Stebbins & Cohen (1997) menyatakan bahwa terdapat beberapa jenis katak yang memakan jenis mangsa dengan pergerakan yang lambat. Umumnya setiap jenis katak memiliki mekanisme yang berbeda-beda dalam berburu mangsa tergantung pada jenisnya. Jenis katak yang memiliki perawakan gemuk dan mulut yang lebar biasanya mencari mangsa dengan cara diam dan menunggu mangsa dan biasanya memanfaatkan jenis pakan dengan ukuran besar dan memanfaatkan dalam jumlah sedikit (Duelman & Trueb 1994; Stebbins & Cohen 1997). Jenis katak yang memiliki perawakan yang ramping dengan mulut yang meruncing biasanya aktif dalam berburu mangsa dan memanfaatkan mangsa dalam jumlah yang banyak dengan ukuran pakan kecil (Duelman & Trueb 1994; Stebbins & Cohen 1997). Katak memanfaatkan beranekaragam jenis serangga dan tidak bersifat khusus. Hal tersebut merupakan salah satu mekanisme setiap jenis katak dalam melangsungkan kehidupannya (Young 1962). Kusrini et al. (2007c) menyebutkan jenis makanan kodok merah yang ditemukan dalam perut terdiri dari Hymenoptera (semut, 60.38%), Coleoptera (7.55%), Orthoptera (6.60%), Diptera (6.60%), Lepidoptera (4.72%), Hemiptera (1.89%), Collembola (1.89%), Isopoda (0.94%), tumbuhan dan tanah (total 8.49%). C. Pemilihan Habitat Pemilihan habitat yang sesuai merupakan suatu tindakan yang dilakukan satwaliar dalam rangka memperoleh serangkaian kondisi yang menguntungkan bagi keberhasilan reproduksi dan kelangsungan hidupnya (Bolen & Robinson 1995). Individu yang berevolusi secara ideal akan menilai keterkaitan antara korbanan dan keuntungan serta memilih habitat yang dapat memberikan jaminan keberhasilan reproduksi. Individu yang memiliki korbanan rendah akan mengeksploitasi relung yang miskin meskipun peluang hidupnya di tempat lain lebih besar. Faktor yang mendorong terjadinya pemilihan habitat berhubungan dengan laju predasi, toleransi fisiologis dan interaksi sosial. Adapun kondisi mikro habitat tidak menentukan terjadinya pemilihan habitat (Morris 1987). Morris (1987) menyatakan bahwa satwaliar tidak menggunakan seluruh kawasan hutan yang ada sebagai habitatnya tetapi hanya menempati beberapa bagian secara selektif. Pemilihan habitat merupakan suatu hal yang penting bagi satwaliar karena mereka dapat bergerak secara mudah dari satu habitat ke habitat lainnya untuk mendapatkan makanan, air, reproduksi atau menempati tempat baru yang menguntungkan. Beberapa spesies satwaliar menggunakan habitat secara selektif dalam rangka meminimumkan interaksi negatif (seperti predasi dan kompetisi) dan memaksimumkan interaksi positif (seperti ketersediaan mangsa). Pemilihan habitat oleh satwaliar dapat disebabkan oleh tiga hal, yakni: ketersediaan mangsa (pakan), menghindari pesaing dan menghindari predator. Shannon et al. (1975) menyatakan bahwa pemilihan habitat merupakan ekspresi respon yang kompleks pada satwaliar terhadap sejumlah besar variabel yang saling terkait yang menghasilkan lingkungan yang sesuai bagi satwaliar. Variabel tersebut dapat bersifat intrinsik, yakni tergantung pada status fisiologis dan perilaku satwaliar atau ekstrinsik yang tergantung pada faktor-faktor abiotik dan biotik dari lingkungannya. D. Sistem Informasi Geografis (SIG) 1. Definisi Definisi Sistem Informasi Geografis (SIG) selalu berkembang, bertambah dan bervariasi. Hal ini terlihat dari banyaknya definisi SIG yang beredar. Selain itu, SIG juga merupakan suatu bidang kajian ilmu dan teknologi yang relatif baru, digunakan oleh berbagai disiplin ilmu dan berkembang cukup dengan cepat (Prahasta, 2001). Menurut Nuarsa (2005), SIG merupakan suatu alat yang dapat digunakan untuk mengelola (input, manajemen, proses dan output) data spasial atau data bereferensi geografis. SIG adalah sistem yang dapat mendukung pengambilan keputusan spasial dan mampu mengintegrasikan deskripsi lokasi dengan karakteristik fenomena yang ditemukan di lokasi tersebut. Hal yang hampir sama di kemukanan oleh Ekadinata et al. (2008) bahwa SIG adalah sebuah sistem atau teknologi berbasis komputer yang dibangun dengan tujuan untuk mengumpulkan, menyimpan, mengolah dan menganalisis, serta menyajikan data dan informasi dari suatu obyek atau fenomena yang berkaitan dengan