PERANAN ZONA PELUSIDA DALAM MENAHAN INFEKSI PENYAKIT PADA KASUS ESCHERICHIA COLI K99 I WAYAN BATAN SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2007 DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN 1 PENDAHULUAN 1.1 Latar Belakang ………………………………………………………… 1.2 Tujuan Penelitian……………………………………………………… 1.3 Manfaat hasil penelitian………………………………………………. 2 TINJAUAN PUSTAKA 2.1 Infeksi embrio oleh agen patogenik…………………………………. 2.2 E.coli K99 penginfeksi embrio……………………………………….. 2.3 Zona pelusida pelindung sel-sel embrio………………………….... 2.4 Peranan zona pelusida sebagai barier embrio terhadap bakteri patogen ………………………........................................................... 2.5 Kriopreservasi embrio…………………………………………………. 2.6 Embrio transfer dan penularan penyakit…………………………….. 3 PENGUNGKAPAN PERLEKATAN ESCHERICHIA COLI K99 PADA ZONA PELUSIDA DENGAN TEKNIK ELISA DAN SEM 3.1 PENDAHULUAN ………………………………………………………. 3.2 MATERI DAN METODE ……………………………………………… 3.2.1 Penyiapan bakteri E.coli K99 dan serum…………………… 3.2.2 Pemanenan embrio…………………………………………… 3.2.3 Penyiapan reagen-reagen ELISA…………………………… 3.2.4 Prosedur ELISA………………………………………………. 3.2.5 Prosedur pemeriksaan mikroskop elektron ……………….. 3.3 HASIL DAN PEMBAHASAN ……………………………………….. 3.4 SIMPULAN…………………………………………………………….. 3.5 SARAN ………………………………………………………………… 4 PERANAN ZONA PELUSIDA SEBAGAI BARIER TERHADAP CEMARAN ESCHERICHIA COLI K99 4.1 PENDAHULUAN……………………………………………………….. 4.2 MATERI DAN METODE …………………………………………….. 4.2.1 Superovulasi dan panen embrio ……………………………. 4.2.2 Penghilangan zona pelusida ………………………………… 4.2.3 Penyiapan bakteri E.coli K99 ……………………………….. 4.2.4 Pemaparan embrio terhadap E.coli K99 …………………… 4.2.5 Rancangan percobaan ………………………………………. 4.3 HASIL DAN PEMBAHASAN ………………………………………… 4.4 SIMPULAN ……………………………………………………………. 4.5 SARAN …………………………………………………………………. 5 PERKEMBANGAN EMBRIO MENCIT YANG DICEMARI ESCHERICHIA COLI K99 SETELAH PERLAKUAN TRIPSIN ATAU PRONASE 5.1 PENDAHULUAN ………………………………………………………. 5.2 MATERI DAN METODE …………………………………………….. 5.2.1 Superovulasi dan panen embrio ……………………………. 5.2.2 Penyiapan bakteri E.coli K99 ……………………………….. 5.2.3 Pencemaran embrio dengan E.coli K99 …………………… 5.2.4 Rancangan percobaan........................................................ 5.3 HASIL DAN PEMBAHASAN ……………………………………….. 5.4 SIMPULAN …………………………………………………………….. ix x xi 1 1 4 4 5 6 7 8 12 13 15 17 17 18 18 18 19 20 21 22 25 25 26 26 27 27 28 28 28 29 29 36 36 38 38 39 39 39 39 40 41 48 5.5 SARAN …………………………………………………………………. VITRIFIKASI BLASTOSIS MENCIT TERCEMARI ESCHERICHIA COLI K99 DENGAN METODE KRIOLUP 6.1 PENDAHULUAN ………………………………………………………. 6.2 MATERI DAN METODE …………………………………………….. 6.2.1 Superovulasi dan panen embrio ……………………………. 6.2.2 Pembuatan cryoloop (Kriolup) ………………………………. 6.2.3 Teknik vitrifikasi kriolup ………………………....................... 6.2.4 Warming blastosis …………………………………………..... 6.2.5 Viabilitas embrio sesudah vitrifikasi ………………………… 6.2.6 Pewarnaan vital …………………………………………….... 6.2.7 Penyiapan bakteri dan pemaparan embrio terhadap bakteri E.coli K99 …………………………………………..... 6.2.8 Rancangan percobaan …………………………………….... 6.3 HASIL DAN PEMBAHASAN ……………………………………..... 6.4 SIMPULAN …………………………………………………………….. 6.5 SARAN ……………………………………………………………….... 7 KEBUNTINGAN HASIL TRANSFER BLASTOSIS MENCIT YANG DIBEKUKAN DENGAN METODE VITRIFIKASI KRIOLUP 7.1 PENDAHULUAN ………………………………………………………. 7.2 MATERI DAN METODE …………………………………………….. 7.2.1 Penyiapan donor dan resipien……………………………….. 7.2.2 Pembuatan kriolup …………………………………………… 7.2.3 Teknik vitrivikasi kriolup ……………………………………… 7.2.4 Warming blastosis ………………………………………….. 7.2.5 Penilaian viabilitas blastosis................................................. 7.2.6 Teknik transfer embrio ……………………………………….. 7.2.7 Rancangan percobaan……………………………………….. 7.3 HASIL DAN PEMBAHASAN ……………………………………... 7.4 SIMPULAN …………………………………………………………….. 7.5 SARAN ……………………………………………………………….. 8 PEMBAHASAN UMUM............................................................................ 9 SIMPULAN................................................................................................ 10 DAFTAR PUSTAKA................................................................................. LAMPIRAN................................................................................................ 48 6 49 49 50 50 50 50 51 52 52 52 53 53 62 63 64 64 65 65 66 66 66 67 67 68 68 72 72 73 82 84 94 DAFTAR TABEL Tabel 3.1 Rataan kepadatan optik hasil ELISA antara zonapelusida mencit dengan berbagai jenis bakteri E. coli asal hewan 23 Tabel 4.1 Tingkat perkembangan embrio setelah dicemari bakteri E.coli K99 dan diinkubasi selama 24 jam 33 Tabel 5.1 Perkembangan embrio delapan sel yang dicemari E.coli K99, kemudian dibasuh dengan pronase, tripsin, atau pronase 42 Tabel 5.2 Tingkat perkembangan embrio yang dicemari E.coli K99 pascaperlakuan pembasuhan, setelah 48 jam inkubasi 43 Tabel 7.1 Persentase blastosis vitrifikasi yang berkembang ke tahap perkembangan lebih lanjut 68 DAFTAR GAMBAR Gambar 3.1 Gambar 4.1 Gambar 4.2 Gambar 4.3 Gambar 4.4 Gambar 5.1 Gambar 5.2 Gambar 6.1 Gambar 6.2 Gambar 6.3 Gambar 6.4 Gambar 6.5 Gambar 6.6 Perlekatan E.coli K99 pada zona pelusida melalui pengamatan SEM (Scanning Electron Microscopy). ... 24 Perkembangan embrio yang tidak dan memiliki zona pelusida (zp) dalam medium kultur yang dicemari E.coli K99 ..................................................................... 31 Viabilitas embrio perlakuan selama 24 jam kultur in vitro dalam KSOM......................................................... 32 Persentase tahapan perkembangan embrio setelah kultur in vitro selama 24 jam …………………………… 33 Persentase kematian embrio tanpa zona pelusida dan dengan zona pelusida setelah kultur in vitro selama 24 jam……………………………………………………... 34 Tahapan perkembangan embrio setelah dicemari E.coli K99 dan dikultur in vitro selama 48 jam kultur.. 43 Morfologi embrio tercemar E.coli K99 setelah dibasuh mPBS tripsin atau pronase ............................ 45 Kriolup yang dipakai dari bahan kawat tembaga, yang digunakan untuk vitrifikasi ................................................ 51 Viabilitas embrio tahap blastosis setelah dicemari E.coli K99 dan divitrifikasi............................................. 54 Tahap perkembangan embrio tercemar E.coli K99 setelah divitrifikasi dan diikultur in vitro selama 24 jam............................................................................... 55 Tahap perkembangan embrio tercemar E. coli K99 setelah divitrifikasi dan diikultur in vitro selama 48 jam............................................................................... 57 Morfologi blastosis selama proses vitrifikasi dan warming........................................................................ 60 Embrio setelah vitrifikasi. Diwarnai dengan pewarna vitalHoechts-propidium iodine. Warna hijau berpendar menandakan sel embrio hidup, sedangkan yang merah menandakan sel embrio tersebut mati. ........... 61 Gambar 7.1 Blastosis vitrifikasi yang berkembang ke tahap selanjutnya.................................................................... Gambar 7.2 Pewarnaan vital embrio setelah vitrifikasi dengan metode kriolup. Sel-sel embrio yang bertahan hidup (biru) dan mati (merah)................................................. 69 70 DAFTAR LAMPIRAN Lampiran 1 Medium kultur embrio in vitro.................................... 95 Lampiran 2 Medium untuk mengembangkan bakteri E.coli K99 97 Lampiran 3 Penyiapan reagen untuk uji ELISA.......................... 98 Lampiran 4 Medium vitrifikasi dan warming................................. 100 Lampiran 5 Skor perkembangan embrio setelah dicemari E.coli K99 kemudian dibasuh mPBS, tripsin, dan pronase..................................................................... 101 Skor perkembangan embrio tahap blastosis yang dicemari E.coli K99 dan divitrifikasi setelah warming................................................................... 101 Persentase perkembangan in vitro embrio delapan sel yang tercemar E.coli K99, kemudian dibasuh dengan pronase, tripsin, atau mPBS........................ 102 Persentase blastosis vitrifikasi yang berkembang ke tahap perkembangan lebih lanjut ........................ 103 Lampiran 6 Lampiran 7 Lampiran 8 PERANAN ZONA PELUSIDA DALAM MENAHAN INFEKSI PENYAKIT PADA KASUS ESCHERICHIA COLI K99 I WAYAN BATAN Disertasi Sebagai salah satu syarat untuk memperoleh gelar Doktor pada Program Studi Sains Veteriner SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2007 Judul Disertasi : Peranan zona pelusida dalam menahan infeksi penyakit, pada kasus Escherichia coli K99 Nama NIM : I Wayan Batan : B 161 030 031 Disetujui Komisi Pembimbing drh Arief Boediono, Ph.D Ketua Dr.drh. Ita Djuwita, M.Phil Anggota Prof. Dr. drh. Bibiana W. Lay, M.Sc. Anggota Dr. Supar, MS. APU Anggota Diketahui Ketua Program Studi Sains Veteriner Dekan Sekolah Pascasarjana drh Bambang P. Priosoeryanto, MS, Ph.D. Tanggal ujian: 2 April 2007 Prof. Dr.Ir.Khairil A. Notodiputro, MS Tanggal lulus: RIWAYAT HIDUP Penulis lahir di Bali, beberapa bulan sebelum Gunung Agung meletus. Penulis dilahirkan dari Ibu Ni Luh Rinang, 27 Februari 1960, dan ayah I Made Radin. Pendidikan sarjana ditempuh di Fakultas Kedokteran Hewan (Kampus Taman Kencana) Institut Pertanian Bogor (IPB), lulus pada tahun 1986. Pada tahun 1990 penulis dengan beasiswa Tim Manajemen Program Doktor (TMPD) diterima pada Program Studi Sains Veteriner Program Pascasarjana IPB dan menyelesaikan pendidikannya pada tahun 1993. Penulis kembali diterima dengan beasiswa Bantuan Pendidikan Pascasarjana (BPPS) pada perguruan tinggi yang sama untuk melanjutkan program doktor. Penulis bekerja sebagai pengajar pada Fakultas Kedokteran Hewan (FKH) Universitas Udayana, Bali. Bidang yang diasuh adalah diagnosis klinik dan penyakit dalam. Selama mengikuti program doktor, penulis setahun mendapat dana penelitian hibah bersaing 13 dari depdiknas. Salah satu artikel penulis yang berjudul: Pemanfaatan ELISA dan SEM guna mengungkap perlekatan bakteri Escherichia coli K99 dengan zona pelusida embrio, telah dimuat dalam jurnal nasional terakreditasi. Karya tulis tersebut merupakan bagian dari program S3 penulis. ABSTRAK I WAYAN BATAN. Peranan zona pelusida dalam menahan infeksi penyakit, pada kasus Escherichia coli K99. Di bawah bimbingan: ARIEF BOEDIONO, BIBIANA W. LAY, ITA DJUWITA, dan SUPAR. Tindakan yang dilakukan untuk membebaskan embrio dari patogen tertentu dapat dilakukan dengan melakukan penapisan terhadap kesehatan donor embrio dengan memberikan perlakuan pembasuhan/pencucian dengan atau tanpa tripsin terhadap embrio yang dipanen. Tindakan sanitasi yang direkomendasikan oleh the International Embryo Transfer Society tidak selalu efektif untuk mengatasi cemaran embrio, hal ini menguatkan dugaan bahwa embrio tersebut menularkan penyakit. Hingga kini di Indonesia belum ada laporan tentang peranan zona pelusida embrio dalam menahan infeksi yang disebabkan oleh E.coli K99. Untuk itu penelitian ini ditujukan untuk: 1) menguji kemampuan E.coli K99 melekat secara spesifik ke permukaan zona pelusida; 2) menguji zona pelusida menahan infeksi E.coli K99; 3) membuktikan efekivitas pencucian enzim terhadap perlekatan E.coli K99, dan 4) menguji metode vitrifikasi kriolup terhadap viabilitas embrio dan E.coli K99 secara in vitro dan in vivo. Mencit digunakan untuk memproduksi embrio model mamalia. Embrio dicemari dengan E.coli K99 pada konsentrasi 103CFU/ml. Perlekatan E.coli K99 ke permukaan zona pelusida diperiksa dengan ELISA (enzyme linked immunosorbent assay) dan diamati dengan SEM (scanning electron microscopy). Peranan zona pelusida dalam perlindungan embrio terhadap infeksi E.coli K99 diteliti dengan mencemari embrio dalam medium KSOM (kalium simplex optimized medium). Embrio yang dicemari dicuci dengan mPBS (modified phosphate buffer saline), tripsin, atau pronase untuk menghilangkan pencemar. Vitrifikasi kriolup terhadap embrio yang dicemari diteliti dengan mengamati viabilitas embrio dan bakteri secara in vitro dengan mengkultur pada KSOM dan in vivo dengan teknik embrio transfer. Perlekatan E.coli K99 ke permukaan zona pelusida ditunjukkan oleh adanya kepadatan optik pada sumuran ELISA yang dilapisi (coating) dengan ekstrak zona pelusida yang nyata lebih tinggi dibandingkan dengan tipe E.coli lainnya. Bukti tersebut didukung pula oleh hasil pemeriksaan SEM, E.coli K99 teramati melekat pada permukaan zona pelusida. Zona pelusida mampu melindungi embrio terhadap bakteri dan E.coli K99 tidak melekat ke sel-sel embrio, berbeda dengan embrio tanpa zona pelusida. E.coli K99 yang melekat ke permukaan zona pelusida embrio dapat dicuci secara efektif dengan enzim pronase (0,25%; 60 detik). Viabilitas embrio yang dicemari E.coli K99 baik in vitro mau pun in vivo pasca vitrifikasi tidak berbeda nyata dengan yang tidak dicemari E.coli K99. Embrio yang memiliki zona pelusida utuh dan divitrifikasi menggunakan carrier kriolup kawat tembaga, baik yang tercemar E.coli K99 mau pun tidak, dapat ditransfer dan berkembang sampai lahir sehat. Zona pelusida dapat melindungi sel-sel embrio dari infeksi E.coli K99, walau pun E.coli K99 terbukti dapat secara spesifik melekat ke permukaan zona pelusida. Bakteri E.coli K99 yang melekat ke permukaan zona pelusida embrio dapat disingkirkan dengan perlakuan enzim pronase dan embrio tersebut dapat berkembang ke tahap lebih lanjut. ABSTRACT I WAYAN BATAN. Zona pellucida as a barrier of infectious disease: A case study on K99 Escherichia coli. Under the direction of ARIEF BOEDIONO, BIBIANA W. LAY, ITA DJUWITA, and SUPAR The production of specific-pathogen free embryo could be done by testing the health status of embryo producing animals before and after embryo collections and or combination of both methods. However, PBS washing and trypsin treating of embryo recomended by the International Embryo Transfer Society are relatively ineffective and still creates transffering pathogens. The aim of these studies were to observe: 1) the attachment of K99 E.coli on the surface of embryos zona pellucida; 2) the role of zona pellucida on embryos protection against infectious agent (K99 E.coli); 3) the effect of enzyme washing on attached K99 E.coli on embryo zona pellucida surface; and 4) the effect of cryopreservation using cryoloop vitrification method on in vitro and in vivo viability of embryos and K99 E.coli. Mice were used to produce embryos. Embryos were contaminated with K99 E.coli at concentration of 103CFU/ml. The E.coli attachment