bab iii metode penelitian

advertisement
15
BAB III METODE PENELITIAN
Sistem informasi geografis persebaran hotspot di Indonesia merupakan
suatu sistem yang bertujuan untuk memantau dan memberikan informasi
mengenai persebaran hotspot yang ada di wilayah Indonesia berdasarkan kurun
waktu tertentu. Sistem ini memanfaatkan data yang diambil dari satelit NOAA,
TERRA
dan
AQUA
kemudian
dilakukan
ekstraksi
informasi
sehingga
menghasilkan informasi yang berguna dan menampilkan informasi tersebut dalam
sebuah tampilan web.
Sistem informasi geografis persebaran hotspot ini terdiri atas tiga modul
utama, yaitu modul untuk ekstraksi informasi, modul untuk visualisasi data dan
terakhir adalah modul update data. Modul visualisasi berfungsi untuk
menampilkan informasi-informasi dari hasil ekstraksi informasi agar dapat dengan
mudah dimengerti oleh orang banyak. Secara umum modul visualisasi ini terdiri
atas dua bagian, yaitu bagian pertama untuk menampilkan hasil dalam bentuk
grafik dan bagian kedua untuk menampilkan hasil dalam bentuk peta. Visualisasi
hotspot dalam bentuk grafik dibangun menggunakan Mondrian OLAP.
Pembangunan ini meliputi pembangunan data warehouse dan OLAP untuk
visualisasi persebaran hotspot di wilayah Indonesia. Pembangunan data
warehouse dilakukan dengan beberapa tahapan. Tahapan-tahapan tersebut adalah
tahapan yang harus dilengkapi agar pembangunan data warehouse berhasil.
Tahapan-tahapan penelitian pengembangan data warehouse dan spatio-temporal
dapat dilihat pada Gambar 3.
16
Studi Literatur
Pembuatan Data Warehouse
Analisis Data
Pembuatan Peta
Ekstraksi Data
Transformasi Data
Pemuatan Data
Uji Query
Integrasi SOLAP
Evaluasi Sistem
Gambar 3 Tahapan Pengembangan Data Warehouse.
3.1
Studi Literatur
Untuk mendukung dalam proses penelitian ini, terlebih dahulu mencari
informasi sebagai bahan literatur untuk pengembangan data warehouse ini.
Sumber informasi yang didapat diantaranya dari buku, internet, jurnal dan artikel.
3.2
Analisis
Pada penelitian ini data yang ditambahkan antara lain data hotspot dari
satelit
tahun 2000 sampai dengan tahun 2009 dan AQUA. Data hotspot yang
telah diperoleh kemudian dianalisis untuk mendapatkan atribut-atribut yang tepat
dan sesuai dalam pembuatan spatio-temporal data warehouse. Hasil analisis ini
digunakan untuk menentukan dimensi, tabel fakta, dan skema yang tepat untuk
model data multidimensi.
3.3
Ekstraksi Data
Ekstraksi adalah tahap pengambilan data yang relevan dari database
relasional sebelum masuk ke dalam data warehouse. Pada ekstraksi, atributatribut dan record-record yang diinginkan dipilih dan diambil dari database
relasional. Dalam tahap ekstraksi ini, dilakukan pula pembersihan data yaitu
dengan pemilihan atribut-atribut yang sesuai dengan atribut yang ada dalam
17
database sebelumnya. Selain itu dalam tahapan ini dilakukan pengecekan
terhadap data-data yang kurang lengkap ataupun data-data yang sama.
3.4
Transformasi Data
Transformasi data merupakan proses generalisasi atau penyeragaman nama
atribut, agregasi, dan konstruksi atribut atau dimensi. Pada tahap transformasi ini,
data yang berasal dari semua sumber dikonversi ke dalam format umum yang
disesuaikan dengan skema multidimensional yang telah dibuat. Transformasi
terpenting adalah transformasi pada label penamaan yang bertujuan agar tidak
terdapat nama atribut yang serupa atau pada atribut yang sama memiliki nama
yang berbeda pada database yang berbeda.
3.5
Pemuatan data
Setelah tahap ekstraksi dan transformasi data dilakukan, maka data telah
siap untuk dimuat (load) ke dalam data warehouse. Pada tahap ini, dilakukan pula
pengurutan dan peninjauan integritas suatu data. Proses selanjutnya yaitu dengan
melakukan proses penambahan waktu satelit, id satelit dan kode satelit.
3.6
Pembuatan Data Warehouse
Proses dilanjutkan dengan pembuatan spatio-temporal data warehouse.
Input data dilakukan berdasarkan skema multidimensional (dalam penelitian ini
menggunakan skema snowflake) yang telah dirancang. Skema snowflake yang
telah dirancang kemudian diimplementasikan menjadi sebuah kubus data geometri
multidimensi (geocube) menggunakan schema workbench. Kemudian, data yang
telah dimuatkan dalam membangun data warehouse ini di retrieve oleh SOLAP
berdasarkan struktur kubus data geometri multidimensi yang terbentuk.
3.7
Pembuatan Peta
Setelah tahapan ekstraksi, transformasi, pemuatan data (Extraction,
Transform, Load /ETL) dan diikuti dengan pembuatan data warehouse, kemudian
tahap berikutnya dilanjutkan dengan pembuatan peta berupa layer-layer yang
dikonstruksi berdasarkan sql query. Tahapan pertama sebelum layer peta
dikonstruksi adalah dengan membuat workspace pada web map server. Kemudian
dilanjutkan dengan membangun data store pada workspace yang telah dibuat pada
18
web map server. Data store merupakan tempat penyimpanan yang dapat
menampung berbagai layer yang hendak dikonstruksi. Layer-layer yang disimpan
dalam data store dapat berupa layer point, line, maupun polygon. Layer-layer
yang dihasilkan dari sql query tersebut merupakan layer dengan tingkat relevansi
yang disesuaikan dengan data warehouse yang dibangun.
3.8
Uji Query
Uji query merupakan tahap untuk menguji apakah spatio-temporal data
warehouse yang dibuat telah sesuai dengan kebutuhan dan memeriksa apakah
operasi dasar SOLAP berhasil diimplementasikan untuk data spasial. Query yang
diujikan
berupa
query
biasa
dan
query
spasial
menggunakan
fungsi
Multidimensional Expressions (MDX). Pengujian dilakukan dengan geocube atau
kubus data geometri yang divisualisasikan dalam bentuk tabel dan grafik dengan
GeoMondrian, serta visualisasi peta dengan Geoserver (Web Map Server) dalam
satu web yang terintegrasi (Web Integration). Uji query pun dilakukan pada
Geoserver dalam bentuk Common Query Language (CQL) yang bertujuan untuk
membuat suatu layer yang dapat menampilkan visualisasi dalam bentuk peta
sebagai timbal balik atas query yang diberikan ke dalam web map server.
3.9
Integrasi SOLAP
Pada tahap ini pengguna dapat menggunakan operasi-operasi OLAP seperti
roll up, drill down, slice, dice, dan pivot yang digabungkan dengan dimensi
spasialnya. Contoh operasi OLAP yang dapat dijalankan antara lain:

