PENDAHULUAN Latar Belakang Genre musik adalah pengelompokan musik sesuai dengan kemiripan satu dengan yang lain, seperti kemiripan dalam hal frekuensi musik, struktur ritmik, dan konten harmoni. Genre musik merupakan hal yang penting bagi masyarakat yang menyukai musik, karena membuat masyarakat dengan mudah mengelompokan musik yang yang mereka sukai. Pada umumnya pengelompokan lagu dilakukan secara manual yaitu dengan mendengarakan lagu secara langsung kemudian dikelompokkan bedasarkan genre lagu tersebut. Metode ini mempunyai keunggulan yaitu mempunyai tingkat akurasi yang tinggi, tetapi kekurangan dari metode ini adalah sangat tidak efisien untuk data berjumlah banyak, karena harus didengarkan satu persatu. Pengelompokan genre lagu secara otomatis mulai dikembangkan untuk membantu mengelompokan lagu yang berjumlah banyak. Proses ini mempunyai keunggulan dalam jumlah data yang bisa diporses namun kekurangan dari proses otomatis adalah akurasi yang rendah. Untuk dapat dikelompokkan data musik harus melalui proses ekstraksi ciri yang bertujuan mendapatkan ciri dari lagu tersebut. Salah satu metode yang dapat digunakan adalah Mel-frequency cepstral coefficient (MFCC). MFCC mengekstraksi ciri suara berdasarkan spektrum yang dihasilkan dari musik. Penelitian yang menggunakan MFCC dalam proses ekstraksi ciri antara lain, Prameswari (2010) yang melakukan penelitian pengembangan sistem pengenalan kata berbasis fonem dalam bahasa Indonesia dengan metode resilent backpropagation, dan Wisnudhisastra (2009) tentang pengenalan chord gitar dengan teknik ekstraksi ciri Mel-frequency cepstral coefficient (MFCC). Leaning Vector Quantization (LVQ) merupakan salah satu contoh dari jaringan syaraf tiruan yang digunakan untuk proses klasifikasi. Metode LVQ sudah banyak digunakan untuk penelitian, seperti penelitian oleh Effedy et al (2008) mengenai deteksi pornografi pada citra digital menggunakan pengolahan citra dan jaringan syaraf tiruan, Qur’ani & Rosmalinda (2010) yang meneliti jaringan syaraf tiruan LVQ untuk aplikasi pengenalan tanda tangan. Klasifikasi genre musik telah dilakukan oleh Talupur et al (2002). Pada penelitian ini genre yang diklasifikasikan antara lain klasik, rock, jazz dan country dengan akurasi tertinggi yang dihasilkan sebesar 80 %. Berdasarkan penelitian yang terkait, metode MFCC dan LVQ dapat digunakan untuk klasifikasi genre musik. Rumusan Masalah Rumusan masalah dalam penelitian ini adalah bagaimana membuat model klasifikasi data audio menggunakan jaringan syaraf tiruan LVQ. Ruang Lingkup Ruang lingkup pada penelitian ini antara lain: 1. Dalam penelitian ini, genre musik yang diklasifikasikan dibatasi hanya genre rock, klasik, jazz dan keroncong. 2. Musik yang diolah mempunyai durasi 5, 10, 20, dan 25 detik dengan format wav. 3. Data musik menggunakan chanel mono. Tujuan Tujuan dari penelitian ini adalah mengembangkan model Learning Vector Quantization untuk klasifikasi genre musik. Manfaat Penelitian ini diharapkan dapat melakukan klasifikasi pada data musik menggunakan Learning Vector Quantization agar dapat membantu peran manusia dalam hal menentukan genre musik, sehingga genre musik tidak lagi bersifat relatif, tetapi dapat dikelompokkan dengan standardisasi yang telah ditentukan. TINJAUAN PUSTAKA Genre Musik Genre musik adalah label yang dibuat dan digunakan manusia untuk mengkategorikan dan menggambarkan musik di dunia (Tzanekatis 2002). http://allmusic.com mengelompokan genre musik ke dalam 11 genre utama, yaitu pop/rock, jazz, r&b, rap, country, blues, elektronik, latin, reggae, internasional, dan klasik. Digitalisasi Gelombang Audio Gelombang audio merupakan gelombang longitudinal yang merambat melalui medium seperti medium padat, cair, atau gas. Gelombang suara merupakan gelombang analog yang apabila diolah menggunakan peralatan elektronik, gelombang tersebut harus melalui tahap digitalisasi sehingga gelombang tersebut berupa data digital. 1