on zona pellucida surfaces were observed by means of scanning electron microscopy (SEM) and enzyme linked immunosorbent assay (ELISA). The presence of embryos protection against E.coli was investigated by culturing contaminated embryos in kalium simplex optimized medium (KSOM). The contaminated embryo, were washed using mPBS, trypsin, or pronase to eliminate the contaminant. The cryoloop vitrification of contaminated embryos were investigated by its viability in vitro by culturing in KSOM as well as in vivo by embryo transfer method. The attachment of K99 E.coli on zona pellucida demonstrated the presence of optical density of ELISA wells coated with zona pellucida were significantly higher than that of the other E.coli types. This was supported by SEM result where E.coli were observed attaching directly on the surface of the zona pellucida. Zona pellucida protects the embryos against bacteria and the bacteria did not attach to the cells of embryos vice versa with the non intact zona pellucida embryos. The attached bacteria on the surface of zona pellucida could effectively washed by pronase (0.25%; 60 seconds). The post vitrification viability of cryopreserved K99 E.coli contaminated embryos were not significantly different with the non contaminated group of embryos. Embryos with or without zona pellucida contaminated or not contaminated by K99 E.coli and vitrified using copper wire cryoloop could transfered and were delivered healthy. Zona pellucida could protect cells of embryos against K99 E.coli infection, however the K99 E.coli have been proved attached specifically on the surface of zona pellucida. K99 E.coli wich attached on the surface of zona pellucida could be eliminated by pronase enzyme treatment and the embryos were developed to advance stages. PERNYATAAN MENGENAI DISERTASI DAN SUMBER INFORMASI Dengan ini saya menyatakan bahwa, disertasi yang berjudul: “Peranan zona pelusida dalam menahan infeksi penyakit, pada kasus Escherichia coli K99” adalah karya saya sendiri di bawah arahan komisi pembimbing dan belum pernah diajukan dalam bentuk apa pun kepada perguruan tinggi mana pun. Sumber informasi yang berasal atau dikutip, baik dari karya yang diterbitkan mau pun tidak diterbitkan oleh penulis lain, telah disebutkan dalam naskah dan dicantumkan di dalam daftar pustaka di bagian akhir dari disertasi ini. Demikian pernyataan ini saya buat dengan penuh rasa tanggung jawab. Bogor, Pebruari 2007 I Wayan Batan NIM B 161 030 031 PRAKATA Tulisan ini adalah hasil penelitian kami pada paruh waktu terakhir masa sekolah di Sekolah Pascasarjana IPB. Penelitian ini merupakan perpaduan antara embriologi (embrio mencit), bakteriologi (Escherichia coli K99), dan klinik, yang membuka peluang penelitian-penelitian sejenis di Indonesia. Di samping itu penelitian ini bagi kami melahirkan pula banyak masalah yang segera harus dipecahkan dan digarap terutama dalam hal penguasaan teknik manipulasi embrio, penyiapan bakteri, kultur embrio in vitro, menelaah makalah-makalah pada berbagai jurnal, dan mengupayakan dana penelitian. Dengan tulisan ini kami ingin menyumbang sedikit fikiran dengan medium dan cara kami ini, yang tentu saja dengan harapan besar, semoga sumbangsih ini sedikit atau banyak punya arti yang konstruktif bagi bidang kedokteran, khususnya kedokteran hewan di Indonesia. Tulisan ini menjadi kenyataan karena bantuan dari lembaga dan perseorangan. Pertama-tama kami menyatakan terima kasih kepada Lab Diagnosis Klinik dan Penyakit Dalam, Fakultas Kedokteran Hewan Universitas Udayana Bali, Dekan FKH dan Rektor Unud atas kesempatan yang diberikan, Dirjen Dikti Depdiknas yang membiayai studi kami, Hibah Bersaing XIII yang membiayai sebagian penelitian, Lab Embriologi FKH IPB, Lab Terpadu FKH IPB, Lab Terpadu Kitwan FKH IPB, Lab Mikrobiologi Balai Penelitian Veteriner Bogor, LabBiosains FMIPA Univesitas Indonesia Salemba Jakarta, yang memungkinkan riset ini berlangsung selama masa bersekolah. Ucapan terima kasih juga ditujukan kepada drh Putu Wirat, KG Suaryana, Prof IB Arka, Prof IGP Suweta, Prof NS Dharmawan, Prof DKH Putra, yang telah memberi dorongan dengan caranya masing-masing. Selanjutnya saya menyampaikan terima kasih kepada seluruh staf Klinik Hewan FKH Unud yang telah mengambilalih kewajiban dan tugas-tugas kami selama ditinggal bersekolah. Saya merasa berhutang budi kepada para pembimbing. Kepada Dr Arief Boediono dan Dr Ita Djuwita yang telah membukakan jalan dan mendorong untuk melakukan eksperimen cemaran embrio. Kepada mereka saya ucapkan terima kasih atas inspirasi yang diberikan beserta bimbingan dalam teknik manipulasi embrio dan kultur embrio. Kepada Dr Supar MS APU, saya merasa sangat dibantu, karena beliau membimbing dengan sepenuh hati dalam pemeriksaan ELISA, di samping dengan hati-hati dan seksama membaca naskah laporan saya. Beliau mengingatkan bagaimana seharusnya menulis dan menggunakan bahasa Indonesia sebagai alat mengekspresikan hasil penelitian agar mereka di luar lingkungan bidang ini dapat memahami hal-hal yang ingin disampaikan. Prof.Dr Bibiana, adalah orang pertama yang melapangkan jalan bagi saya untuk melakukan penelitian dengan bakteri E.coli. Sebelum menggunakan E.coli K99, kami pernah melakukan penelitian gangguan patologi akibat infeksi E.coli patogen unggas yang diinfeksikan langsung ke dalam kantung udara. Saya sungguh merasa sangat beruntung, bahwa beliau-beliaulah yang sebagian besar membentuk dan mengisi diri saya secara akademik. Selama bersekolah dan penelitian kami bertemu dengan sejumlah sahabat yang sangat inspiratif dan kemudian menjadi kawan baik seperti: temanteman mahasiswa bali, K Suatha Nabe, Putu Sam Sampoerna, N. Iwan Wandia, Ida Bagus Kel Suastika, I Mangku Juruebat Budiasa, W.Suana Bagoes, Guus O.D. Gung Suartini, Mangti Utari, Made Tronton, Luh C Sudatri & M Santi, Ni Luh Deh, N Suartha Bagus, Jro Dulu Satriawan, Jro Balian Artama, Sudisma Sedang, Nyoman Rai, Rai Krobokan, Kamdan MJKRT, Gung Arte Presiden dan kawan-kawan lainnya. Sahabat-sahabat lain yang tak kalah inspiratifnya adalah: Erni Supriatna & Imron (Gombong), Puji Riyanti (Depok), Siti Maryam (Lumajang), Prasetyaningtyas WEP (Grobogan), Chandramaya Cimay Siska Damayanti (Cimekar Bandung), Vitri Garvita & Danang (Cimanggu Bogor), Tomas Tom Mata Hine (Sawu NTT), Bayu Rosadi Baros (Tasikmalaja), Inur Nur Bariah (Banda Atjeh), Cut Mimi Hamni & Bang Dayat (Unsyiah Banda Atjeh), Een Eriani Kartini (Banda Atjeh), Ramadhan (Padang), Petrus Satsuittubun (Papua), Mumu Mutasim Billah (Pekalongan), Rini (Blitar), Takdir Saili (Kendari), K Adnyane Mudite (Lampung), Adi Winarto (Trenggalek), Sharon Ogle (Edinburg Skotlandia), Nining Handayani (Dompu), Tita Yuningsih (Rangkas), Sri Fadjra Satrija (Bogor), Dea Rosaria Indah (KualaTungkal), Sigit Prastowo (Solo), I Wayan Iwa Wisaksana (Tanggerang), Angga Vijaya (Bogor), Jaenuri (Citayam Bogor), Maria Oja Roza Helmita (Padang), Muhhamed Samsi (Purbalingga), Wahyu Wahyudin (Bogor), Bu Hajah Yani Ipin R Manggung (Baranangsiang 4 Bogor), Maman Superman (Maseng), Kusdiantoro Anto Mohammad (Cibeureum Bogor), Ani Sutrisno (Balitvet Bogor), Doktor Bambang (Salemba Jakarta), masing-masing dengan ilmu yang ada padanya telah membantu kami dalam memahami dan menyajikan materi yang telah dikumpulkan selama penelitian. Kepada keluarga tercinta I Made Bagus G Wiswanata, Ni Putu Chandra P.Jyoti, Luh Putu Herawati, Meme Luh Rinang, Bape Made Radin, Eben, Acup, Kadek, Bape Matua Nyoman Narman, Meme Matua Made Sumani, Bape Jiwe, sapenyaman Batannyuh, para leluhur, dan keluarga lainnya, kami mengucapkan terima kasih atas pengorbanan, pengertian, dorongan, dan doanya yang tiada pernah terputus. Kepada Hyang Widi yang maha pemurah, kami sangat menyadari, bahwa apa yang kami hasilkan ini sungguh tiada berarti dibandingkan kemurahan yang engkau limpahkan. Dia yang satu dan Dia yang menyediakan kebutuhan terpendam setiap manusia pada setiap waktu. Dia yang berada di awal dan di akhir setiap benda. Semoga Dia mempersatukan kita dengan ikatan kebenaran, ikatan kebersamaan, dan ikatan keadilan. Suksma. © Hak cipta milik Institut Pertanian Bogor, tahun 2007 Hak cipta dilindungi Dilarang mengutip dan memperbanyak tanpa izin tertulis dari Institut Pertanian Bogor, sebagian atau seluruhnya dalam bentuk apa pun baik cetak, foto kopi, mikrofilm, dan sebagainya KARYA TULIS YANG TELAH DIPUBLIKASIKAN Batan IW, Boediono A, Djuwita I, Lay BW, Supar. 2006. Pelacakan perlekatan bakteri Echerichia coli K99 pada zona pelusida embrio mencit dengan metode enzym linked immunosorbent assay (elisa) dan scanning electron microscope (SEM). J Veteriner. 2006 (7): 29-38. Batan IW, Boediono A, Djuwita I, Lay BW, Supar. Perkembangan embrio mencit yang dicemari Escherichia coli K99 setelah perlakuan tripsin atau pronase. (Diterima pada Media Kedokteran Hewan, Surabaya 2007) 1 1. PENDAHULUAN 1.1 Latar belakang 1.1.1 Pengembangan dan aplikasi teknologi transfer embrio Sebelum tahun 1970, pertukaran materi genetik ternak hanya terbatas antar ternak hidup dan semen beku. Kemudian pada pertengahan tahun 1970an, pengembangan dan aplikasi teknologi transfer embrio sapi dengan metode tanpa bedah (non-surgical) dipandang sangat sesuai untuk menyebarkan genetik sapi ke seluruh dunia (Drost et al. 1976). Satu dekade kemudian dengan kemajuan bioteknologi dapat dihasilkan anak sapi pertama yang dilahirkan dari oosit yang dimatangkan dan difertilisasi secara in vitro (Haneda et al. 1986). Kini transfer embrio sapi baik yang dihasilkan secara in vivo maupun yang diproduksi secara in vitro, menjadi bisnis yang menarik pada industri peternakan di berbagai tempat di dunia (Wrathall 1995). Keberhasilan aplikasi transfer embrio di Indonesia sangat rendah yakni sekitar 16,1% berhasil bunting dan yang berhasil dilahirkan 1,2% (Balai Embrio Transfer 1997), sedangkan secara umum tingkat kelahiran transfer embrio adalah 30% (Peterson & Lee 2003). Banyak faktor yang mempengaruhi keberhasilan transfer embrio, salah satunya adalah cemaran agen infeksius yang mengakibatkan embrio tidak mampu berkembang ke tahap selanjutnya (Bak et al. 1992). Dengan vitrifikasi, suatu teknik kriopreservasi embrio yang pelaksanaannya relatif lebih mudah, cepat, dan ekonomis (Rall & Fahy 1985), vitrifikasi embrio sapi telah berhasil dilakukan dengan hasil terbaik pada embrio umur tujuh hari (Saha et al. 1996). 1.1.2 Peluang teknik transfer embrio dalam penyebaran penyakit infeksius Embrio transfer sangat berperan dalam menyebarkan genetik ternak, akan tetapi juga berpeluang menyebarkan penyakit. Riset dalam bidang penularan penyakit melalui transfer embrio, yang diproduksi secara in vivo, dimulai pada akhir tahun 1970-an. Penyebaran ini pada mulanya teramati pada hewan laboratorium. Pada mencit dan kelinci telah dilaporkan adanya penularan retrovirus, yang menjadi bagian genom gamet. Pada zigot dan embrio baboon telah berhasil dilacak adanya partikel-partikel virus. Adanya infeksi pada oosit dan spermatozoa sangat berpeluang menjadi sumber penularan secara vertikal. Walaupun begitu, penyakit leukemia sapi yang disebabkan oleh retrovirus 2 ternyata tidak menular secara vertikal, karena diketahui materi virus ini sama sekali tidak tersisipkan (insert) ke dalam genom gamet (Stringfellow et al. 1991). Agen virus seperti bovine viral diarrhea dan bovine herpes virus tipe-1, tidak menembus embrio tapi hanya melekat pada permukaan luar embrio (Vanroose 1999). Cemaran agen penyebab penyakit pada sel sperma, oosit, dan embrio merupakan jalur penularan horisontal yang penting pada ternak. Pencemaran terhadap embrio berasal dari lingkungan embrio (uterus, oviduk, medium kultur) dan dari tindakan manipulasi sebelum dan pada saat transfer ke resipien. Medium flushing kemungkinan dapat dicemari oleh patogen-patogen usus dan vagina pada saat dilakukan pemanenan embrio (Guerin et al. 1997). Embrio yang diproduksi secara in vivo, tidak menularkan penyakit viral, jika mengikuti langkah-langkah baku yang disarankan dan dipersyaratkan oleh The International Embryo Transfer Society (IETS). Langkah-langkah itu seperti mencuci dengan PBS, memberi perlakuan tripsin, dan melakukan kontrol terhadap produk-produk biologik (serum dan albumin) yang digunakan dalam embrio transfer, dan evaluasi terhadap embrio. Pemrosesan embrio yang umum dilakukan, bertujuan untuk mencegah pencemaran embrio oleh agen-agen penyakit. Namun, tindakan yang disarankan IETS ternyata tidak efektif guna menyingkirkan agen penyakit seperti virus blue tongue, virus penyakit mulut dan kuku, bovine herpes virus-1 dan bovine viral diarrhea (Vanroose 1999; Stringfellow & Givens 2000; Kafi et al. 2002), begitu pula terhadap bakteri Leptospira borgpetersenii (Bielanski & Surujballi 1996), dan Escherichia coli K99 (Otoi et al. 1993) yang sengaja dipaparkan ke embrio-embrio tersebut. Di samping itu cemaran juga disebabkan oleh Mycoplasma bovigenitalium (Bielanski et al. 2000), dan parasit Trichomonas foetus (Bielanski et al. 2004). 1.1.3. Fungsi dan peranan zona pelusida Zona pelusida merupakan struktur membran ekstrasel oosit atau embrio usia dini. Jaringan zona pelusida sangat kompleks, memiliki kekuatan yang seragam pada seluruh permukaannya dan memiliki pori-pori. Zona pelusida (ZP) terdiri dari glikoprotein yang dikenal sebagai ZP1, ZP2, dan ZP3. Zona pelusida ini sangat beragam di antara spesies yang berbeda (Dudkiewicz et al. 1976). Zona pelusida disintesis oleh oosit dan diendapkan di perifer sel-sel tersebut, 3 selama tahapan oogenesis (Dunbar et al. 1994; Miyano et al. 1994). Zona pelusida membungkus oosit dan embrio hingga implantasi dini. Zona pelusida melindungi sel telur dan embrio dari kerusakan mekanik selama ovulasi dan perjalanan sepanjang saluran reproduksi betina (Wassarman et al. 1999). Di samping itu zona pelusida memegang peran penting dalam: pengikatan spermatozoa, mencegah fertilisasi polispermia, menyinambungkan pola pembelahan/cleavage yang reaksi akrosom, normal, mencegah perlekatan antar sel telur, dan mencegah terjadinya implantasi dini (Jones et al. 1990; Wassarman et al. 1999). Wu et al. (2004) melaporkan bahwa zona pelusida berperan memberi perlindungan terhadap oosit dan embrio dini dari bahan biologi yang berbahaya seperti infeksi yang disebabkan oleh virus dan bakteri. Zona pelusida merupakan pelapis penting yang menentukan status kesehatan embrio. Zona pelusida mencegah infeksi agen penyakit menular sebelum terjadinya hatching. Kemungkinan terjadinya infeksi dapat saja terjadi dan berlangsung pada proses produksi embrio dengan cara fertilisasi oosit secara in vitro dan transfer embrio (Otoi et al. 1992; Otoi et al. 1993). 