BAB 6 RANGKAIAN KUTUB EMPAT Oleh : Ir. A.Rachman Hasibuan dan Naemah Mubarakah, ST 6.1 Pendahuluan Gambar 6.1 Rangkaian kutub dua Gambar 6.2 Rangkaian kutub empat Rangakaian kutub empat (K-4) adalah suatu rangkaian yang memiliki sepasang terminal pada sisi input dan sepasang terminal pada sisi output (transistor, op amp, transformator dan lainnya) 6.2 Parameter Impedansi “z” Parameter impedansi “z” ini pada umumnya banyak dipergunakan dalam sintesa filter, dan juga dalam penganalisaan jaringan impedance matching dan juga pada distribusi sistem tenaga. (a) (b) Gambar 6.3 (a) Rangkaian kutub empat dengan sumber tegangan ; (b) Rangkaian kutub empat dengan sumber arus Adapun bentuk matriks hubungan tegangan dalam parameter impedansi ‘z’ ini adalah : V1 z11 V = z 2 21 z12 I1 z 22 I 2 dengan determinan impedansi dari parameter “z” : ∆z = z12 = z11 z12 z 21 z 22 = z11.z 22 − z12 .z 21 v1 I 2 I =0 z11 = v2 I 2 I =0 z 21 = v1 I1 I 2 =0 v2 I1 I 2 =0 1 z 22 = 1 Gambar 6.4 Rangkaian untuk menentukan parameter-parameter z12 dan z22 Gambar 6.5 Rangkaian untuk menentukan parameter-parameter z11 dan z21 (b) (a) Gambar 6.6 Rangkaian resiprokal (a) ammeter di terminal kiri ; (b) ammeter di terminal kanan Suatu rangkaian kutub empat yang bersifat resiprokal dapat digantikan dengan rangkaian ekivalen dengan hubungan T. I1 + V1 - I2 z11 – z12 z22 – z12 z12 + V2 - Gambar 6.7 Rangkaian ekivalen parameter “z” yang bersifat resiprokal Untuk rangkaian kutub empat dengan parameter “z” secara umum rangkaian ekivalennya adalah sebagai berikut : Gambar 6.8 Bentuk umum rangkaian ekivalen parameter “z” Pada beberapa rangkaian terkadang tidak dapat dicari parameter “z” dari rangkaian kutub empat-nya Gambar 6.9 Transformator ideal tidak memiliki parameter “z” Adapun persamaan kutub empat untuk rangkaian transformator ideal Gambar 6.9, adalah : V1 = 1 .V2 n dan I1 = − n.I 2 Contoh : Carilah parameter “z” dari rangkaian di bawah ini : Jawab : Untuk mendapatkan z11 dan z21, maka pasangkan sumber tegangan V1 pada terminal input dan terminal output terbuka. z11 = z 21 = v1 I1 v2 I1 = (R 1 + R 3 ).I1 = (R 1 + R 3 ) = 20 + 40 = 60 Ω I1 = R 3 .I1 40.I1 = = 40 Ω I1 I1 I 2 =0 I 2 =0 Untuk mencari z12 dan z22, maka V1 dibuka dan sumber tegangan V2 dipasangkan pada terminal output, sehingga rangkaian menjadi : z12 = z 22 = v1 I2 v2 I2 = R 3 .I 2 = R 3 = 40 Ω I2 = (R 2 + R 3 ).I 2 = (R 2 + R 3 ) = 30 + 40 = 70 Ω I2 I1 =0 I1 =0 6.3 Parameter Admitansi “y” Parameter admitansi “y” juga pada umumnya banyak dipergunakan dalam sitesa filter, perencanaan penganalisaan matching