letak atau keberadaannya di permukaan bumi. Pada dasaranya SIG dapat dirinci menjadi beberapa subsistem yang saling berkaitan yang mencakup input data, manajemen data, pemrosesan atau analisis data, pelaporan (output) dan hasil analisa. Menurut Prahasta (2001), ada beberapa hal yang menyebabkan penggunaan konsep-konsep SIG menjad menarik untuk digunakan dalam berbagai disiplin ilmu, beberapa diantaranya adalah : 1. SIG cukup efektif dalam membantu proses-proses pembentukan, pengembangan atau perbaikan mengenai gambaran lingkungan yang telah dimiliki oleh setiap orang yang menggunakannya dan selalu berdampingan dengan lingkungan fisik dunia nyata yang penuh dengan kesank-kesan visual. 2. SIG merupakan alat bantu yang menarik dan menantang dalam meningkatkan pemahaman, pembelajaran dan pendidikan mengenai konsep-konsep lokasi, ruang, dan unsur-unsur geografis dipermukaan bumi berikut data-data atributnya. 3. SIG mampu menjawab baik pertanyan spasial maupun non spasial. Stow (1993) menjelaskan peranan SIG dalam memahami fungsi ekologi dan pengaruh manusia terhadap struktur ekologi sebagai berikut : 1. menyediakan sebuah struktur data untuk penyimpana dan pengelolaan data ekosistem untuk wilayah yang cukup luas secara efisien; 2. memungkinkan adanya penggabungan dan pemisahan data pada berbagai skala; 3. dapat digunakan untuk menentukan plot studi dan atau wilayah yang sensitif; 4. mendukung analisis statistik spasial dari penyebaran ekologi; 5. meningkatkan kemampuan ekstraksi informasi penginderaan jauh; dan 6. menyediakan input data/parameter untuk pemodelan ekosistem. Pemetaan serta analisa keruangan yang terkomputerisasi telah dikembangkan secara terus-menerus di berbagai bidang, salah satu diantaranya adalah bidang yang berkaitan dengan pengelolaan sumberdaya alam. Teknologi yang berbasiskan sistem informasi geografi ini telah menjadi sarana atau alat bantu satndar yang digunakan untuk mendukung proses pengambilan keputusan dan pembuatan kebijakan dalam pengelolaan sumberdaya alam (Ekadinata et al., 2008). Penginderaan jauh merupakan ilmu dan seni untuk memperoleh tentang suatu obyek, daerah atau fenomena melalui analisis data data yang diperoleh dengan suatu alat tanpa kontak langsung dengan obyek, daerah atau fenomena yang dikaji (Lilesand & Kiefer 1990). Komponen dasar suatu sistem penginderaan jarak jauh lokal ditunjukkan dengan adanya hal berikut: suatu sumber tenaga yang beragam, atmosfer yang tidak mengganggu, sensor sempurna, serangkaian interaksi yang unik antara tenaga dengan benda di muka bumi, sistem pengolahan data tepat waktu, berbagai penggunaan data. Perkembangan teknologi penginderaan jauh saat ini atau dimasa yang akan datang memberikan kemungkinan memperoleh data untuk inventarisasi sumberdaya alam yang baru, cepat dan akurat. Satelit penginderaan jauh yang sering digunakan untuk melihat penutupan lahan adalah Satelit Landsat. Citra Landsat komposit warna cocok digunakan untuk menggunakan cakupan lahan dan penggunaannya. Salah satu sensor dari satelit landsat adalah sensor TM (Thematic Mapper) yang memiliki resolusi spasial 30x30 meter dengan karakteristik disajikan pada Tabel 3. Tabel 3 Karakteristik Spektral Landsat Thematic Mapper Band Panjang Gelombang Kegunaan Band 1 0,45-0,52 μm Untuk penetrasi tubuh air, pemetaan perairan pantai, membedakan antara tanah dengan vegetasi, tumbuhan berdaun lebar dan konifer Band 2 0,52-0,60 μm Untuk mengukur puncak pantulan hijau saluran tampak bagi vegetasi guna penilaian ketahanan. Band 3 0,63-0,69 μm Band absorbsi klorofil yang penting untuk diskriminasi vegetasi. Band 4 0,76-0,90 μm Menentukan kandungan biomassa dan deliniasi tubuh air. Band 5 1,55-1,75 μm Menunjukkan kandungan kelembaban vegetasi dan tanah juga bermanfaat untuk membedakan salju dengan awan. Band 6 10,40-12,50 μm Band infra merah termal yang penggunaannya untuk analisa penekanan vegetasi, diskriminasi kelembaban tanah dan pemetaan tanah Band 7 2,08-2,35 μm Band yang diseleksi karena potensi untuk membedakan tipe batuan dan untuk pemetaan hidrotermal. Sumber: Lo (1995) 2. SIG dan penginderaan jauh Sistem Informasi Geografi dan penginderaan jauh memiliki keterkaitan yang dinyatakan