1.1.4. Cemaran bakteri Escherichia coli K99 Bakteri E.coli K99 telah terbukti dapat melekat pada permukaan embrio walau pun telah dicuci berulang-ulang dengan pencuci yang baku (Otoi et al. 1993), dan di Indonesia E.coli K99 merupakan bakteri penting karena menyebabkan diare yang mematikan pada anak sapi (Supar 1998). Keberadaan bakteri E.coli K99 yang endemik di Indonesia sangat berpeluang mencemari embrio atau pada proses embrio transfer. Maka dari itu muncul beberapa pertanyaan yakni: apakah agen patogen seperti E.coli K99 dapat bertahan hidup pada embrio yang diproduksi secara in vivo, mampukah embrio yang ditumpangi E. coli berkembang dengan baik, dan apakah dalam sistem kultur in vitro zona pelusida embrio tercemar tahan terhadap perlekatan dan penetrasi E.coli K99? 1.2. Tujuan penelitian Dalam upaya mengetahui interaksi antara bakteri E.coli K99 dengan embrio, khususnya zona pelusida, maka dilakukan penelitian dengan tujuan: a. Menguji kemampuan bakteri E.coli K99 melekat ke permukaan zona pelusida embrio. 4 b. Menguji kemampuan zona pelusida embrio berperan sebagai penahan terhadap cemaran E.coli K99. c. Membuktikan efektivitas pencucian embrio yang tercemari E.coli K99 dengan bahan pencuci seperti PBS, tripsin, dan pronase. d. Menguji daya tahan hidup secara in vitro dan in vivo embrio yang tercemari E.coli K99 dan daya tahan hidup E.coli K99 setelah proses vitrifikasi. 1.3. Manfaat hasil penelitian Hasil penelitian ini diharapkan dapat bermanfaat dalam: a. Peningkatan kewaspadaan atau pengamanan terhadap kemungkinan adanya cemaran terhadap proses penanganan embrio. b. Kualitas zona pelusida dapat dipakai sebagai acuan dalam menilai kualitas embrio. c. Pemanfaatan enzim lain selain tripsin, dapat dipakai sebagai alternatif pembasuh embrio. d. Pemanfaatan metode vitrifikasi untuk mengawetkan kemungkinan metode tersebut dapat dipakai untuk patogen pada embrio. embrio, serta mencegah cemaran 5 2. TINJAUAN PUSTAKA Produksi embrio pada beberapa jenis hewan ternak, hewan laboratorium (Hogan et al. 1986; Hoshi 2003) dan hewan kesayangan telah banyak dilakukan baik secara in vivo (dengan bantuan superovulasi) maupun in vitro untuk tujuan industri peternakan. Embrio tahap morula dan blastosis banyak digunakan dalam industri peternakan dan secara luas dalam bidang penelitian karena embrio pada tahap perkembangan ini paling mudah diperoleh, lebih tahan dan secara teknis penanganannya lebih mudah dibandingkan tahap perkembangan embrio yang lebih dini, serta memberikan peluang lebih besar dalam keberhasilan transfer embrio. Cara yang digunakan untuk menghasilkan embrio bebas penyakit adalah dengan: melakukan pemeriksaan terhadap hewan donor secara seksama sebelum dan setelah panen embrio dilakukan; memberi perlakuan tertentu terhadap embrio pascapanen; dan dengan melakukan perpaduan antara pemeriksaan hewan donor embrio dan perlakuan terhadap embrio. Pemeriksaan hewan donor merupakan cara konvensional untuk memastikan, hewan donor bebas dari agen penyakit tertentu, tetapi cara tersebut memerlukan waktu dan biaya mahal dibandingkan dengan memberi perlakuan terhadap embrio. Pemeriksaan terhadap donor dapat dilakukan secara serologi, umumnya dengan metode serum berpasangan (paired serum). Pemeriksaan serum pertama, pada saat embrio dipanen dan kedua beberapa minggu kemudian. Alasan hewan donor harus diperiksa, mengingat hewan betina donor merupakan suatu unit yang terisolasi bagi embrio sebelum dipanen, dan embrio tersebut tidak akan terpapar agen patogen jika donor tersebut tidak terinfeksi. Jika sekelompok asal ternak donor bebas penyakit, dapat memberikan jaminan bahwa embrio yang dipanen bebas penyakit, demikian halnya jika daerah atau negara asal donor tersebut bebas penyakit. Sedangkan perlakuan terhadap embrio, dengan cara membasuh embrio dengan atau tanpa tripsin yang disarankan oleh The International Embryo Transfer Society (IETS), dapat menekan terjadinya penularan penyakit jika embrio tersebut ditransfer. Di samping cara tersebut relatif murah; mudah diterapkan secara rutin pada saat produksi embrio dilakukan; dan efektif mengatasi cemaran agen pada embrio (Stringfellow & Givens 2000). 6 2.1 Infeksi embrio oleh agen patogen Dengan berkembangnya teknologi fertilisasi in vitro dan transfer embrio pada sapi, membuat embrio tahap morula dan blastosis yang dibekukan menjadi komoditi perdagangan internasional. Sejalan dengan itu kemungkinan terjadinya penularan penyakit menular bersamaan dengan embrio yang difertilisasi secara in vitro ataupun yang ditransfer ke induk lainnya menjadi masalah. Pemrosesan embrio dengan mencuci dan memberi perlakukan tripsin pada metode yang disarankan oleh lembaga IETS terbukti tidak efektif untuk menyingkirkan beberapa agen patogen seperti virus bluetongue, foot and mouth disease, dan bakteri leptospira (Otoi et al.1992; Otoi et al.1993). Bakteri leptospira malah mampu menembus zona pelusida secara in vitro, sedangkan Bovine Herpes Virus-1 dan Bovine Viral Diarrhoea Virus secara mekanik terjebak pada zona pelusida. Kedua virus ini hanya mampu menembus 25-50% ketebalan zona pelusida (Stringfellow & Givens 2000). Di samping bakteri leptospira, bakteri E.coli K99 juga masih ditemukan melekat pada embrio yang dipaparkan ke suspensi kuman yang mengandung 109 colony forming unit per mililiter. Untuk itu, perlu dilakukan kajian lebih lanjut terhadap keamanan embrio dari agen-agen patogen. Kematian embrio merupakan penyebab utama yang paling merugikan akibat gangguan reproduksi pada hewan ternak dan sangat mempengaruhi keberhasilan, produktivitas hewan tersebut. Sebagian besar kerugian terjadi pada masa embrional dalam proses kebuntingan. Saat-saat yang paling merugikan ini berlangsung dari saat fertilisasi terjadi hingga sempurnannya tahap diferensiasi, khususnya beberapa hari pascafertilisasi dan selama proses implantasi. Mortalitas embrio pada sapi akibat hal-hal tersebut di atas diperkirakan mencapai 20 sampai 40% (Vanroose et al. 2000). Di samping itu kendala lain dalam pengembangan populasi sapi karena adanya penyakit kolibasilosis yang menyerang pedet sapi. Penyakit mematikan yang menyerang anak sapi pascalahir ini juga dikenal sebagai penyakit diare profus yang disebabkan oleh infeksi enterotoxigenic E.coli (ETEC). Kematian pedet sapi paling umum disebabkan karena diare pada hari-hari mingggu pertama kelahirannya, dan tingkat kematian pedet dapat mencapai 20%, dan dari kasus diare di berbagai tempat di Indonesia telah berhasil diisolasi bakteri E.coli K99 (Supar et al. 1998). 7 E.coli enterotoksigenik memiliki fimbrae K99 dan menyebabkan diare pada pedet sapi dan anak babi. Dalam hal ini ada suatu bahan dari kelompok hidroksil yang memegang peran spesifik dalam perlekatan antara molekul adhesin pada fimbrae bakteri dan gangliosida-GM3 pada mukosa usus. Gangliosida-GM3 terutama ditemukan pada mukosa usus dan kadarnya paling tinggi saat hewan itu dilahirkan dan hanya tinggal 6,25% saja saat hewan itu telah dewasa, hal inilah yang menjelaskan kenapa E.coli menyerang hewan pedet (Abe et al. 1992). E.coli bersama bakteri lainnya seperti Streptococcus agalactie, dan Actinomyces pyogenes telah diketahui menginfeksi saluran reproduksi. E.coli dapat diisolasi dari vagina anjing dan 60% kuman yang ditemukan pada turunannnya ditemukan pula pada induknya (Munnich & LubkeBecker 2004), begitu pula kuman ini mudah diisolasi dari vagina sapi dara, dan kuman ini menyebabkan terjadinya penurunan tingkat kebuntingan sapi yang dikawinkan dengan inseminasi buatan (Takacs et al. 1990). 2.2 E.coli K99 penginfeksi embrio Bakteri E.coli termasuk ke dalam famili Enterobacteriaceae dengan genus Escherichia. Nama genus tersebut mengenang kepeloporan Theodor Escherich, seorang dokter anak asal Jerman, dalam riset tentang bakteri tersebut. Bakteri E.coli adalah bakteri Gram negatif, berbentuk batang halus dan bersifat fakultatif anaerob. Bakteri E.coli mampu bertahan hidup lama pada lingkungan berair dan dingin (Bertschinger 1999). Enterotoksigenik E.coli (ETEC) merupakan agen penting penyebab diare akut pada hewan muda dan anak-anak. Perlekatan merupakan langkah pertama ETEC patogen untuk menimbulkan diare. Perlekatan tersebut diperantarai oleh protein polimer berbentuk seperti serabut yang sangat halus pada permukaan bakteri. Struktur permukaan tersebut dikenal sebagai fimbriae atau pili (Bertschinger & Fairbrother 1999). E.coli patogen sebagian besar menghasilkan satu atau beberapa adhesin fimbriae yang melekatkan bakteri tersebut ke reseptor spesifik. Fimbriae E.coli menjulur dari sel bakteri berupa struktur yang terdiri dari subunit-subunit protein yang berperan sebagai penyangga protein perlekatan yang ada pada ujung fimbriae. Fimbriae diklasifikasikan berdasarkan reaksi serologi, namun adhesin fimbriae pada ETEC babi dan sapi pada mulanya dikira antigen kapsuler, maka dari itu dinamai K88 dan K99 (Orskov & Orskov 1983). Terdapat empat adhesin 8 fimbriae ETEC (Cox & Houvenaghel 1993). dikenal pada ternak neonatal yaitu K88(F4), K99(F5), P987(F6), dan F41. Isolat-isolat ETEC umumnya dapat menghasilkan sejumlah adhesin fimbriae, namun kombinasi adhesin yang kerap dihasilkan adalah F5&F6; F5&F41; F4&F6. Fimbriae F5 dan F41 hanya terekspresikan dengan baik jika dikultur pada media yang rendah kandungan glukosa atau alanin, seperti medium minca (Guinee et al. 1977). E.coli K99 terutama melekat pada vili usus pada setengah bagian belakang usus halus, sedangkan K99/F41 melekat pada jejunum dan ileum (Cox & Houvenaghel 1993). Bakteri ETEC K99 menghasilkan enterotoksin yang tahan panas. Protein nonimunogen yang memiliki berat molekul 2000 dalton tersebut berikatan dengan guanyl cyclase yang merupakan reseptornya pada usus. Pengaktifan guanilat siklase tersebut akan merangsang dihasilkannya GMPsiklik. Kadar GMP-siklik yang tinggi akan menghambat sistem kotranspor natrium chloride sehingga mengurangi penyerapan elektrolit dan air dari usus (Fairbrother 1999). Bakteri E.coli, begitu juga Brucella ovis, Mycobacterium paratuberculosis, Mycoplasma sp, Streptococci sp. dilaporkan dapat mencemari permukaan zona pelusida embrio dan perlekatan sangat kuat sehingga sulit untuk disingkirkan (Wrathall 1995). Di samping bakteri tersebut, Bielanski et al. (2003) melaporkan sejumlah bakteri lainnya yang ditemukan mencemari embrio dan semen yang disimpan dalam waktu lama. Khusus terhadap E.coli K99, Otoi et al. (1993) telah meneliti pencemaran bakteri tersebut terhadap embrio sapi. Antara E.coli K99 dengan permukaan zona pelusida diduga ada perikatan yang sifatnya spesifik, karena perlekatan tersebut tidak terlepas walaupun telah dicuci dengan tripsin. Pengendalian terhadap cemaran pada embrio tidak begitu banyak dipahami dan betapa rumitnya kalau kita telusuri agen-agen infeksius yang dapat menyebabkan kematian pada embrio. Upaya pengendalian cemaran salah satunya dapat dilakukan dengan penambahan antibiotik pada medium kultur, akan tetapi cara tersebut tidak selalu efektif. 2.3 Zona pelusida pelindung sel-sel embrio Zona pelusida merupakan glikoprotein selubung ekstraseluler yang berlapis-lapis menyelubungi oosit dan embrio praimplantasi. Matriks zona pelusida tersebut terdiri dari tiga glikoprotein yakni ZP1, ZP2, dan ZP3. (Qi et al. 9 2002). Pada pengamatan secara scanning electron microscopy, permukaan dalam dan permukaan luar zona berbeda. pelusida mencit memperlihatkan pola yang Permukaan luarnya dicirikan dengan adanya banyak bekas perlubangan atau fenestrasi (fenestration), sehingga tampilannya tampak seperti spon atau seperti batu apung, sedangkan permukaan dalamnya relatif lebih lembut dan kompak (Phillips & Shalgi 2001). Dipandang dari permukaan luarnya, ada dua bentuk permukaan zona pelusida, yakni: 1) berbentuk seperti anyaman kawat (mesh like) dan 2) berbentuk kompak terutama ditemukan pada oosit muda atau yang atretik (Familiari et al.1989). Greeve & Wassarman (1985) dan Vanroose (1999) mengemukakan bahwa pada zona pelusida yang memiliki jalinan permukaan luar yang kasar dan longgar menyerupai spon tersebut, ditemukan adanya pori dengan garis tengah lebih besar, sedangkan pada struktur permukaan dalam yang tidak kasar dan kompak garis tengah porinya lebih kecil. Banyaknya pori yang ditemukan pada zona pelusida embrio sapi, berbeda-beda pada berbagai tingkat perkembangan. Pada oosit ditemukan sekitar 1151 pori-pori, sedangkan pada sigot, embrio 8 sel, dan morula, secara berturut-turut ditemukan 1187, 1658, dan 3259 pori-pori. Begitu pula halnya dengan garis tengah pori-pori pada oosit, sigot, embrio 8 sel, dan morula secara berturut-turut adalah 182nm, 223nm, 203nm, dan 155nm (Vanroose 1999). Permukaan zona pelusida yang kasar pada oosit matang mungkin disebabkan adanya sisa perlekatan sel-sel kumulus dan korona radiata (Suzuki et al. 1994). Penjuluran-penjuluran sitoplasma sel-sel korona radiata menembus zona pelusida dan berujung pada gap junction pada membran vitelin oosit (Alworth & Albertini 1993). Setelah oosit matang, sebagian besar penonjolan sitoplasma sel korona radiata akan ditarik atau putus, dan matriks zona pelusida akan menutup kanal-kanal yang ditinggalkan sitoplasma tersebut. Pori-pori yang terlacak keberadaannya pada seluruh permukaan zona pelusida oosit, kemungkinan merupakan tempat masuknya penjuluran-penjuluran sel tersebut. Berdasarkan pengamatan tiga dimensi yang dikemukakan oleh Familiari et al. (2006), zona pelusida yang mirip anyaman kawat tersebut sangat memungkinkan untuk ditauti dan dilekati spermatozoa. Tekstur anyaman zona pelusida yang longgar, lebih memperjelas fungsinya sebagai pengikat spermatozoa, dan mempermudah enzim akrosom spermatozoa mencerna zona pelusida. Sebaliknya tekstur zona pelusida yang rapat akan mempersulit perikatan spermatozoa, begitu pula pencernaannya oleh enzim akrosom. 