network dan distrubusi sitem tenaga. Bentuk matriks hubungan tegangan dalam parameter impedansi ‘y’ ini adalah : I1 y11 I = y 2 21 y12 V1 y 22 V2 dimana sebagai determinan admitansi dari parameter “y” ∆y = y11 y 21 y12 = y11.y 22 − y12 .y 21 y 22 y11 = y 21 = I1 V1 V2 =0 I2 V1 V2 =0 Gambar 6.10 Rangkaian untuk menentukan y11 dan y21 I2 I1 + y12 = V1= 0 - y 22 = I1 V2 V1 =0 I2 V2 V1 =0 + V2 - I2 Gambar 6.11 Rangkaian untuk menentukan y12 dan y22 Untuk kutub empat parameter “y” yang resiprokal, maka rangkaian ekivalennya (khusus yang resiprokal) merupakan rangkaian П. Gambar 6.12 Bentuk Rangkaian П sebagai ekivalen untuk parameter “y” yang resiprokal Gambar 6.13 Rangkaian ekivalen untuk parameter “y” secara umum Contoh : Hitunglah parameter-parameter “y” dari rangkaian di bawah ini: Jawab : Untuk mencari y11 dan y21 maka hubung singkat terminal output dan pasangkan sumber arus I1 pada terminal input. dari rangkaian terlihat bahwa : R p1 = − I2 = R 1.R 2 4.2 4 = = Ω R1 + R 2 4 + 2 3 dan V1 = I1 .R p1 = 4 I1 3 R1 4 2 2 x I1 = x I1 = I1 atau → I 2 = − I1 4+2 3 3 R1 + R 2 maka : y11 = y 21 = I1 V1 I2 V1 = V2 =0 V2 =0 I1 I 3 = 1 = S V1 4 4 I1 3 2 − I1 1 = 3 =− S 4 2 I1 3 Untuk mendapatkan y12 dan y22 maka hubung singkat terminal input dan pasangkan sumber arus I2 pada terminal output. dari rangkaian terlihat bahwa : R p2 R 2 .R 3 2.8 8 = = = Ω R2 + R3 2 + 8 5 − I1 = dan V2 = I 2 .R p 2 8 = I2 5 R3 8 4 4 x I2 = x I 2 = I 2 atau → I1 = − I 2 R2 + R3 2+8 5 5 maka : y 22 I2 = V2 V1 =0 I1 I2 I2 5 y = = = = S dan 12 V 2 V2 8 8 I2 5 V1 =0 4 − I2 1 = 5 =− S 8 2 I2 5 1 y = y = − S , maka rangkaian merupakan rangkaian yang ternyata 12 21 2 resiprokal, dimana kalau digambarkan rangkaian ekivelennya (khusus resiprokal) adalah : I1 I2 − + V1 y11 + y12 = 3 1 1 − = S 4 2 4 - Rangkaian ekivalen secara umum : 3 S 4 + y 22 + y12 = 5 1 1 − = S 8 2 8 V2 - 6.4 Parameter “h” Parameter “h” ini sering juga disebut dengan parameter Hibrid (Hybrid parameters), parameter ini mengandung sifat-sifat dari parameter “z” dan “y”. Bentuk persamaan matriks dari parameter “h” ini adalah : V1 h11 I = h 2 21 h12 I1 h 22 V2 sebagai determinan dari parameter “h” h11 ∆h = h 21 h12 = h11.h 22 − h12 .h 21 h 22 h 11 = h 21 = V1 I1 V2 =0 I2 I1 V2 =0 Gambar 6.14 Rangkaian untuk mencari h11 dan h21 h 12 = Gambar 6.15 Rangkaian untuk mencari h12 dan h22 h 22 = V1 V2 I1 =0 I2 V2 I1 =0 Apabila h12 = -h21 maka rangkaian kutub empat disebut sebagai rangkaian kutub empat yang resiprokal yang rangkaian ekivalennya adalah : Gambar 6.16 Bentuk ekivalen dari parameter ‘h” Contoh : Hitunglah parameter-parameter “h” dari rangkaian di bawah ini : R2 = 6 Ω Jawab : Untuk mencari h11 dan h21, maka hubung singkat terminal output dan pasangkan sumber arus I1 pada terminal input. dari rangkaian ini terlihat bahwa : R p1 = R 2 .R 3 6x3 = =2Ω R 2 + R3 6 + 3 dan R s1 = R 1 + R p1 = 2 + 2 = 4 Ω Maka rangakain pengganti : Maka : → dengan pembagian arus : R1 = 2 Ω I1 V2 =0 4I1 = =4Ω I1 R3 = 3 Ω + I1 V1 IR2 - I2 + R2 = 6 Ω V1 = R s1.I1 = 4.I1 V1 h 11 = I1 -I2 V2 = 0 - dari rangkaian ini terlihat bahwa : R 2 .I1 6.I1 2 − I2 = = = I1 R2 + R3 6 + 3 3 sehingga : h 21 = I2 I1 V2 → 2 I 2 = − I1 3 2 − .I1 2 = 3 =− I1 3 =0 Selanjutnya untuk mencari h12 dan h22, maka terminal input dibuka dan pasangkan sumber tegangan V2 pada terminal output. R1 = 2 Ω + R3 = 3 Ω I2 + I1 = 0 V1 R2 = 6 Ω - + - - V2 maka menurut rangkaian pembagi tegangan : V1 = R2 6 2 .V2 = .V2 = .V2 R2 + R3 6+3 3 V2 = (R 2 + R 3 ).I 2 = (6 + 3).I 2 = 9.I 2 sehingga : V1 h 12 = V2 I1 =0 2 .V2 2 3 = = V2 3 dan h 22 kalau digambarkan rangkaian ekivalennya : I2 = V2 I1 =0 I2 1 = = S 9.I 2 9 6.5 Parameter “g” Parameter “g” sering juga disebut sebagai kebalikan / invers dari parameter “h” Bentuk persamaan matriks dari parameter “g” ini adalah : I1 g11 V = g 2 21 g12 V1 g 22 I 2 sebagai determinan dari parameter “g” : ∆g = g11 g12 g 21 g 22 = g11.g 22 − g12 .g 21 g 11 = I1 V1 I 2 =0 V2 V1 I 2 =0 g 21 = Gambar 6.17 Rangkaian untuk menentukan harga-harga g11 dan g21 g 12 = g 22 = I1 I2 V1 =0 V2 I2 V1 =0 Gambar 6.18 Rangkaian untuk menentukan harga-harga g12 dan g22 Gambar 6.19 Bentuk ekivalen dari parameter “g” Contoh : Carilah parameter “g” dari rangkaian berikut ini : Jawab : Untuk mencari g11 dan g21 pasang pada sumber tegangan V1 pada terminal input sedangkan terminal output terbuka. R2 = 1 Ω I1 V1 + - I2 = 0 + + V1 V2 - - dari rangkaian ini terlihat bahwa : R s1 = R 2 + R 3 = 1 + 0,5 = 1,5 Ω Maka : I1 = Sehingga : g11 = I1 V1 → R p1 = R1.R s1 0,5 x 1,5 0,75 = = = 0,375 Ω R1 + R s1 0,5 + 1,5 2 V1 V1 = = 2,667. V1 R p1 0,375 = I 2 =0 2,667.V1 = 2,667 S V1 Karena : I R3 R1 0,5 = I1 = I1 = 0,25. I1 R 1 + R s1 0,5 + 1,5 →V I1 = 2,667. V1 → maka : V1 = Maka : g 21 V2 = V1 I 2 =0 2 = I R 3 .R 3 = 0,25.I1.0,5 = 0,125.I1 I1 = 0,375 .I1 2,667 0,125.I1 = = 0,333 0,375.I1 Selanjutnya untuk mendapatkan g12 dan g22, maka hubung singkat terminal input, sedangkan pada terminal output dipasangkan sumber arus I2. I1 I2 R1 = 0,5 Ω + R3 = 0,5 Ω R2 = 1 Ω IR2 V1 = 0 - + V2 IR3 I2 - Dari rangkaian terlihat : IR2 = R3 0,5 .I 2 = .I 2 = 0,333.I 2 = −I1 R2 + R3 1 + 0,5 sehingga : g12 = I1 