oleh Howard (1996) bahwa informasi yang diturunkan dari analisis citra penginderaan jauh dilakukan untuk diintegrasikan dengan data yang disimpan dalam bank data SIG. Masukan dari data penginderaan jauh biasanya harus dilengkapi dengan intervensi manusia pada analisisnya. Perkembangan integrasi penginderaan jauh dan sistem informasi geografis adalah estimasi bahwa aliran data memiliki arah yang sama. Aliran yang sebaliknya tidak diinginkan tetapi juga realistis diperlukan dalam analisis penginderaan jauh. Hambatan utama dalam pembiayaan ini adalah biaya untuk membuat basis data digital SIG. Namun hal tersebut dapat ditekan dengan cara peningkatan dan perbaikan tersedianya perangkat keras dan perangkat lunak serta peta-peta digital yang telah tersedia dalam bentuk digital. E. Aplikasi SIG Untuk Konservasi Satwa Liar Terutama Amfibi Keunggulan-keunggulan Sistem Informasi Geografis (SIG) sebagai sebuah perangkat sistem yang mudah dioperasikan dengan kemampuan untuk mengumpulkan, menyimpan dan memunculkan lagi, mentransformasi dan menampilkan data spasial dari dunia nyata untuk sebuah maksud atau tujuan tertentu telah membuat SIG sebagai perangkat yang sangat berguna dalam analisa spasial dan telah diaplikasikan dalam berbagai kegiatan, tidak hanya sekedar pemetaan namun juga pemanfaatannya dalam pengelolaan sumberdaya alam maupun konservasi. Lang (1998) menunjukkan bahwa dalam pengelolaan sumberdaya alam, SIG sangat berperan penting dalam menyediakan kerangka kerja analisis untuk membantu komunitas masyarakat dalam mencari permasalahan-permasalahan yang umum terjadi dan mendiskusikan masalah pembangunannya. SIG dapat digunakan dalam menentukan kesesuaian wilayah untuk pertanian, mengidentifikasi wilayah-wilayah yang terjadi deforestasi, menganalisis dampak asap polusi udara dan pergerakannya, mengidentifikasi perubahan lahan, mendukung wilayah reklamasi lahan bekas tambang, perlindungan wilayah pantai dari pencemaran, pengelolaan habitat hutan maupun untuk penentuan kawasan sebagai habitat satwa langka. Metode penampalan manual dari penentuan kelimpahan suatu spesies dapat dilakukan secara otomatis dengan SIG. Batas-batas di peta dapat diketahui dengan menggabungkan data tentang distribusi faktor-faktor habitat dan dapat digunakan untuk mengidentifikasi komunitas yang jarang. Peta kelimpahan jenis dan peta vegetasi dapat digabungkan untuk membuat peta penggunaan lahan dan peta kesesuaian lahan digunakan untuk mengetahui keadaan saat ini dan kemungkinan potensi penurunan keanekaragaman hayati. Kastanya (2001) dalam penelitiannya tentang karakeristik lanskap Elang Jawa (Spizaetus bartelsi), memanfaatkan program Patch Analyst dalam sistem informasi geografis untuk menduga karakteristik lanskap Elang Jawa di wilayah Pulau Jawa bagian barat. Sedangkan Muntasib (2002) juga memanfaatkan kemampuan analisis spasial SIG dalam menumpangsusunkan data spasial menggunakan model pembobotan. Muntasib mengkombinasikan tiap parameter habitat berdasarkan komponen fisik, biologi dan sosialnya untuk mengetahui pola penggunaan ruang habitat Badak Jawa (Rhinoceros sundaicus) di Taman Nasional Ujung Kulon. Penelitian di bidang amfibi sangat diperlukan karena laporan terakhir menyebutkan populasi amfibi telah menurun drastis hampir di seluruh dunia akibat kerusakan habitat, kehilangan habitat, fragmentasi habitat, dan perubahan iklim global (Pellet 2005). Oleh karena itu, penelitian berbasis SIG sangat diperlukan untuk mempelajari pola spasial yang dilakukan, karena amfibi memiliki siklus hidup yang kompleks dan menempati habitat yang beragam. Munger et al. (1998) meneliti tentang prediksi keberadaan Columbia Spotted Frog (Rana luteiventris) and Pacific Tree Frog (Hyla regilla) dengan menggunakan SIG. Parris (2000) meneliti salah satu jenis katak yang terancam punah di Queensland Australia dengan menggunakan aplikasi SIG dan pemodelan spasial untuk melihat distribusi spasial dan preferensi habitat katak pohon Litoria pearsonia dan menganalisanya secara statistik.. Lubis (2008) melakukan penelitian pemodelan spasial habitat katak Jawa (Rhacophorus javanus) mengunakan SIG dan penginderaan jarak jauh untuk menentukan kesesuaian katak jawa.