10 Glikoprotein zona pelusida pada mencit, monyet, dan manusia disintesis, disekresikan, dan dirakit oleh oosit selama proses oogenesis yang berlangsung sekitar 2-3 minggu dan bukan diproduksi oleh sel-sel granulosa (Eberspaecher et al. 2001; Qi et al. 2002). Selubung ekstraseluler tersebut terdiri dari filamenfilamen dimer panjang terdiri dari ZP2 dan ZP3, dan dipertautkan oleh ZP1. Matriks zona pelusida tersusun dari sambungan-sambungan filamen dengan panjang sekitar 2-3 μm. Filamen-filamen tersebut memperlihatkan struktur yang berulang setiap 15 nanometer, menandai letak dimer ZP2 dan ZP3 sepanjang filamen. ZP1 adalah struktur yang menghubungkan filamen ZP2 dan ZP3 yang letaknya saling bersebrangan. Ketiga glikoprotein tersebut terikat bersama menjadi zona pelusida oleh ikatan non-kovalen (Greeve & Wassarman 1985; Wassarman 2002), sehingga lapisan zona pelusida tersusun menurut waktu terbentuknya dan lapisan yang paling dalam merupakan lapisan yang paling terakhir dibentuk (Qi et al. 2002). Ketebalan zona pelusida beragam baik antar spesies mamalia maupun antar setiap mahluk hidup dalam spesies yang sama. Ketebalan zona pelusida berkaitan langsung dengan protein yang dikandung oleh zona pelusida. Semakin tipis zona pelusida membuat oosit lebih mudah dibuahi. Pada manusia zona pelusida oosit yang mudah dibuahi tebalnya sekitar 16,5 μm sedang yang sulit dibuahi tebalnya 20,0 μm. Semakin tipis semakin mudah dibuahi, tetapi jika terlalu tipis (15,1μm) membuat banyak sperma yang dapat membuahi (Bertrand et al. 1996). Zona pelusida embrio tahap cleavage lebih tipis dibandingkan dengan oosit. Penipisan zona pelusida terjadi secara proporsional, terjadi penipisan baik pada lapisan 1 mau pun lapisan 2, tetapi yang paling menipis adalah lapisan ke tiga atau lapisan terluar. Penipisan terjadi sebagai akibat zona pelusida meregang karena embrio membesar. Di samping itu, penipisan zona pelusida dapat pula terjadi karena lapisan terluar zona pelusida dicerna oleh protease. Secara umum ketebalan zona pelusida dapat dipakai sebagai panduan dalam memilih embrio (Grabielsen et al. 2000). Sesungguhnya zona pelusida memiliki ketebalan yang beragam, begitu pula susunan molekuler, dan ketebalan jaringan yang berada di bawah zona pelusida. Zona pelusida yang tebal akan memperlambat perkembangan embrio (Pelletier et al. 2004). Zona pelusida mencit terdiri dari tiga glikoprotein yakni mZP1 (mice ZP1), mZP2, dan mZP3, dengan berat molekul secara berturut-turut 200 kDa, 120 kDa, dan 83 kDa (Wassarman 2002), sedangkan pada manusia ukurannya 110 kDa, 11 76 kDa, dan 73 kDa (Shabanowitz & O’Rand 1988). Tebal zona pelusida sekitar 5-10 μm, rasio antara ZP2 dengan ZP3 adalah 1:1, sedangkan ZP1 sekitar 9% dari keseluruhan jumlah ZP2 ditambah ZP3 (Green 1997). tersebut membentuk jalinan tiga dimensi. Ke tiga glikoprotein Antara heterodimer ZP2 dan ZP3 dipertautkan oleh ZP1, sebaran glikokonjuget tersebut berubah-ubah selama terjadinya proses pematangan oosit (Rankin et al. 2001). ZP3 berperan sebagai reseptor utama dan induktor reaksi akrosom spermatozoa mencit, hamster, dan manusia (Moller et al. 1990; Van Duin et al. 1994) di samping itu ZP3 berperan sebagai glikoprotein struktural merakit zona pelusida bersama ZP2 dan ZP1(Bleil & Wassarman 1986; Wassarman 2002). ZP2 pada sapi berperan sebagai reseptor sekunder terhadap spermatozoa yang telah mengalami reaksi akrosom (Vanroose et al. 2000). Belakangan ini baru diketahui, bahwa agar supaya terjadi fertilisasi pada mencit spermatozoa harus berikatan dengan ZP3 dan ZP2 (Candace et al. 2002). Pada babi glikoprotein yang berperan mengikat spermatozoa adalah ZP3 dan ZP1 (Yurewicz & Sacco 1996), hal yang mirip terjadi pada kelinci (Yamasaki et al. 1995) Zona pelusida dapat diibaratkan sebagai palang pintu (gatekeeper) terhadap masuknya spermatozoa, karena gamet jantan tersebut harus berikatan dan menerobos zona pelusida supaya dapat bersatu dengan membran plasma oosit selama pembuahan berlangsung (Wassarman 2002). Supaya dapat berikatan, gamet jantan tersebut harus dikenali oleh reseptornya yang ada pada permukaan zona pelusida yang sifatnya komplementer (Miller & Ax 1990; Wassarman 1994). Reseptor untuk spermatozoa tersebut, akan membatasi perlekatannya dengan spermatozoa dari spesies heterolog dengan oosit yang belum dibuahi, atau mencegah perlekatan spermatozoa dari spesies yang homolog dengan oosit yang telah dibuahi (Epifano & Dean 1994). ZP3 tersusun dari kerangka polipeptida, tempat asparagine-(N-) dan serine/threonine-(O-) yang mengikat oligosakarida bertaut (Wassarman 2002). Juluran-juluran rantai oligosakarida tersebut persebaran dan jenisnya berbeda antar spesies mamalia (Parillo et al. 2001). Susunan sakarida zona pelusida tersebut berkaitan dengan tahapan perkembangan folikel (Parillo et al. 1999). Galaktosa, N-asetilglukosamin, dan fukosa merupakan gula-gula yang sangat penting dalam pengikat spermatozoa mencit (Wassarman 2002), sedangkan pada kelinci dan hare gula-gula pengikatnya adalah D-galaktosamin dan N-asetil 12 glukosamin (Parillo & Verini-Suplizi 2001). Perlekatan yang spesifik pada setiap spesies mamalia diperantarai oleh karbohidrat (Wassarman 2002). Perlekatan antara spermatozoa dengan reseptornya pada zona pelusida mengakibatkan spermatozoa mengalami reaksi akrosom, semacam eksositosis seluler (Epifano & Dean 1994). Reaksi akrosom mendorong terjadinya perlekatan enzim proteolitik yang diperlukan spermatozoa agar bisa menembus matriks zona pelusida, dan mereka ulang (remodelling) permukaan spermatozoa agar tetap terjadi perlekatan dengan zona pelusida untuk selanjutnya dapat menyatu dengan membran oosit (Wassarman 2002). Dalam reaksi akrosom tersebut ada beberapa komponen penghantaran sinyal yang terlibat seperti: protein-G, inositol 3,4,5 triposfat, reseptor IP3, posfolipase-C, Ca++, dan kanal Ca++. Enzim-enzim kortikal yang ada pada kepala spermatozoa akan membuat ZP2 dan ZP3 menjadi ZP2f dan ZP3f, sehingga terjadi perubahan yang dramatik pada permukaan zona pelusida (Vanroose et al. 2000). Perubahan struktur zona pelusida tersebut membuat zona pelusida menjadi lebih kaku dan mengalami pengerasan (hardening). Tingkat kekakuan dan pengerasan yang terjadi sebanding dengan bertambah banyaknya jumlah ikatan menyilang ZP1 yang menautkan ZP2 dengan ZP3 (Familiari et al. 2006). Proses pembuahan yang mengakibatkan ZP berubah sedemikian rupa, membuat spermatozoa yang datang belakangan tidak dapat mengenali dan tidak menempel pada glikoprotein zona pelusida yang telah terbuahi (Wassarman 2002). Matriks zona pelusida tersebut tetap melindungi embrio yang membelah selama perlintasannya menuju uterus di dalam tuba fallopi, sebelum embrio tahap blastosis tersebut hatched dari zona pelusida menjelang implantasi. (Vanroose et al. 2000). Di Indonesia pelaporan terhadap cemaran agen infeksius dan upaya memahami peranan zona pelusida embrio sebagai penahan infeksi, dan kemungkinan penularan agen infeksius melalui embrio belum banyak dilaporkan. Untuk itu perlu dilakukan penelitian pencemaran embrio dengan model menggunakan agen infeksius yang umum dan secara ekonomis penting bagi Indonesia, seperti E.coli K99. 2.4 Peranan zona pelusida sebagai barier embrio terhadap bakteri patogen Embrio secara alami memiliki pelindung yang dikenal sebagai zona pelusida. Zona pelusida mamalia merupakan pembungkus ekstraseluler yang terdiri dari glikoprotein aseluler dan terbentuk selama perkembangan oosit. Pada 13 kebanyakan spesies hewan, zona pelusida membungkus oosit dan embrio dari beberapa saat setelah oosit terbentuk, hingga embrio mencapai tahap implantasi dini, dan melindungi dari kerusakan mekanik selama ovulasi dan perjalanannya sepanjang saluran reproduksi betina (Wassarman et al. 1999). Zona pelusida mempunyai peran yang spesifik pada tahap awal fertilisasi, seperti pengikatan sperma, penyusupan dan menghambat terjadinya pembuahan polispermia (Jones et al. 1990; Wassarman et al. 1999). Di samping itu, zona pelusida berperan penting sebagai cangkang pelindung sel-sel embrio, namun demikian secara tidak sengaja dapat membawa agen-agen infeksi dalam penyebaran penyakit ternak melalui embrio transfer (Stringfellow & Seidel 1990). Dalam sejumlah studi dilaporkan bahwa embrio yang terbebas dari zona pelusida dapat berkembang secara in vitro (Boediono et al. 1993), namun perkembangan selanjutnya tergantung pada tahap zona pelusida itu disingkirkan, misalnya pada tahap 2, 4, atau 8 sel (Konwinski et al. 1978; Lai et al. 1994). Pada babi dilaporkan bahwa oosit babi yang tidak memiliki zona pelusida dan dilakukan fertilisasi in vitro terhadapnya, dapat berkembang menjadi embrio dan lahir menjadi anak babi yang normal (Wu et al. 2004). Transfer embrio intact (masih memiliki ZP) yang sebelumnya telah dipaparkan ke agen penyakit, ternyata dapat menyebabkan terjadinya infeksi pada resipien dan janin. Pasca pemaparan zona pelusida secara morfologi dan kimiawi agak mirip, akan tetapi bentuk permukaannya agak beragam. Hal ini terbukti dengan adanya perbedaan tenacity tempat bertautnya agen ke embrio. Pada embrio babi, baik virus beramplop maupun yang tidak, dapat melekat erat ke zona pelusida dan tidak bisa disingkirkan dengan pembasuhan tripsin. Sedangkan embrio domba daya lekatnya lebih lemah dari embrio babi, namun lebih kuat dibandingkan dengan embrio sapi (Wrathall 1995). 2.5 Kriopreservasi embrio Embrio yang diproduksi baik secara in vivo mau pun in vitro bila tidak dimanfaatkan secara langsung dapat diawetkan dengan pembekuan, dan jika diperlukan embrio tersebut dapat ditransfer ke resipien yang sedang bunting semu. Embrio beku dapat disimpan dalam waktu yang lama, dapat dikemas dalam kemasan kecil, membuatnya memiliki keunggulan untuk diperdagangkan secara internasional (Wrathall 1995). 14 Dalam proses pembekuan atau kriopreservasi digunakan krioprotektan dalam medium pembeku untuk mereduksi pengaruh letal akibat proses kriopreservasi sel, terutama pengaruh kristal es baik intraseluler maupun ekstraseluler. Selama beberapa tahun belakangan ini, untuk peningkatan aplikasi dan efisiensi, embrio dari berbagai spesies mamalia telah dikriopreservasi dengan pengembangan berbagai metode kriopreservasi. Beberapa metode kriopreservasi pada saat ini antara lain: metode konvensional dengan metode pendinginan lambat (slow freezing) dan pendinginan cepat (rapid freezing), serta metode alternatif yang dikenal dengan vitrifikasi. Vitrifikasi adalah proses pemadatan cairan yang mengandung krioprotektan konsentrasi tinggi pada suhu -196° C tanpa pembentukan kristal es sehingga terlihat seperti kaca (Rall & Fahy 1985). Keuntungan dari vitrifikasi adalah tidak memerlukan mesin khusus dan waktu pengerjaannya relatif mudah, murah, dan singkat. Penggunaan konsentrasi krioprotektan yang tinggi membawa konsekuensi pada tingkat toksisitas. Etilen glikol (EG) merupakan salah satu krioprotektan yang paling rendah tingkat toksisitasnya serta memiliki daya permeasi yang cepat sehingga sangat baik digunakan sebagai krioprotektan. Di samping etilen glikol, krioprotektan yang sering dikombinasikan dengannya untuk vitrifikasi dimetilsulfoksida (DMSO). adalah DMSO lebih toksik dibandingkan EG (Lane et al. 1999; Mukaida et al. 2003; Takahashi et al. 2005). Namun demikian dengan penambahan sukrosa kedalam larutan vitrifikasi selain dapat menurunkan toksisitas juga dapat mengurangi efek dari perubahan tekanan osmotik (osmotic shock). Pada proses vitrifikasi, sebagai carrier embrio dapat digunakan electron microscope grid (Son et al. 2003), straw berdinding tipis (Vajta et al. 1998), hemistraw (Vanderzwalmen et al. 2003), atau kriolup (Takahashi et al. 2005) Kemajuan di bidang bioteknologi reproduksi atau rekayasa embrio berdampak pada peningkatan kebutuhan terhadap embrio. Namun demikian, terbatasnya daya tahan embrio di luar tubuh induk merupakan salah satu kendala di dalam upaya penyediaan embrio secara berkesinambungan baik untuk keperluan aplikasi mau pun penelitian. Salah satu upaya pengadaan embrio secara berkesinambungan adalah melalui pembuatan bank embrio dengan penerapan teknik kriopreservasi (penyimpanan dengan bentuk beku), yaitu menyimpan embrio pada suhu -196°C (Lane et al. 1999). Dengan teknik ini embrio dapat disimpan dalam waktu yang lama serta memudahkan dalam hal waktu dan transportasi. Embrio beku dapat digunakan di kemudian hari untuk 15 keperluan transfer embrio guna meningkatan produksi ternak, sebagai bahan penelitian secara in vitro, dan penyelamatan plasma nutfah hewan-hewan liar dalam menunjang konservasi atau hewan yang bernilai ekonomis tinggi. Di samping itu dalam proses vitrifikasi embrio, carrier kriolup yang dipakai umumnya secara komersial terbuat dari bahan nilon. Namun pada penelitian ini, kriolup yang dipakai dibuat dari filamen kawat tembaga yang merupakan hasil modifikasi, dan diupayakan mendekatkan situasinya dengan kriolup yang umum dipakai di negara-negara maju. 2.6 Embrio transfer dan penularan penyakit Kultur embrio kini mampu mendukung teknologi reproduksi, dan semakin banyak diterapkan pada ternak. Kultur embrio tidak saja mampu secara cepat memperbanyak produksi embrio dengan kualitas genetik sangat bagus, tetapi juga dipakai untuk memproduksi clone dan hewan transgenik. Embrio tersebut agar dapat berkembang lebih lanjut harus ditransfer ke induk resipien, dan tingkat keberhasilan embrio transfer berdasarkan suatu studi yang dilakukan sangat beragam, mulai dari 9% hingga 47% (Peterson & Lee 2003). Semenjak penyakit sapi gila (bovine spongyform enchephalopaties /BSE) beserta penyakit mulut dan kuku mewabah di Eropa tahun 2001, perekonomian mengalami tekanan, di samping adanya persaingan internasional yang semakin berat. Akibat kesulitan ekonomi tersebut, pemanfaatan teknik-teknik reproduksi dikurangi pada ternak. Peningkatan produksi ternak tidak lagi menjadi prioritas, dan sumberdaya diarahkan ke pertanian ramah lingkungan yang berkelanjutan dan kesejahteraan hewan (animal welfare). Dalam suasana seperti tersebut, arah dan penggunaan teknologi embrio tidak lagi oleh peternak, tetapi oleh perusahan-perusahan yang bergerak dalam bidang genetik dan usaha pembibitan (breeder) yang mengharapkan keuntungan dari penjualan semen, embrio, dan hewan. Masalah ke dua yang dihadapi Eropa adalah sikap khawatir masyarakatnya terhadap produk bioteknologi, dan salah satunya adalah teknologi embrio (Galli et al. 2003). Ketakutan masyarakat terhadap produk-produk bioteknologi tersebut karena adanya kemungkinan bahan makanan asal hewan tercemar oleh agen penyakit sapi gila yang bersifat fatal pada manusia. Untuk memotong penularan penyakit ke keturunannya, dapat dilakukan dengan mencuci embrio yang kemungkinan tertular, kemudian ditransfer ke induk resipien yang sehat. Anak- 16 anak hewan ternak yang dihasilkan terbebas dari penyakit yang diderita induknya, seperti kejadian penyakit virus bovine viral diarrhea (Bak et al. 1992). Kekhawatiran yang berlebihan masyarakat Eropa terhadap infeksi penyakit hasil embrio transfer, seharusnya dapat dikaji dengan penyakit sapi gila. Terhadap agen penyakit yang mampu melekat ke permukaan embrio dan tidak terbilas dengan menggunakan mPBS atau tripsin seperti yang disarankan IETS (Otoi et al. 1992; 1993), penelitian perlu dilakukan untuk melihat kemungkinan agen seperti E.coli K99 tersebut ikut ditularkan pada saat embrio transfer, baik menggunakan embrio segar mau pun embrio yang telah dibekukan. Pengawetan embrio salah satunya dapat dilakukan dengan metode vitrifikasi, dan selanjutnya dievaluasi secara in vitro dan in vivo (Lane et al. 1999). Dalam penelitian yang dilakukan kemungkinan dapat dievaluasi perkembangan embrio yang divitrifikasi, baik tercemar atau tidak. Begitu pula evaluasi terhadap perkembangan agen yang mencemari. Dalam industri peternakan, kriopreservasi embrio mendorong percepatan proses seleksi genetik dan juga menekan biaya program pembibitan karena embrio selalu tersedia pada saat induk resipien secara alami tersedia. Hal ini juga menekan biaya yang diperlukan untuk melakukan penyerentakan birahi pada ternak. Akhirnya teknik kriopreservasi embrio dimanfaatkan pada manusia dalam rangka reproduksi bantuan untuk menyimpan kelebihan produksi embrio, sebagai upaya untuk melakukan kehamilan. Di samping itu kriopreservasi tidak saja berhasil dilakukan pada mencit, manusia dan sapi, tetapi juga pada anjing, kambing, kuda, domba, kelinci, tikus, babi, dan beberapa spesies hewan liar (Wood et al. 2004) Keberhasilan teknik kriopreservasi di negara-negara maju tersebut, perlu dilakukan penelitian di negara berkembang seperti Indonesia dengan segala keterbatasannya untuk memetik manfaat yang mungkin diperoleh seperti penyelamatan plasma nutfah, memproduksi ternak asli indonesia yang secara genetik unggul, dan mengoptimalkan teknik-teknik pencegahan cemaran organisme tropik terhadap embrio. 