I2 = V1 =0 → − 0.333.I 2 = −0,333 I2 I1 = −I R 2 = −0.333. I 2 dari rangkaian juga terlihat bahwa R2 paralel R3 atau : Rp = R 2 .R 3 1 x 0,5 = = 0,333 Ω R 2 + R 3 1 + 0,5 → V2 = R p. I 2 = 0.333. I 2 sehingga : g 22 V2 = I2 V1 =0 0,333 I 2 = = 0,333 Ω I2 Kalau digambarkan rangkaian ekivalennya : 6.6 Parameter “ABCD” Parameter ini sering juga disebut sebagai parameter transmisi (transmission parameters). Bentuk persamaan matriks dari parameter “ABCD” ini adalah : V1 A I = C 1 B V2 D − I 2 dan sebagai determinan dari parameter “ABCD” adalah : ∆ ABCD = ∆ T = A B C D dalam keadaan resiprokal berlaku : = AD − BC AD – BC = 1 A= C= I1 V2 I 2 =0 V1 V2 I 2 =0 Gambar 6.21. Rangkaian untuk menentuka A dan C dari parameter “ABCD” B=− D=− V1 V2 V2 =0 I1 I2 V2 =0 Gambar 6.22 Rangkaian untuk menentukan B dan D pada parameter “ABCD” Contoh : Carilah parameter “ABCD” dari rangkaian di bawah ini : Jawab : Untuk menghitung A dan C, pasangkan sumber tegangan V1 pada terminal input sedangkan terminal output dibuka seperti rangkaian di bawah ini : + I R1 V1 I2 = 0 R2 = 1 Ω I1 + - IR3 + V2 - - dari rangkaian terlihat bahwa : I R1 = R2 + R3 1 + 0,5 .I1 = .I1 = 0,75.I1 Amp R1 + R 2 + R 3 0,5 + 1 + 0,5 I R3 = R1 0,5 .I1 = .I1 = 0,25.I1 Amp R1 + R 2 + R 3 0,5 + 1 + 0,5 V1 = R 1.I R1 = 0,5 x 0,75.I1 = 0,375. I1 V2 = R 3 .I R 3 = 0,5 x 0,25.I1 = 0,125. I1 I1 = V2 = 8.V2 0,125 Maka di dapat : V1 A= V2 I 2 =0 0,375.I1 = =3 0,125.I1 dan I1 C= V2 I 2 =0 8.V2 = =8S V2 Untuk mencari B dan D, maka terminal output dihubung singkat, sedangkan V1 dipasangkan pada terminal input. - R3 = 0,5 Ω + - R1 = 0,5 Ω + I R1 V1 I2 = 0 R2 = 1 Ω I1 IR3 + V2 = 0 V1 R2 → V1 R1 - dari rangkaian ekivalennya didapat : V1 = R 2 x (−I 2 ) = 1.(−I 2 ) = −I 2 V1 V1 V1 V1 I1 = + = + = 3.V1 R 1 R 2 0,5 1 I1 = 3.V1 = 3 x (−I 2 ) = −3.I 2 Maka di dapat : V1 B=− I2 V2 =0 − I2 =− = 1 Ω dan I2 D=− I1 I2 = V2 =0 − 3. I 2 =3 I2 6.7 Parameter “abcd” Parameter “abcd” disebut sebagai inverse dari parameter “ABCD” Bentuk persamaan matriks dari parameter “ABCD” ini adalah : V2 a I = c 2 b V1 d − I1 dan sebagai determinan dari parameter “ABCD” adalah : ∆ abcd = ∆ t = a b c d = a.d − b.c dan bilamana kutub empat ini bersifat resiprokal, maka berlaku : a.d – b.c = 1 I1 = 0 + V1 - a= I2 V2 V1 I c= 2 V1 I1 =0 + - + - V2 I1 =0 Gambar 6.23 Rangkaian untuk menentuka a dan c dari parameter “abcd” b=− d=− V2 I1 I2 I1 V1 =0 V1 =0 Gambar 6.24 Rangkaian untuk menentukan b dan d pada parameter “abcd” Contoh : Carilah parameter “abcd” dari rangkaian di bawah ini : Jawab : Untuk mencari a dan c, pasangkan sumber