Roll up
Operasi roll up ditampilkan dengan menaikkan hierarki dimensi waktu.
Hierarki dimensi waktu terdiri atas dua level yaitu tahun dan bulan. Operasi
roll up dapat dilakukan dengan melihat jumlah hotspot per bulan maupun
roll up menjadi per tahun secara keseluruhan.

Drill down
Operasi drill down merupakan kebalikan dari operasi roll up. Operasi ini
dilakukan dengan menurunkan hierarki dari hierarki tahun menjadi hierarki
bulan. Operasi ini dilakukan untuk melihat secara lebih mendetail jumlah
hotspot setiap bulan.
19

Slice
Operasi slice dilakukan dengan memilih salah satu dimensi, misalkan hanya
menampilkan jumlah hotspot hanya pada tahun-tahun tertentu saja yakni
dengan memilih dimensi waktunya.

Dice
Operasi dice dilakukan dengan memilih dua dimensi yaitu dimensi waktu
dan dimensi tempat. Contohnya adalah dengan memilih provinsi
Kalimantan Tengah dan juga memilih tahun 2003.

Operasi pivot
Operasi pivot dilakukan dengan menukarkan axis dimensi. Misalkan axis-x
(dimensi hotspot) diubah menjadi dimensi waktu dan axis-y (dimensi waktu)
diubah menjadi dimensi hotspot. Operasi ini berguna untuk menampilkan
tabel dengan sudut pandang yang berbeda. Operasi OLAP yang
diintegrasikan dengan dimensi spasial akan menghasilkan bentuk informasi
yang lebih jelas dan menarik.
3.10 Evaluasi Sistem
Untuk melakukan kinerja sistem persebaran hotspot dilakukan evaluasi
sistem terhadap sistem persebaran hotspot yang baru dan sistem persebaran
hotspot yang sedang berjalan. Evaluasi ini dilakukan dengan cara memberikan
kuesioner kepada pengguna data hotspot. Hasil evaluasi ini berguna untuk
mengetahui sejauh mana kinerja sistem persebaran hotspot dan diharapkan
mendapatkan saran dan masukan mengenai kekurangan dan kelebihan mengenai
sistem persebaran hotspot itu.
Download