17 3. PENGUNGKAPAN PERLEKATAN ESCHERICHIA COLI K99 PADA ZONA PELUSIDA DENGAN TEKNIK ELISA DAN SEM 3.1 PENDAHULUAN Zona pelusida (ZP) merupakan membran ekstraseluler oosit dan embrio (Dudkiewicz et al. 1976). ZP membungkus oosit, hingga embrio menjelang implantasi dini pada permukaan uterus. ZP melindungi embrio dari kerusakan mekanik sepanjang perjalanannya menuju uterus (Wassarman et al. 1999). Di samping itu, ZP berperan melindungi oosit dan embrio dari ancaman bahan biologik berbahaya, seperti infeksi oleh virus dan bakteri. Keberadaan ZP penting, karena menentukan status kesehatan embrio, sebab ZP mencegah serbuan agen-agen penyakit sebelum embrio mengalami hatching (Wu et al. 2004). Walaupun begitu, sejumlah agen virus dan bakteri telah diketahui mampu melekat pada ZP (Wrathall 1995). Beberapa jenis virus dan bakteri mampu melekat pada permukaan ZP antara lain: virus blue tongue, penyakit mulut dan kuku, bovine herpesvirus-1, dan bovine viral diarrhoea (Stringfellow & Givens 2000), bakteri Leptospira spp. (Shisong & Wrathall 1989; Bielanski & Surujballi 1996), Escherichia coli K99, Streptococcus agalactie, Actinomyces pyogenes (Otoi et al. 1992), mikoplasma (Mycoplasma bovis, M bovigenitalium), parasit Tritrichomonas foetus (Bielanski et al. 2000; Bielanski et al. 2004). Pencemaran dengan agen patogen ini dapat terjadi saat fertilisasi in vitro dan atau pada saat transfer embrio. Di samping itu cakupan infeksi dapat meluas, karena embrio beku kini telah menjadi komoditi perdagangan antar bangsa (Otoi et al. 1992; Otoi et al. 1993). Prosedur yang disarankan oleh lembaga International Embryo Transfer Society (IETS) dengan cara pembasuhan embrio ternyata kurang efektif menyingkirkan agen penyakit seperti bakteri E.coli K99 dari embrio (Otoi et al. 1993). Bakteri E.coli K99, merupakan agen penyebab penyakit kolibasilosis pada anak babi dan anak sapi. Infeksi bakteri ini menimbulkan kerugian pada industri peternakan babi dan sapi di Indonesia karena menimbulkan diare profus dan kematian anak sapi (Supar 1998). Penelitian ini bertujuan mengamati perlekatan antara zona pelusida embrio yang berperan sebagai barrier dengan bakteri E.coli K99 sebagai agen patogen. Pemeriksaan ELISA dilakukan guna menunjukkan bahwa ikatan antara bakteri E.coli K99 dan zona pelusida bersifat spesifik yang difasilitasi oleh 18 antigen pili K99. Sedangkan pemeriksaan dengan SEM dimaksudkan agar perlekatan E.coli ke permukaan zona pelusida dapat diamati secara langsung. 3.2 MATERI DAN METODE 3.2.1 Penyiapan bakteri E.coli K99 dan serum Bakteri E.coli K99 dan serum diperoleh dari Balai Penelitian Veteriner (Balitvet) Bogor. Bakteri E.coli K99 diisolasi dari anak sapi, dibiakkan semalam pada media Minca plus vitox (Oxoid, UK). Setelah inokulasi selanjutnya diinkubasikan pada suhu 370C selama satu malam. Pada suhu tersebut antigen K99 lebih banyak diproduksi dibandingkan dengan suhu di bawah 250C (Guinee et al. 1977). Setelah diinkubasi, sel-sel bakteri pada permukaan agar dibilas dengan NaCl fisiologis, sel tersebut dicuci tiga kali. Sel dipisah dengan sentrifugasi 4000 rpm selama 20 menit. Endapan sel dari pencucian terakhir kemudian dibuat suspensi dengan kekeruhan setara dengan tabung standar Mc Farland nomor 10 (Supar 1986). Selain E.coli K99, juga digunakan bakteri E.coli penyebab diare pada anak sapi dan babi yang memiliki antigen perlekatan F41, bakteri E.coli K88 atau F4 adalah bakteri yang menimbulkan diare pada anak babi, bakteri unggas atau –K99, dan isolat TDF1a yang memiliki antigen perlekatan K99 (F5) dan F41 yang menimbulkan diare pada anak sapi (Supar 1996). Antiserum spesifik K99 diperoleh dari laboratorium E.coli Balitvet. Imuno globulin (IgG) atau anti K99 IgG dari serum tersebut diendapkan dengan amoniumsulfat jenuh (40%) dengan perbandingan 1:1. Endapan dipisahkan dengan sentrifugasi 4000 rpm, dilarutkan dengan NaCl fisiologis dan volumenya disesuaikan dengan volume antiserum semula, kemudian dimasukkan ke dalam kantung dialisis melawan larutan garam NaCl selama satu malam di dalam lemari es. Keesokan harinya dilanjutkan dengan melawan akuades selama satu jam. Setelah dianalisis, suspensi antiK99 IgG dimasukan ke dalam tabung ependorf secara aliquot dan disimpan dalam lemari es atau pada freezer -200C (sampai saatnya dipakai untuk ELISA). 3.2.2 Pemanenan embrio Mencit betina berumur 6-8 minggu yang berasal dari koloni bebas penyakit dirangsang ovulasinya. Mencit tersebut diinjeksi dengan pregnant 19 mare’s serum gonadotropine (PMSG, Folligon, Intervet, Netherland) 5IU secara intraperitoneum (ip) pada pukul 13.00-14.00 (agar tersedia waktu leluasa saat pemanenan embrio). Setelah 48 jam mencit-mencit tersebut diberikan human chorionic gonadotropin (hCG, Chorulon, Intervet, Netherland) 5IU secara ip. Selanjutnya masing-masing mencit betina tersebut dikawinkan dengan mencit jantan (Hogan et al. 1994). satu Keesokan harinya, mencit betina yang menandakan adanya sumbat vagina (vagina plug) dipisahkan dari pejantan. Empat hari kemudian embrio dipanen, dari mencit yang dimatikan dengan cara dislokasio cervicalis. Embrio akan ditemukan pada kornua uterus. Kornua uterus dipotong dan dipisahkan dari mencit, kemudian ditempatkan pada cawan petri kecil yang telah diisi dengan medium modified Phosphate Buffered Saline/mPBS Selanjutnya lumen uterus dibilas dengan medium mPBS menggunakan alat suntik 1cc. Sambil diamati di bawah mikroskop, embrio dicuci 2-3 kali dengan mPBS yang mengandung bovine serum albumin 2.5% tanpa antibiotik (Otoi et al. 1992) 3.2.3 Penyiapan reagen-reagen ELISA 3.2.3.1 Pembuatan antigen ekstrak zona pelusida untuk ELISA. Ekstrak zona pelusida didapat dari embrio tahap morula dan blastosis. Zona pelusida dipisahkan dari sel-sel embrio dengan cara membelah embrio itu menjadi dua bagian di bawah mikroskop inverted dengan menggunakan micromanipulator (Nikon Diaphot Japan), atau dengan membiarkan embrio terus berkembang sampai tahap hatched. Embrio yang dibelah dua akan membuat bagian zona pelusida segera terpisah dengan sel-sel embrio. Jika terjadi perlekatan dapat dipisahkan dengan menggetar-getarkan pisau silet pembelah. Zona pelusida yang terlepas dari sel-sel embrio, kemudian dipisahkan dan disonikasi (Bioruptor Ogawa Seiki Ltd Japan). Konsentrasi ekstrak zona pelusida dalam mPBS diukur dengan spektrofotometer. 3.2.3.2 Pembuatan coating buffer 0,1M karbonat bikarbonat. Sebanyak 1,06 g Na2CO3 anhidrous dan 0,84 g NaHCO3 anhidrous dilarutkan dalam 100 ml akuades, kemudian pHnya disesuaikan agar menjadi pH 9,6. Larutan bufer ini langsung dipakai untuk melarutkan antigen ekstrak zona pelusida. 20 3.2.3.3 Pembuatan phosphate buffered saline (PBS) konsentrasi 10X, pH7,2 untuk ELISA. Sebanyak 8,5g NaCl, 2g KCl, 11,5g Na2PO4, dan 2g KH2PO4 dilarutkan dalam 1000 ml akuades. Setelah larut dimasukkan ke dalam botol dan disimpan dalam lemari es. Larutan tersebut digunakan untuk melakukan pencucian pada saat melakukan ELISA. Larutan PBS tersebut diencerkan 10 kali dalam akuades, kemudian ditambahkan Tween-20, sehingga konsentrasi akhir PBST ini menjadi 0,05%. 3.2.3.4 Citrate phosphate buffer. Sebanyak 21,01g citrate (C6H607.H2o) dilarutkan dalam 500 ml akuades, begitu pula 14,2g Na2HPO4 dilarutkan dalam 500 ml akuades. Larutan phosphate dimasukan ke dalam larutan sitrat sedikit demi sedikit, sehingga pH campuran ke dua larutan menjadi 4,2. Setelah pH larutan dapat disesuaikan, larutan disimpan dalam lemari es bersuhu 40C (1-2 minggu). 3.2.3.5 Pembuatan suspensi ABTS. Substrat ABTS dibuat dengan cara melarutkan (286mg dalam 10 ml air suling) sebanyak 200μl dimasukan kedalam 10 ml citric buffer phosphate (24 ml 0,1M asam sitrat ditambahkan 26 ml 0,2M Na2HPO4 dan kemudian dilarutkan dalam 100 ml air suling) yang memiliki pH 4,2 kemudian ditambahkan 30 ml hidrogen peroksida (H202) 10% (Voller & Bidwell 1986). 3.2.4 Prosedur ELISA Ekstrak zona pelusida konsentrasinya diketahui dengan pemeriksaan spektrofotometer, dipakai untuk melapisi cawan ELISA. Prinsip uji ELISA yang dipakai pada penelitian ini mengikuti prosedur yang ditulis oleh Supar (1986) dengan sedikit modifikasi. Secara singkat sebagai berikut: polysterene mikroELISA dilapisi (coating) dengan ekstrak zona pelusida. Konsentrasi zona pelusida dibuat 10-15 μg/ml dalam buffer carbonate bicarbonate pH 9,6 sebanyak 100 μl dimasukkan ke dalam setiap sumuran cawan ELISA. Cawan ditutup dan dibungkus dengan kertas saring yang telah dibasahi air, kemudian dimasukkan kedalam kantung plastik dan diinkubasi pada suhu 370C selama satu sampai dua jam. Selanjutnya disimpan semalam pada suhu 40C. Setelah inkubasi sumuran-sumuran cawan ELISA dicuci dengan PBST sebanyak tiga kali. Sumur cawan nomor 1 dan 2, 7 dan 8, 9 dan 10 dari baris A 21 diisi dengan bakteri E.coli, kontrol negatif, sedangkan sumur nomor 3 dan 4, 5 dan 6, 11 dan 12, kontrol positif. Isi lubang baris A tersebut diencerkan in situ secara berseri dengan faktor setengah berturut-turut dalam PBST sampai baris G, sedangkan baris H hanya diisi PBST saja. Kemudian diinkubasi selama 10 menit pada suhu 370C. Cawan dicuci tiga kali dengan PBST. Lama pencucian 4-5 menit, kemudian kedalam sumur diisi dengan PBST yang mengandung BSA 0,5% sebanyak 100 ml. Cawan ditutup dan dibungkus, kemudian diinkubasikan pada suhu 370C selama 60 menit (Supar et al. 1993; 2002). Sumur dicuci lagi dengan PBST sebanyak tiga kali, dan setiap lubang diisi dengan suspensi IgG antiK99 yang dibuat pada kelinci sebanyak 100 μl dengan konsentrasi 10-15 μg/ml dalam PBST. Kemudian diinkubasikan pada 370C selama 30 menit. Setelah itu sumuran-sumuran kembali dicuci dengan PBST sebanyak tiga kali. Selanjutnya suspensi konjugat enzim antirabbit horseradish peroxidase dalam PBST dengan pengenceran 1:500 diisikan ke dalam sumur itu dengan volume 100µl. Kemudian diinkubasikan pada suhu 370C selama 60 menit. Setelah diinkubasi, dicuci dengan PBST sebanyak tiga kali. Ke dalam setiap sumur diisi dengan substrat sebanyak 100µl. Substrat yang ditambahkan adalah ABTS / 2’-azino-bis (3ethylbenzithiazoline-6 sulfonic acid). Cawan dibungkus seperti sebelumnya dan diinkubasikan pada suhu kamar selama 45 menit dan diletakkan pada alat pengocok. Reaksi dibaca dengan alat pembaca ELISA mikro pada panjang gelombang 405 nm, guna memperoleh angka pembacaan optikal densitas reaksi ELISA. Dalam uji ELISA ini intensitas warna yang muncul akibat adanya reaksi yang berkaitan langsung dengan kandungan antigen yang terikat partikel zona pelusida yang dicoating ke dasar sumuran (Tizzard 2000). Hasil pembacaan ELISA selanjutnya disusun dalam tabel untuk memudahkan evaluasi. 3.2.5 Prosedur pemeriksaan mikroskop elektron Embrio yang telah dicemari dengan ± 105 bakteri E.coli K99 per ml, dicuci dua kali selama 30 detik dengan mPBS dengan seksama (Otoi et al. 1993) Kemudian embrio ditempelkan pada permukaan gelas objek berukuran 3x3 mm yang sebelumnya telah direndam dalam perekat neophren 2.5%. Selanjutnya embrio difiksasi dalam glutaraldehid 2.5% pada suhu 4oC selama 24 jam. Setelah fiksasi embrio dicuci dengan mPBS selama 5 menit sebanyak tiga kali, 22 kemudian embrio direndam dalam asam tanat 2% selama satu jam pada suhu kamar. Setelah itu dilakukan pencucian kembali hingga jernih. Selanjutnya direndam dalam OsO4 1% selama satu jam pada suhu kamar, dan terakhir dicuci dengan mPBS sebanyak tiga kali. Preparat tersebut didehidrasi dengan alkohol bertingkat dari konsentrasi 70%, selama 80%, 90%, 95%, dan 100% masing-masing tingkat sebanyak tiga kali 30 menit. Dehidrasi berikutnya dilakukan dalam t-butanol. Pengeringbekuan menggunakan alat freezedryer (VDF-21S t-BOH). Coating dengan menggunakan platinum paladium dengan alat Giko IB-3 ion coater, dilakukan selama 13 menit dengan muatan listrik 9 ampere. Sampel selanjutnya diperiksa pada scanning electrone microscope (Jeol, JSM-5310 LV) pada 20 kV (Hyttel et al. 1988; Prasetyaningtyas et al. 2005). 