tegangan V2 pada terminal output dan buka terminal input seperti rangkaian di bawah ini : dari rangkaian dapat dihitung : V2 V2 2 I4 = = = V2 Amp R 1 + R 2 0,5 + 1 3 V1 = I 4 x R 1 = 2.V2 V x 0,5 = 2 3 3 V2 2 V2 2 8V2 I 2 = I3 + I 4 = + V2 = + V2 = R3 3 0,5 3 3 Maka di dapat : V2 a= V1 c= I2 V1 I1 =0 V2 = =3 V2 3 8V2 = I1 =0 V2 3 =8S 3 Untuk mencari b dan d, maka hubung singkaat input, sedangkan output tetap dengan sumber tegangan V2 → dari rangkaian ekivalen dapat dihitung : V2 = R2.I6 = 1.I6 = I6 V I 2 =I 5 + I 6 = 2 + I 6 R3 → → I6 = -I1 I2 = → V2 = -I1 V2 −I − I1 = 1 − I1 = −3.I1 R3 0,5 Maka di dapat : b=− V2 I1 =− V1 =0 − I1 =1 Ω I1 dan d=− I2 I1 =− V1 =0 − 3.I1 =3 I1 6.8 Konversi Antar Parameter 6.9 Interkoneksi Antar Kutub Empat 6.9.1 Kutub Empat dengan Hubungan Seri Gambar 6.25 Hubungan seri dua rangkaian kutub empat Untuk Na : V1a = z11a I1a + z12a I 2a V2a = z 21a I1a + z 22a I 2a Untuk Nb : V1b = z11b I1b + z12b I 2b V2b = z 21b I1b + z 22b I 2b dengan : I1 = I1a = I1b I 2 = I 2a = I 2 b V1 = V1a + V1b = (z11a + z11b ) I1 + (z12a + z12b ) I 2 V2 = V2a + V2 b = (z 21a + z 21b ) I1 + (z 22a + z 22b ) I 2 maka parameter “z” dari dua kutub empat yang di serikan adalah : z11 z 21 z12 z11a + z11b = z 22 z 21a + z 21b z12a + z12b z 22a + z 22b 6.9.2 Kutub Empat dengan Hubungan Paralel Gambar 6.26 Hubungan paralel dari dua buah rangkaian kutub empat Dalam hubungan ini berlaku : I1a = y11a V1a + y12a V2a I 2a = y 21a V1a + y 22a V2a dan I1b = y11b V1b + y12b V2b I 2b = y 21b V1b + y 22b V2 b dari rangkaian Gambar 6.26, terlihat : I1 = I1a + I1b I 2 = I 2a + I 2 b I1 = (y11a + y11b ) V1 + (y12a + y12 b ) V2 I 2 = (y 21a + y 21b ) V1 + (y 22a + y 22 b ) V2 maka untuk kutub empat dengan parameter “y” yang terhubung paralel berlaku : y11 y 21 atau : y12 y11a + y11b = y 22 y 21a + y 21b [y] = [y a ] + [y b ] y12a + y12b y 22a + y 22b 6.9.3 Kutub Empat dengan Hubungan Kaskade Gambar 6.27 Dua rangkaian kutub empat dalam hubungan kaskade Persamaan dari kedua kutub empat dalam parameter “ABCD” adalah : V1a A a I = C 1a a B a V2a D a − I 2a dan V1b A b I = C 1b b B b V2b D b − I 2b dari rangkaian pada Gambar 6.27 terlihat bahwa : V1 V1a I = I 1 1a ; V2a V1b − I = I ; 2a 1b V2b V2 − I = − I 2b 2 akan diperoleh : V1 A a I = C 1 a B a A b D a C b Bb V 2 D b − I 2 sehingga apabila dua parameter “ABCD” dihubungkan kaskade, maka parameter keseluruhan adalah merupakan hasil perkalian dari setiap parameter yang dihubungkan secara kaskade tersebut, atau dituliskan dengan : A C B A a = D C a B a A b D a C b Bb D b atau : [T ] = [Ta ] + [Tb ]