3.3 HASIL DAN PEMBAHASAN Pada pemeriksaan ELISA terlihat bahwa reaksi antara zona pelusida (mencit) dengan bakteri E.coli K99 ditemukan adanya pembacaan kepadatan optik yang lebih tinggi, dibandingkan dengan bakteri E.coli yang memiliki faktor perlekatan bukan K99 seperti F41, K88, -K99 (Tabel 3.1). Hasil pemeriksaan ELISA, menunjukkan bahwa nilai optikal densitas (OD) bakteri yang memiliki pili K99, nilai OD-nya lebih tinggi. Hal ini terlihat pada sampel pili K99, TDF1a, dan K99. dengan rataan nilai OD secara berurutan sebagai berikut: 1,16; 1,62; dan 1;63. Nilai OD tersebut lebih tinggi dibandingkan dengan sampel yang tidak memiliki antigen perlekatan K99, seperti pada sampel F41, K88, dan –K99 (tanpa pili K99), dengan nilai OD secara berurutan sebagai berikut: 0,50; 0,55; dan 0,42. Pada satu jenis bakteri E.coli, selain memiliki satu jenis antigen perlekatan (pili), mungkin saja bakteri tersebut memiliki pili K99 atau F41, seperti yang ditemukan pada bakteri E.coli O101 dan O9 (Supar 1996). Adanya kepadatan optik yang lebih tinggi pada E.coli K99, dibandingkan dengan bakteri E.coli yang tidak memiliki pili K99, menandakan bahwa bakteri E.coli K99 memang mampu berikatan dengan zona pelusida. Dari penelitian sebelumnya dilaporkan bahwa glikolipid yang mengandung asam muramik, galaktosa, dan glukosa merupakan reseptor pili K99 (Dean & Isaacson 1985). Selain itu Vazquez et al. (1996) melaporkan bahwa antigen perlekatan E.coli K99 atau F5, perlekatannya melalui suatu pola mannosa resistant hemaglutination. Akan tetapi perlekatannya dapat 23 juga diperantarai oleh manosa, seperti pada E.coli unggas jika bakteri tersebut ditumbuhkan pada media padat (Dozois et al.1985). Zona pelusida mengandung tiga jenis glikoprotein yakni ZP1, ZP2, dan ZP3. Rantai polipeptida dan oligosakarida dari glikoprotein tersebut berbeda satu dengan yang lain (Wassarman 1999). Kandungan glikoprotein zona pelusida tidaklah banyak dan gugus gula yang umum ditemukan padanya adalah D-manosa, D-glukosa, galaktosa, N-asetil glukosamin (Skutelsky et al. 1994). Gugus gula pada permukaan zona pelusida, berbeda antar jenis hewan. Pada mencit yang umum ditemukan adalah galaktosil, L-fukosa, D-manosa, dan metil manosida (Wassarman 1988). Gugus gula tersebut penting dalam pengikatan spermatozoa pada saat fertilisasi (Miller & Ax 1990). Gugus gula zona pelusida merupakan tempat interaksi yang spesifik. Memahami persebaran gugus gula pada permukaan zona pelusida sangatlah penting guna mengetahui adanya ikatan spesifik (Skutelsky et al. 1994). Adanya manosa pada permukaan spermatozoa justru membuat bakteri E.coli mudah menempel, karena bakteri melekat ke gula manosa. Akibatnya spermatozoa tidak leluasa bergerak guna membuahi oosit (Wolff et al. 1993). Tabel 3.1 Rataan kepadatan optik hasil ELISA antara zona pelusida mencit dengan berbagai jenis bakteri E. coli asal hewan Sumuran Pengenceran (-2log2) 0 1 2 3 4 5 6 PBS A B C D E F G H Keterangan: F41 0.500 0.519 0.439 0.476 0.460 0.448 0.475 0.538 K99 1.626 1.155 0.609 0.531 0.490 0.462 0.427 0.431 Kepadatan Optik Pili K99 K88 1.162 0.550 1.161 0.520 0.549 0.505 0.481 0.485 0.488 0.472 0.494 0.478 0.480 0.471 0.502 0.495 -K99 0.425 0.419 0.409 0.410 0.428 0.429 0.388 0.440 TDF1a 1.617 1.475 0.418 0.424 0.419 0.409 0.427 0.502 F41= suspensi pili E.coli F41; K99= suspensi E.coli K99, referen ststrain couple K12K99; Pili K99= suspensi pili murni K99 dari isolat lapang TDF1a; K88 = susupensi pili E.coli K88; -K99= susupensi pili E.coli bukan pili K99; TDF1a= susupensi E.coli K99 isolat lapang TDF1a Dari pemeriksaan secara ELISA, menunjukkan adanya ikatan antara zona pelusida dengan suspensi pili maupun suspensi bakteri E.coli K99, yang ditandai dengan nilai OD yang tinggi, sedangkan pada sampel bakteri negatif K99, nilainya sama dengan suspensi PBST (Tabel 3.1). Hasil ini nampaknya mendukung penelitian sebelumnya bahwa ikatan antara E.coli dengan zona 24 pelusida ini sulit dilepaskan (Otoi et al. 1992; 1993), disamping itu walau pun embrio yang dicemari oleh bakteri E.coli K99, telah dicuci dengan phosphate buffered saline (PBS) mau pun tripsin, ternyata tidak mampu melepas ikatan yang terjadi. B A Gambar 3.1 Perlekatan E.coli K99 pada zona pelusida melalui pengamatan SEM (Scanning Electrone Microscopy). Bakteri E.coli K99 (panah putih) menempel pada permukaan zona pelusida mencit (A), bakteri E.coli K99 tampak menempel pada zona pelusida dan berukuran di bawah satu mikron (B). Dalam preparat embrio yang dipaparkan (expose) dengan E.coli K99 menunjukkan adanya perlekatan bakteri E.coli K99 pada permukaan embrio walau pun telah dilakukan pencucian. Dari hasil pengamatan SEM dan ELISA memberikan dugaan adanya pertautan antigen pili pada permukaan embrio atau zona pelusida (Gambar 3.1). Implikasi hasil penelitian ini memberi masukan praktis pada aspek transfer embrio terutama dalam melakukan tindakan pencegahan adanya pencemaran bakteri E.coli K99. Dengan menggunakan SEM dapat dipakai untuk membuktikan bahwa bakteri E.coli K99 mampu melekat ke permukaan zona pelusida, bahkan ada sejumlah bakteri yang terjerembab kedalam pori-pori pada permukaan zona pelusida. Bakteri E.coli yang menempel pada permukaan embrio menunjukkan gambaran yang serupa yang pernah dilaporkan oleh Bertschinger & Fairbrother (1999). Upaya pembuktian adanya perlekatan E.coli K99 ke permukaan zona pelusida yang dilacak dengan SEM belum pernah dilaporkan sebelumnya, tetapi adanya perlekatan bakteri Leptospira spp dilaporkan oleh Shisong & Wrathall (1989), Bielanski & Surujballi (1996), perlekatan Mycoplasma bovis, Mycoplasma 25 bovigenitalium ke zona pelusida dilaporkan oleh Bielanski et al. (2000), dan perlekatan Trichomonas foetus dilaporkan oleh Bielanski et al. (2004). Hasil penelitian ini menunjukan adanya perlekatan E.coli ke zona pelusida baik uji secara ELISA maupun secara SEM, uji-uji tersebut belum pernah dilaporkan sebelumnya guna menunjukan adanya perlekatan antara E.coli K99 dengan zona pelusida. 3.4 SIMPULAN Penelitian pengembangan ELISA dengan penggunaan ekstrak zona pelusida yang dilapiskan pada sumuran cawan ELISA sebagai penangkap antigen (antigen captured) menunjukkan adanya reaksi ikatan spesifik antara zona pelusida mencit dengan pili K99, tetapi tidak terjadi ikatan antara zona pelusida dengan pili non K99. Reaksi diperkuat dengan pemeriksaan secara SEM, teramati sel utuh E.coli K99 dapat menempel pada permukaan zona pelusida. 3.4 SARAN Perlu dilakukan penelitian lebih lanjut mengenai pengaruh perlekatan bakteri E.coli K99 pada zona pelusida terhadap perkembangan embrio. Teknik ELISA kemungkinan besar dapat digunakan sebagai alat diagnosis penyakit bakteri, virus, dan perdagangan embrio dan embrio transfer. parasit yang ditularkan melalui 26 4. PERANAN ZONA PELUSIDA SEBAGAI BARIER TERHADAP CEMARAN ESCHERICHIA COLI K99 4.1 PENDAHULUAN Zona pelusida merupakan struktur membran ekstraseluler oosit atau embrio praimplantasi. Jaringan zona pelusida sangat kompleks, memiliki kekuatan yang seragam pada seluruh permukaannya dan memiliki pori-pori. Zona pelusida (ZP) terdiri dari glikoprotein yang dikenal sebagai ZP1, ZP2, dan ZP3. Zona pelusida ini sangat beragam di antara spesies yang berbeda (Dudkiewicz et al. 1976). Zona pelusida disintesis oleh oosit selama tahapan oogenesis dan diendapkan di perifer sel-sel tersebut (Dunbar et al. 1994; Miyano et al. 1994). Zona pelusida membungkus oosit dan embrio hingga menjelang implantasi/hatching. Zona pelusida melindungi sel telur dan embrio dari kerusakan mekanik selama ovulasi dan perjalanan sepanjang saluran reproduksi betina (Wassarman et al. 1999). Zona pelusida juga memegang peran penting dalam pengikatan spermatozoa, mencegah fertilisasi polispermia, reaksi akrosom, menyinambungkan pola pembelahan/cleavage yang normal, dan mencegah perlekatan antar oosit (Jones et al. 1990; Wassarman et al. 1999). Akan tetapi, peran zona pelusida yang sesungguhnya pada proses fertilisasi dan implantasi tidak sepenuhnya dipahami (Konwinski et al. 1978; Lai et al. 1994). (2004) melaporkan Wu et al. bahwa zona pelusida berperan memberi perlindungan terhadap oosit dan embrio dini terhadap mikroba yang berbahaya seperti infeksi yang disebabkan oleh virus dan bakteri. Zona pelusida merupakan pelapis penting yang menentukan status kesehatan embrio, atau sebagai barier terhadap cemaran atau infeksi agen-agen penyakit menular sebelum keluarnya embrio dari zona pelusida atau hatching. Akan tetapi, sejumlah agen virus dan bakteri mampu melekat pada zona pelusida (Wrathall 1995). Dalam pemrosesan embrio, seperti tindakan pencucian dengan buffer dan perlakuan tripsin, ternyata tidak efektif menyingkirkan virus blue tongue, virus penyakit mulut dan kuku, bovine herpes virus-1, bovine virral diarrhoea virus. Pada percobaan bakteri Leptospira sp., dan Escherichia coli K99 yang sengaja dipaparkan ke embrio (Stringfellow & Givens 2000; Otoi et al. 1993), bakteribakteri itu dapat menempel ke permukaan zona pelusida. Penempelan bakteri E.coli O9 K99 ke zona pelusida mencit telah dibuktikan dengan pemeriksaan 27 mikroskop elektron dan uji ELISA (Batan et al. 2006). Dengan demikian infeksi patogen seperti di atas dapat terjadi dan berlangsung pada proses memproduksi embrio melalui teknik fertilisasi oosit in vitro dan transfer embrio. Embrio beku telah menjadi komoditi perdagangan internasional, bila terjadi infeksi patogen pada proses tersebut di atas maka dapat menginisiasi menyebarkan penyakit (Otoi et al. 1992; Otoi et al. 1993). The International Embryo Transfer Society (IETS), lembaga yang berperan mengawasi perdagangan embrio yakni, mensyaratkan adanya pencucian embrio dengan PBS dan tripsin sebelum ditransfer ke resipien. Namun, tindakan ini kurang efektif menyingkirkan salah satu agen penyakit seperti bakteri E.coli K99 dari embrio (Otoi et al. 1993). Hal ini mungkin disebabkan antigen pili K99 dapat menempel pada komponen glikolipid yang mengandung asam muramik, galaktosa, dan glukosa (Isaacson 1985). Oleh karena itu perlu dilakukan penelitian untuk menguji kemampuan zona pelusida sebagai barier atau pelindung embrio terhadap E.coli K99 dan kemampuan hidup embrio yang memiliki zona pelusida utuh dan yang tidak memiliki zona dalam medium kultur embrio yang dicemari bakteri E.coli K99. 4.2 MATERI DAN METODE 4.2.1 Superovulasi dan panen embrio Mencit betina berumur 12 minggu yang berasal dari koloni bebas penyakit, dirangsang folikulogenesis ovariumnya dengan menyuntikkan hormon pregnant mare’s serum gonadotropine (PMSG) (Folligon, Intervet, Boxmeer, Holland) 5-IU secara intra peritoneum pada pukul 16.00. penyuntikan PMSG, dilakukan penyuntikan hormon Setelah 48 jam human chorionic gonadotropin (HCG) (Chorulon, Intervet, Boxmeer, Holland) 5-IU secara intraperitoeum. Mencit betina tersebut setelah disuntik HCG langsung dikawinkan dengan mencit jantan dengan perbandingan 1:1. Hari berikutnya, mencit betina yang telah kawin ditandai dengan adanya sumbat vagina (vagina plug) dipisahkan dari pejantan. Tiga hari setelah dipisahkan dengan pejantannya, mencit betina bunting itu dimatikan dengan cara dislokasio os occipitalis. Bagian oviduk atau tuba Falopii diisolasi dan ditempatkan pada medium mPBS (Hogan et al. 1994). Oviduk tersebut dicacah dengan menggunakan jarum suntik 26G. Sambil diamati di bawah mikroskop binokuler, embrio delapan sel atau morula yang diperoleh dicuci dengan cara merendamnya berturut-turut 2-3 kali ke dalam mPBS yang telah diberi BSA 3%, tanpa antibiotik. 28 4.2.2 Penghilangan zona pelusida Embrio tahap delapan sel atau morula, zona pelusidanya dihilangkan guna mendapatkan embrio tanpa zona pelusida. Zona pelusida dihilangkan dengan cara merendam embrio tersebut dalam mPBS yang mengandung enzim pronase 0.25% (Sigma St.Louis USA) selama kurang lebih tiga menit dan tetap diamati di bawah mikroskop untuk mengetahui proses peluruhan zona pelusida. Segera setelah zona pelusida menjadi sangat tipis akibat perlakuan pronase, embrio dipindahkan ke larutan mPBS (Boediono et al. 1993), dan dicuci berturutturut sebanyak tiga kali. 4.2.3 Penyiapan bakteri E.coli K99 Bakteri E.coli diperoleh dari Balai Penelitian Veteriner (Balitvet) Bogor. Bakteri E.coli O9 K99 diisolasi dari anak sapi asal Sukabumi Jawa Barat. Isolat E.coli dibiakkan semalam pada media agar Minca plus vitox (Oxoid, UK) yang disiapkan pada cawan petri. Setelah inokulasi selanjutnya diinkubasikan pada suhu 370C selama satu malam. Pada suhu tersebut antigen K99 lebih banyak diproduksi dibandingkan dengan suhu dibawah 250C (Guinee et al. 1977). Setelah diinkubasi, sel-sel bakteri pada permukaan agar dibilas dengan NaCl fisiologis, sel-sel itu dicuci tiga kali. Sel-sel dipisahkan dengan sentrifugasi 4000 rpm selama 20 menit. Endapan sel dari pencucian terakhir kemudian dibuat suspensi dengan kekeruhan setara dengan tabung standar Mc Farland nomor 10 (Supar 1986). 4.2.4 Pemaparan embrio terhadap E.coli K99 Sekelompok embrio yang memiliki zona pelusida utuh dan embrio yang tidak memiliki zona atau tanpa zona pelusida ditempatkan dalam 80µl medium mPBS dan diberi bakteri E.coli K99 dengan konsentrasi bakteri 103 CFU/ml (Batan et al. 2006). Setelah itu biakan embrio diinkubasi selama 1 jam dalam 80µl medium mPBS pada suhu 370C dalam inkubator. Embrio-embrio yang terpapar kemudian dicuci dengan cara merendamnya tujuh kali ke dalam drop atau tetes-tetes berbeda media mPBS tanpa antibiotik (Otoi et al.1992; Otoi et al.1993). Embrio yang telah dibasuh tersebut selanjutnya dipindahkan ke dalam media kultur kalium simplex optimized medium (KSOM) (Summer et al. 2000). Setelah diinkubasikan selama 24 jam 29 pada suhu 370C dalam inkubator CO2 5%, embrio dievaluasi terhadap: 1) keadaan morfologi; 2) viabilitas (daya tahan hidup) embrio; dan 3) tingkat perkembangan. 4.2.5 Rancangan percobaan Rancangan yang dipakai pada penelitian ini adalah rancangan acak lengkap pola split in time. Ada tiga perlakuan yang diberikan kepada embrio unit percobaan, antara lain: 1) embrio tanpa zona pelusida dicemari dengan E.coli K99; 2) embrio dengan zona pelusida utuh dicemari dengan E.coli K99; dan 3) embrio dengan zona pelusida utuh dan tidak dicemari E.coli K99 (kontrol). Konsentrasi pencemaran bakteri E.coli K99 ke embrio adalah 103 CFU/ml. Pengamatan dilakukan dilakukan setiap enam jam selama 24 jam. Setiap perlakuan terdiri dari 15 ulangan dan setiap ulangan terdiri dari satu embrio. Parameter yang diamati adalah viabilitas (daya tahan hidup) dan tingkat perkembangan embrio yakni dari tahap 8 sel berkembang menjadi morula kompak, blastosis dan blastosis ekspan. Viabilitas embrio dihitung berdasarkan pengamatan morfologi. Tingkat viabilitas dihitung dari jumlah embrio yang menunjukkan morfologi normal per jumlah embrio yang dikultur. Tingkat perkembangan embrio dihitung dari jumlah embrio yang berkembang per jumlah embrio yang dikultur. HASIL DAN PEMBAHASAN 4.3.1. Pengamatan morfologi embrio Hasil pemanenan (koleksi) embrio dari tuba Fallopii pada hari ketiga setelah mencit dikawinkan, diperoleh embrio tahap 8 sel. Setelah mendapat perlakukan, embrio dikultur secara in vitro selama 24 jam dan pengamatan dilakukan setiap 6 jam. Pengamatan pada 12 jam pertama, embrio dalam medium kultur KSOM menunjukkan bahwa morfologi embrio yang memiliki zona pelusida yang terpapar oleh E.coli tidak berbeda dengan embrio kontrol. Sedangkan embrio tanpa zona pelusida dan dipaparkan dengan E.coli secara morfologi menunjukkan kualitas relatif lebih buruk dibandingkan embrio yang memiliki zona pelusida dan gambaran tersebut tampak semakin jelas setelah 18 jam kultur. Pada embrio tanpa zona teramati sel-sel embrio mengalami degenerasi (Gambar 4.1). Kematian embrio juga teramati pada embrio yang 30 memiliki zona pelusida utuh. Setelah dikultur selama 24 jam, embrio tanpa zona yang mati teramati sel-selnya mengalami lisis (Gambar 4.1D). Pada perlakuan embrio tanpa zona pelusida tampak bahwa sel-sel embrio langsung bersinggungan dengan bakteri E.coli K99 yang ada dalam medium yang telah dicemari (Gambar 4.1C) Embrio yang memiliki zona pelusida utuh, sel sel blastomer tampak terlindungi dengan baik oleh zona pelusida (Gambar 4.1A). Pada gambar yang memperlihatkan medium KSOM di luar zona pelusida tampak keruh dipenuhi oleh bakteri E.coli K99 (kepala panah), sedangkan ruang vitelin (RV), ruang yang ada di dalam embrio tampak bening sebagai pertanda bakteri E.coli K99 tidak menyusup masuk menembus zona pelusida. Pada embrio 24 jam pascapencemaran, terlihat embrio yang tidak memiliki zona pelusida memasuki tahap kematian (Gambar 4.1D). Embrio yang memiliki zona pelusida pada drop medium yang sama masih hidup setelah 24 jam kultur (Gambar 4.1B). Hal ini menandakan bakteri E.coli K99, memberi pengaruh yang tidak menguntungkan bagi perkembangan embrio yang tidak memiliki zona pelusida. 4.3.2. Viabilitas embrio Viabilitas embrio pada ketiga perlakuan embrio setelah dikultur selama 12 jam tidak menunjukkan perbedaan, yakni masing-masing perlakuan menunjukkan viabilitas 100%. Perbedaan viabilitas mulai tampak setelah 18 jam kultur in vitro yakni terjadi penurunan viabilitas pada embrio yang telah dicemari bakteri E.coli yaitu menurun menjadi 85.0% dan 75.0% masing-masing pada embrio tanpa zona dan yang memiliki zona (Gambar 4. 2). Setelah 24 jam kultur viabilitas embrio tanpa zona yang dicemari E.coli semakin menurun menjadi 65.0%. Terjadinya cemaran bakteri E.coli baik pada embrio tanpa zona maupun yang memiliki zona mengakibatkan terjadinya degenerasi sel-sel embrio yang diikuti dengan kematian embrio (Gambar 4.1 D). ZP RV z ZP 31 A C 20µm B 20µm D 20µm 20µm Gambar 4.1 Perkembangan embrio yang tidak dan memiliki zona pelusida (zp) dalam medium kultur yang dicemari E.coli K99. Diamati dengan inverted microscope. (A) Embrio memiliki zp utuh, 18 jam setelah pencemaran. E.coli tidak menembus zp. (B) Embrio memiliki zp utuh, 24 jam setelah pencemaran. E.coli tidak menembus zona, embrio berkembang mencapai tahap blastosis. (C) Embrio tanpa zp, 18 jam setelah pencemaran. Medium penuh bakteri, terlihat embrio tahap morula. (D) Embrio tanpa zp, 24 jam setelah pencemaran dengan medium penuh E.coli, embrio terlihat mulai degenerasi. Medium tercemar E.coli K99 (kepala panah); RV: ruang vitelin. 110 Viabilitas (%) 100 90 80 70 60 50 1jam 6jam 12jam 18jam 24jam Inkubasi kontrol tnp zona dgn zona Gambar. 4.2. Viabilitas embrio perlakuan selama 24 jam kultur in vitro dalam KSOM 32 4.3.3. Tingkat perkembangan embrio Hasil pengamatan pada ketiga embrio perlakuan setelah dikultur selama 24 jam menunjukkan bahwa tingkat perkembangan embrio kontrol (100.0%) lebih tinggi dibandingkan dengan embrio perlakuan yang memiliki zona pelusida yang dicemari E.coli K99 (62.6%) dan embrio tanpa zona pelusida yang dicemari E.coli K99 (20.0%)(Tabel 4.1). Sedangkan persentase jumlah embrio yang mengalami kematian (degenerasi) pada embrio perlakuan yang dicemari bakteri E. coli K99 adalah 35.0% dan 25.0% masing-masing embrio yang memiliki zona pelusida utuh dan embrio tanpa zona pelusida. Hal ini menunjukkan bahwa pencemaran bakteri E.coli K99 pada medium kultur in vitro dapat mengakibatkan terhambatnya perkembangan embrio dan kematian embrio. Embrio yang telah dicemari bakteri E. coli dan diinkubasi selama 24 jam menunjukkan bahwa tingkat perkembangan embrio yang memiliki zona pelusida utuh (62,6%) nyata lebih tinggi dibandingkan embrio tanpa zona pelusida (20.0%)(P< 0.05). Terlihat bahwa embrio yang dicemari E.coli K99 yang paling banyak mengalami degenerasi dan kematian adalah dari kelompok embrio yang tidak memiliki zona pelusida (35%), sedangkan kelompok embrio yang memiliki zona pelusida mempunyai tingkat kematian 25%. Hal ini membuktikan bahwa zona pelusida mampu memberikan proteksi terhadap pengaruh buruk pencemaran bakteri. Tabel 4.1 Tingkat perkembangan embrio setelah dicemari bakteri E.coli K99 dan diinkubasi selama 24 jam Tanpa zp* 20 Jumlah embrio yang berkembang (%) Morula Blastosis Blastosis Total kompak ekspan 3 (15,0) 2 (5,0) 0 (0.0) 5 (20,0) Zp utuh* 16 9 (56,3) Perlakuan embrio Jumlah embrio** 1 (6,3) 0 (0.0) Jumlah embrio degenerasi 7 (35,0) 10(62,6) 4 (25,0) Kontrol 12 9 (75,0) 2 (17,0) 1 (8.0) 12(100,0) * Embrio yang dicemari bakteri E. coli. **Embrio tahap 8-sel. 0 (0,0) Pada embrio tanpa zona pelusida dan dicemari dengan E.coli K99, persentase embrio yang mampu berkembang secara in vitro mencapai tahap morula kompak adalah 15%; sedangkan pada embrio yang memiliki zona pelusida dan embrio kontrol masing-masing adalah 56.3% dan 75.0%. Embrio 33 dengan zona pelusida utuh dan yang tidak dicemari dengan E.coli K99 dalam 24 jam dapat berkembang mencapai tahap blastosis, tetapi embrio tersebut tidak 100 100 100 73.3 75 100 80 60 60 40 7.8 7.61 10 25 Perkembangan(%) 120 100 100 mampu mencapai tahap blastosis ekspan, kecuali kelompok kontrol (Tabel 4.1). 20 0 8 sel Morula K.morula Blastosis Tahap perkembangan Kontrol Dgn zona Tnp zona Gambar 4.3. Persentase tahapan perkembangan embrio setelah kultur in vitro selama 24 jam. 120 Persentase 100 80 65 75 60 100 40 20 35 25 0 0 Kontrol Dgn zona Tnp zona Perlakuan Degenerasi Hidup Gambar 4.4. Persentase kematian embrio tanpa zona pelusida dan dengan zona pelusida setelah kultur in vitro selama 24 jam. Pada lingkungan atau medium embrio yang tercemar atau terinfeksi oleh mikroba, mikroba akan menempel dan berikatan dengan reseptor jaringan sel inang. Bakteri E.coli yang mempunyai antigen adhesin (K99) dapat menempel pada zona pelusida. Ikatan itu sulit dilepaskan dengan pembasuhan menggunakan mPBS mau pun pembasuhan dengan enzim tripsin dan diduga ikatan ini sifatnya spesifik (Otoi et al. 1993). Ikatan yang spesifik ini telah dibuktikan adanya dengan uji ELISA yang telah dilakukan pada penelitian sebelumnya, di samping pembuktian dengan melakukan pemeriksaan mikroskop 34 elektron terhadap ikatan bakteri E.coli K99 dengan zona pelusida mencit (Batan et al. 2006). Zona pelusida mencit mengandung tiga jenis glikoprotein, yakni ZP1, ZP2, dan ZP3. Ketiganya berbeda oligosakaridanya (Wassarman, 1999). dalam hal rantai polipeptida dan Analisis biokimiawi terhadap zona pelusida telah dilaporkan, bahwa zona pelusida mengandung glikoprotein yang mempunyai gugus ion positif atau negatif serta mempunyai berat molekul yang berbeda-beda, tergantung pada spesies hewan asal zona pelusida tersebut. Pada permukaan zona pelusida dilaporkan terdapat sejumlah gugus gula, seperti αD-manosa, αD-glukosa, β-galaktosa, dan N-asetil-glukosamin (Skutelsky et al. 1994). Gugus-gugus gula rantai oligosakarida pada glikoprotein zona pelusida ini, berperan penting dalam pengikatan spermatozoa pada saat fertilisasi (Miller & Ax 1990). Pada mencit banyak ditemukan gugus gula α-galaktosa, L-fukosa, D-manosa, dan metil manosida, pada tikus adalah L-fukosa, sedangkan pada hamster, marmut, dan manusia adalah D-galaktosa (Skutelsky et al. 1994), pada rusa timor banyak ditemukan gula D-N-asetilgalaktosamin dan galaktosa, namun sedikit α-glukosa dan α-manosa (Rifqiyati et al. 2006). Gugus gula pada zona pelusida mamalia itu merupakan tempat interaksi yang spesifik. Memahami adanya gula-gula ini pada permukaan zona pelusida sangatlah penting guna memahami terjadinya ikatan yang spesifik ke permukaan zona pelusida (Skutelsky et al. 1994). Adanya gugus gula-gula pada permukaan zona pelusida tersebut berfungsi sebagai reseptor terhadap bakteri atau virus. Bakteri ini melekat pada zona pelusida dengan perantaraan antigen pili atau adhesin K99 pada gugus molekul gula monosakarida seperti galaktosa, dan glukosa selain asam neuramik (Dean & Isaacson 1985). Gugus gula pada zona pelusida tersebut, selain bermanfaat dalam proses fertilisasi, juga memberi efek samping yang merugikan. Adanya gugus gula manosa pada permukaan spermatozoa misalnya memungkinkan bakteri E.coli melekat pada spermatozoa. Bakteri E.coli mungkin dapat terbawa oleh spermatozoa yang akan membuahi sel telur, dan hal ini akan berpeluang menginfeksi embrio yang terbentuk. Di samping itu bakteri E.coli dapat menjadi pengikat yang menghubungkan antar spermatozoa. Ikatan ini membuat spermatozoa terikat dengan sesamanya, sehingga spermatozoa-spermatozoa itu 35 menjadi tidak lincah, tidak leluasa bergerak, dan akhirnya tidak dapat melakukan pembuahan terhadap oosit (Wolff et al. 1993). Sifat patogenisitas enterotoksigenik E.coli seperti E.coli K99 keganasannya ditentukan oleh: kemampuannya memproduksi enterotoksin dan antigen perlekatan yang dihasilkan agar dapat mengkolonisasi organ targetnya (Supar 1997). Antigen perlekatan (adhesin) yang disebut juga pili atau fimbriae ini berupa tonjolan-tonjolan di permukaan bakteri berbentuk seperti filamen atau benang-benang halus. Antigen perlekatan seperti F4(K88) dan F6(987P) merupakan faktor kolonisasi penting pada kasus anak babi, sedangkan F5(K99), F41 merupakan antigen perlekatan yang penting untuk menempel pada usus anak sapi dan atau anak babi. Bakteri-bakteri tersebut berpotensi mencemari proses produksi embrio atau penyiapan semen untuk keperluan inseminasi buatan. Perlekatan antigen perlekatan atau fimbriae F5(K99), F41, dan F4(K88) semuanya melalui pola mannose resistant hemaglutination atau MRHA (Vazquez et al. 1996). Selain itu, sejumlah galur enterotoksigenik dan septikhemik asal sapi memiliki antigen fimbriae yang dinamai CS31A. Antigen ini berupa subunit protein dengan berat molekul 29 kDa. Berat molekul fimbriae bakteri K99 adalah 17 kDa dan 29,3 kDa, berat molekul fimbriae F41 sekitar 30,9 kDa dan 29,3 kDa, sedangkan berat molekul fimbriae K88 adalah 29,3 kDa. Pada satu bakteri E.coli disamping memiliki satu jenis fimbriae, mungkin pula memiliki fimbriae K99 dan F41, seperti pada kelompok bakteri E.coli O101 dan O9 (Supar 1996). Keberhasilan bakteri E.coli K99 melekat pada embrio sapi (Otoi et al. 1993) dan embrio mencit (Batan et al. 2006) membuka kemungkinan bakteri patogen E.coli lainnya mampu melekatkan dirinya pada embrio. Selama embrio yang mengalami pencemaran dikultur dalam media tanpa antibiotik, terjadi pula perkembangan jumlah bakteri pencemar, sehingga jumlah bakteri itu menjadi semakin banyak (Otoi et al.1993; Bielanski et al. 2000). Dalam penelitian ini, kultur KSOM yang dipakai untuk mengembangkan embrio sama sekali tidak diberikan antibiotik, agar tidak mempengaruhi bakteri E.coli K99. Padatnya jumlah bakteri pada suatu sistem biakan embrio akan mendorong terjadinya perebutan zat-zat nutrisi yang terkandung pada medium KSOM, antara bakteri dengan embrio. Semakin padat jumlah bakteri, berarti bahan nutrisi untuk pertumbuhan embrio akan semakin terbatas. Di samping itu adanya bakteri pencemar yang bertambah banyak membuat suasana lingkungannya menjadi 36 toksik, sebagai akibat bakteri yang berkembang dalam biakan itu menghasilkan produk-produk metabolik seperti hidrogen peroksida dan amonium. Keadaan yang toksik ini akan mengakibatkan laju perkembangan embrio melamban atau terhenti (Bielanski et al. 2000), seperti yang terlihat pada embrio perlakuan yang dicemari bakteri E. coli K99. Pada perlakuan embrio yang tidak memiliki zona pelusida, bakteri E.coli K99 dapat langsung mencapai membran plasma dari blastomer atau sel-sel embrio, karena ketiadaan zona pelusida sebagai barier pelindung (Gambar 4.1B dan 4.1D). Gilbert (1988), melaporkan bahwa permukaan sel-sel blastomer embrio yang zona pelusidanya dihilangkan ditemukan glikogen yang tersebar pada membrannya. Dengan demikian bakteri E.coli K99 pencemar tersebut akan melekat pada gugus gula membran plasma blastomer. Membran plasma secara umum mengandung sedikit karbohidrat. Sebagai contoh pada sel darah, kandungan karbohidrat pada membran plasmanya sekitar 8%, terutama dalam bentuk glikoprotein dan berbentuk rantai pendek. Rantai gula ini hanya ditemukan pada permukaan luar membran plasma (Becker & Deamer 1991). Pada perlakuan, embrio tanpa zona yang dicemari dengan bakteri E.coli K99, terlihat bahwa ikatan antar sel blastomer menjadi renggang dan pada selsel blastomer tampak teramati tonjolan-tonjolan sitoplasma. Toksin yang dihasilkan oleh bakteri E.coli mungkin mempengaruhi sel-sel blastomer. Toksin tahan panas bakteri E.coli bekerja mengikat guanilat siklase yang berada pada membran apikalis sel-sel inang. Ikatan ini akan mengaktifkan kerja guanilat siklase. Pengaktifan guanilat siklase akan mengakibatkan terjadinya perubahan kadar cGMP, dan hal ini mempengaruhi sejumlah proses di dalam sel-sel, termasuk aktivitas pertukaran ion. Gangguan aktivitas pertukaran ion mengakibatkan terjadinya pengeluaran cairan yang berlebihan dari sel-sel yang dikolonisasi oleh bakteri (Salyers & Whitt 1994). 4.4 SIMPULAN Cemaran E.coli K99 terhadap embrio yang memiliki zona pelusida utuh maupun embrio tanpa zona pelusida, dapat mengakibatkan perkembangan embrio terhambat dan kematian (degenerasi). Zona pelusida mampu melindungi embrio dari infeksi bakteri E. coli K99. 37 4.5 SARAN Perlu dilakukan penelitian lebih lanjut mengenai kemungkinan cara membersihkan embrio yang tercemar dengan E.coli K99. Seperti yang telah direkomendasikan oleh the International Embryo Transfer Society, yakni pembasuhan dengan PBS atau tripsin serta alternatif metode lain yang efisien. 38 5. PERKEMBANGAN EMBRIO MENCIT YANG DICEMARI ESCHERICHIA COLI K99 SETELAH PERLAKUAN TRIPSIN ATAU PRONASE 5.1 PENDAHULUAN Dalam pengembangan dan aplikasi teknik embrio transfer selalu diupayakan untuk menghindari terjadinya penularan penyakit reproduksi. Telah diketahui bahwa banyak agen penyebab penyakit yang dapat ditularkan atau mencemari embrio pada percobaan-percobaan manipulasi embrio, seperti virus blue tongue, virus penyakit mulut dan kuku, bovine herpes virus-1, bovine viral diarrhea (Vanroose 1999; Stringfellow dan Givens 2000; Kafi et al. 2002); bakteri Leptospira borgpetersenii (Bielanski & Surujballi 1996), dan Escherichia coli K99 (Otoi et al. 1993). Di samping itu, bakteri Mycoplasma bovigenitalium (Bielanski et al. 2000) dan parasit Trichomonas foetus (Bielanski et al. 2004) dapat mencemari embrio, E.coli K99 merupakan bakteri penting karena menyebabkan diare yang mematikan pada anak sapi (Supar 1998) dan dapat ditularkan terutama melalui per oral. Pencegahan penularan mikroorganisma pada embrio, dapat dilakukan dengan cara membasuh embrio dengan suspensi pembasuh dan memberikan perlakuan tripsin untuk melepaskan mikroorganisme yang masih melekat pada embrio (Stringfellow & Seidel 1990). Namun demikian, dalam praktek perlakuan pencucian tersebut, kurang efektif untuk mengeliminasi mikroorganisma kontaminan. Otoi et al. (1993) melaporkan bahwa pencemaran bakteri E.coli K99 pada embrio sapi dan perlakuan pencucian dengan tripsin seperti yang disarankan oleh The International Embryos Transfer Society (Stringfellow & Seidel 1990), menunjukkan bahwa E.coli K99 masih dapat terdeteksi. Enzim pronase yang sejenis dengan tripsin sering dipakai untuk melisiskan zona pelusida. Enzim pronase adalah protease yang umum dipakai untuk menghilangkan zona pelusida, maka dari itu perlakuan pronase diberikan hanya dalam waktu yang singkat terhadap embrio yang dicemari dengan E.coli K99. Dengan perlakuan pronase, dapat melepaskan bakteri E.coli K99 di permukaan zona pelusida yang dilekati oleh bakteri tersebut, namun tidak merusak zona pelusida. Tujuan penelitian adalah untuk menguji pengaruh perlakuan pencucian tripsin atau pronase untuk melepaskan bakteri E.coli K99 dari permukaan zona 39 pelusida dan untuk membuktikan bahan pembasuh embrio yang paling efektif untuk menghilangkan cemaran bakteri E.coli K99 pada embrio. 5.2 MATERI DAN METODE 5.2.1. Superovulasi dan panen embrio Cara melakukan superovulasi terhadap mencit betina dewasa dan pemanenan embrio, sama dengan yang dilakukan pada 4.2.1. Begitu pula mengenai hewan mencit yang dipakai dan bahan-bahan yang digunakan sama jenisnya. Pada eksperimen ini embrio yang dicemari dengan bakteri E.coli K99 dan setelah diinkubasi agar terjadi proses perlekatan, kemudian dibasuh dengan tiga perlakuan berbeda yakni: mPBS; mPBS mengandung tripsin; atau mPBS mengandung pronase. Pengamatan terhadap embrio dalam kultur in vitro dilakukan setiap enam jam selama 48 jam, untuk mengamati akibat pembasuhan embrio tercemar terhadap daya eliminasi pembasuh serta akibatnya terhadap perkembangan embrio. 5.2.2 Penyiapan bakteri E.coli K99 Bakteri E.coli diperoleh dari Balai Penelitian Veteriner (Balitvet) Bogor. Bakteri E.coli O9 K99 tersebut diisolasi dari anak sapi. Isolat E.coli dibiakkan semalam dalam media agar Minca plus vitox (Oxoid, UK) pada cawan petri. Setelah inokulasi selanjutnya diinkubasikan pada suhu 370C selama satu malam. Pada suhu tersebut antigen K99 lebih banyak diproduksi dibandingkan dengan suhu dibawah 250C (Guinee et al. 1977). Setelah diinkubasi, sel-sel bakteri pada permukaan agar dibilas dengan NaCl fisiologis steril, kemudian sel-sel itu dicuci tiga kali. Sel-sel dipisahkan dengan sentrifugasi 4000 rpm selama 20 menit. Endapan sel dari pencucian terakhir kemudian dibuat suspensi dengan kekeruhan setara dengan tabung standar Mc Farland nomor 10 (Supar 1986). 5.2.3 Pencemaran embrio dengan E.coli K99 Embrio mencit tahap delapan sel atau morula sebanyak 69 embrio dibagi kedalam tiga kelompok perlakuan. Sebelum dibagi dalam kelompok embrio tersebut dicemari dengan bakteri E.coli K99 dalam mPBS yang mengandung bakteri 103 CFU/ml dan kemudian diinkubasi selama satu jam dalam inkubator 370C. Setelah dicemari dengan bakteri, kelompok I yang terdiri dari 23 embrio, dibasuh dengan cara memindahkan embrio yang ditempatkan dalam tetesan 40 (drop) mPBS pertama ke enam tetes mPBS yang lain dan selanjutnya ke tiga tetes KSOM, dalam satu cawan petri plastik (35 mm) yang steril. Larutan mPBS yang dipakai tidak mengandung antibiotik. Embrio tersebut dipindahkan dari tetesan mPBS (50µl) ke tetesan lainnya menggunakan mikropipet steril. Embrio kelompok II (perlakuan dengan tripsin), setelah dicemari dengan bakteri E.coli K99, dimasukan ke dalam tetesan (50µl) medium mPBS yang mengandung tripsin 0,1% (Trypsin, Sigma, St.Louis), dan ditempatkan dalam tetesan tersebut selama 90 detik. Selanjutnya embrio tersebut dicuci dengan memindahkannya dalam tetesan-tetesan medium mPBS tanpa antibiotik, sebanyak enam kali dan empat kali pada tetesan-tetesan KSOM (kalium simplex optimized medium). Embrio kelompok III (perlakuan dengan pronase), setelah dicemari dengan bakteri langsung dimasukan kedalam tetes mPBS (50µl) yang mengandung pronase 0,25% (Protease, Sigma, St.Louis). Embrio-embrio tersebut berada dalam larutan pronase selama sekitar 60 detik yang sebelumnya dihangatkan hingga ±370C (Vanroose 1999) dan sambil diamati di bawah mikroskop binokuler, untuk memantau agar jangan sampai zona pelusida meluruh secara keseluruhan akibat kerja enzim pronase yang berlebih-lebihan. Setelah itu dibasuh dalam mPBS sebanyak enam kali dan pada tetesan KSOM sebanyak empat kali. Seluruh embrio perlakuan yang telah dicuci tersebut selanjutnya dipidahbiakkan dalam medium (KSOM) tanpa antibiotik. Ke dalam setiap tetesan medium (13µl) dimasukan paling banyak lima embrio perlakuan. Tetesan- tetesan medium KSOM disiapkan dalam petri plasltik 35 mm steril, kemudian ditutupi dengan mineral oil. Embrio ini dimasukan kedalam inkubator CO2 5% pada suhu 370C, selama 48 jam. 5.2.4 Rancangan percobaan Penelitian dirancang berdasarkan rancangan acak lengkap pola split in time. Perlakuan yang diberikan terhadap embrio tercemar E.coli K99 adalah pembasuhan dengan mPBS, perlakuan dengan mPBS yang mengandung tripsin atau pronase. Pengamatan dilakukan setiap enam jam selama 48 jam. Setiap perlakuan terdiri dari sekitar 23 ulangan dan setiap ulangan terdiri dari satu embrio. Pencemar bakteri E.coli K99 yang diberikan ke seluruh embrio adalah 103 CFU/ml dalam mPBS. Parameter yang dievaluasi adalah tingkat perkembangan embrio. Perkembangan embrio yang diamati adalah mulai dari tingkat delapan sel, morula, kompak morula, (Hogan et al. 1994), blastosis dan 41 blastosis ekspan (Gilbert 1988). Tingkat perkembangan embrio dihitung dari jumlah embrio yang berkembang ke tahap lebih lanjut per jumlah embrio yang dikultur. 5.3 HASIL DAN PEMBAHASAN Pengaruh cemaran E.coli K99 terhadap persentase perkembangan in vitro embrio mencit setelah dilakukan pembasuhan dengan pronase, tripsin, atau mPBS ditampilkan pada Tabel 5.1. Tingkat perkembangan embrio sesaat setelah embrio dicemari dan diinkubasi selama satu jam dalam inkubator 370C, tidak menunjukkan perbedaan nyata (Tabel 5.1; Lampiran 5). Pada pengamatan jam ke-6 dan ke-12 setelah embrio dikultur dalam medium KSOM dalam inkubator CO2 5%, 370C, tingkat perkembangan ketiga kelompok embrio tidak menunjukkan perbedaan nyata. Pada jam ke-18 setelah kultur, tampak mulai adanya perbedaan dalam tingkat perkembangan embrio antar perlakuan. Pengamatan pada jam ke-18 menunjukkan bahwa embrio yang mendapatkan perlakuan pronase berkembang lebih lambat dibandingkan embrio yang dibasuh dengan mPBS dan perlakuan tripsin yang ditunjukkan dari persentase embrio yang berkembang ke blastosis (Lampiran 5). Namun pada inkubasi lebih lanjut, pada jam ke-24 perkembangan embrio kelompok perlakuan dengan pronase mengalami perkembangan yang lebih baik dibandingkan dengan kelompok embrio yang mendapatkan perlakuan tripsin. Tetapi, pada jam ke-30, justru perkembangan embrio yang mendapatkan perlakuan tripsin lebih baik dibandingkan embrio yang mendapatkan perlakuan lainnya. Selanjutnya pada pengamatan jam ke-36, ke-42, dan jam ke-48 tingkat perkembangan embrio yang mendapatkan perlakuan pronase lebih baik dibandingkan dengan embrio yang dicuci dengan mPBS atau yang mendapatkan perlakuan tripsin (Tabel 5.1; Lampiran 6;). Hal ini ditunjukkan oleh embrio yang berkembang mencapai tahap hatching dan hatched lebih tinggi dibandingkan kedua perlakuan lainnya (Gambar 5.1; Tabel 5.1). Pronase menyebabkan zona pelusida mencit meluruh (zonalysin) sehingga memudahkan proses hatching dan hatched. 42 Tabel 5.1. Perkembangan embrio delapan sel yang dicemari E.coli K99, kemudian dibasuh dengan pronase, tripsin, atau mPBS Perkembangan embrio (%) setelah inkubasi (jam) Tahap perkem 1 6 12 18 24 30 36 42 48 bangan Pronase 8 Sel 92 0 0 0 0 0 0 0 0 Morula 8 88 0 0 0 0 0 0 0 K.morula 0 12 100 52 12 4 4 4 4 Blastosis 0 0 0 48 44 8 8 4 0 Blas eksp 0 0 0 0 44 40 40 40 20 Hatching 0 0 0 0 0 48 48 28 40 Hatched 0 0 0 0 0 0 0 24 36 Tripsin 8 Sel 92 0 0 0 0 0 0 0 0 Morula 8 88 0 0 0 0 0 0 0 K.morula 0 12 100 36 8 4 0 0 0 Blastosis 0 0 0 64 52 20 8 8 8 Blas eksp 0 0 0 0 40 64 60 48 28 Hatching 0 0 0 0 0 12 32 36 44 Hatched 0 0 0 0 0 0 0 8 20 mPBS 8 Sel 92 17 0 0 0 0 0 0 0 Morula 8 61 4 0 0 0 0 0 0 K.morula 0 22 87 48 22 4 0 0 0 Blastosis 0 0 9 39 35 26 13 4 0 Blas eksp 0 0 0 13 43 70 74 48 48 Hatching 0 0 0 0 0 0 13 48 35 Hatched 0 0 0 0 0 0 0 0 17 Perlakuan Embrio yang mendapatkan perlakuan pencemaran E.coli K99 kemudian dicuci dengan mPBS, tripsin, atau pronase, semuanya berkembang dengan baik selama 48 jam masa pengamatan. Pada semua perlakuan ada embrio-embrio yang setelah dikultur dalam KSOM mampu berkembang sampai ke tingkat hatching bahkan hatched. Namun demikian dari ke tiga perlakuan tersebut, yang dapat mencapai tahapan hatching atau hatched paling besar adalah kelompok embrio yang dicuci dengan pronase (Tabel 5.2). Pengamatan embrio yang mendapat perlakuan pencemaran E.coli K99 dan dikultur selama satu jam, kemudian dibasuh dengan pronase dapat dilihat seperti pada Gambar 5.2. Gambar 5.2A, terlihat jumlah sel embrio perlakuan jumlahnya lebih dari delapan sel, namun sebenarnya secara keseluruhan rataan jumlah sel embrio pada awal perlakuan jumlah selnya tidak berbeda nyata (Lampiran 5). 43 Perkembangan (%) 120 100 80 60 40 20 0 Blastosis Blas ekspan Hatching Hatched Tahap Perkem bangan Pronase Tripsin mPBS Gambar 5.1. Tahapan perkembangan embrio setelah dicemari E.coli K99 dan dikultur in vitro selama 48 jam kultur. Tabel 5.2. Tingkat perkembangan embrio yang dicemari E.coli K9 pasca perlakuan pembasuhan, pada saat 48 jam inkubasi Perlakuan Jumlah Tahap perkembangan embrio / n(%) embrio Blastosis Blastosis Ekspan Hatching Hatched Total Pronase 25 0 5(20%) 10(40%) 9(36%) 24(96%) Tripsin 25 0 7(28%) 11(44%) 5(20%) 23(92%) mPBS 23 0 16(68%) 3(15%) 4(17%) 23(100%) Gambar 5.2B. merupakan hasil pengamatan perkembangan embrio pada 24 jam pasca inkubasi, menunjukkan pertumbuhan yang mencapai tahap blastosis ekspan, setelah dibasuh dengan pronase, perkembangan yang mirip juga dicapai oleh embrio yang dibasuh dengan tripsin dan mPBS. Tingkat perkembangan embrio yang dicuci dengan mPBS selama inkubasi 24 jam, tidak berbeda nyata dengan pronase, akan tetapi lebih baik dibandingkan dengan embrio yang dicuci dengan tripsin. Hasil pengamatan embrio 42 jam pasca inkubasi memperlihatkan bahwa embrio tercemar yang dibasuh pronase, mampu berkembang hingga mencapai tahap hatching (Gambar 5.2C), begitu pula yang dibasuh mPBS. Sedangkan pada perlakuan tripsin perkembangan embrio mencapai tahap blastosis ekspan, 44 atau rongga blastosul dalam embrio terlihat sangat meluas. Pada pengamatan 42 jam pascainkubasi tersebut, tingkat perkembangan embrio yang dicuci dengan pronase, berkembang lebih lanjut dibandingkan yang dicuci dengan mPBS dan tripsin (Lampiran 5). Berbagai jenis mikroorganisma seperti virus, bakteri, mikoplasma, dan parasit, mampu mencemari embrio. Untuk menekan pengaruh mikroorganisma tersebut terhadap embrio, lembaga The International Embryo Transfer Society (IETS) telah mengeluarkan petunjuk baku, yakni dengan pencucian berulang dan memberikan perlakuan tripsin terhadap embrio (Stringfellow & Seidel 1990). Pencucian berulangkali seperti yang disyaratkan oleh IETS tidak sepenuhnya efektif untuk membebaskan embrio dari mikroorganisma, seperti bovine viral diarrhea virus (BVDV), namun pencucian ini mampu menurunkan jumlah virus kontaminan pada embrio (Bielanski & Jordan 1996). Hal itu diperkuat oleh penelitian yang dilakukan oleh Trachte et al. (1998), bahwa perlakuan pencucian dengan mPBS mau pun dengan perlakuan tripsin tidak dapat menghilangkan virus BVD dari permukaan zona pelusida utuh pada embrio sapi. Dari hasil penelitian ini, perlakuan pencucian dengan tripsin, maupun pronase terhadap embrio yang dicemari dengan bakteri E.coli K99 mampu menekan keberadaan bakteri tersebut. Hal ini terbukti dari minimnya akibat yang ditimbulkan pada perkembangan embrio yang telah dicemari bakteri dan kemudian mendapat perlakuan tripsin atau pronase. Bakteri E.coli biasanya dengan mudah dapat diisolasi pada vagina sapi dara dan dapat menyebabkan penurunan tingkat keberhasilan kebuntingan, setelah dilakukan embrio transfer nirbedah (non surgical). Adanya bakteri patogen maupun bakteri komensal di dalam saluran reproduksi sangat berpeluang mencemari embrio, sehingga mempengaruhi perkembangannya (Cottel et al. 1996). Infeksi pada saluran reproduksi hewan betina dapat terjadi karena mendapat limpahan bakteri dari saluran pencernaan yang ada di atasnya. 45 A C B D Gambar 5.2 Morfologi embrio tercemar E.coli K99 setelah dibasuh pronase. (A) Embrio tahap morula non kompak, yang telah dicemari E.coli K99 selama 1 jam dan dibasuh dengan pronase. (B) Embrio tahap morula, dicemari E.coli K99, setelah dibasuh pronase. Berkembang ke tahap blastosis ekspan dalam 24 jam. (C) Embrio tahap morula, dicemari E.coli K99, setelah dibasuh pronase. Berkembang ke tahap hatching dalam 42 jam. (D) Embrio tahap morula, dicemari E.coli K99, setelah dibasuh pronase. Berkembang ke tahap hatched dalam 48 jam. Bar=20µm. Embrio dapat mengalami pencemaran atau infeksi oleh mikroorganisma pada saat masih berbentuk ovum karena berkontak dengan jaringan atau cairan folikel ovarium yang mengalami infeksi. Infeksi dapat juga terjadi setelah ovulasi karena dibuahi oleh spermatozoa yang tercemari atau oviduknya mengalami infeksi (Bielanski & Jordan 1996). Untuk mengatasi cemaran pada embrio, maka terhadap embrio itu dilakukan pemrosesan berupa pembasuhan atau perlakuan dengan tripsin. Aplikasi perlakuan pembasuhan dalam pemrosesan mudah dilakukan dalam rangkaian produksi embrio, untuk menghilangkan berbagai cemaran patogen secara in vitro, baik yang berasal dari induk berpenyakit mau pun embrio yang tercemar (Stringfellow & Givens 2000). Pada penelitian pencemaran embrio yang dilakukan oleh Otoi et al. (1992; 1993), menunjukkan 46 bahwa embrio sapi yang dicemari dengan E.coli sebanyak 109 CFU/ml selama satu jam ternyata tidak dapat dihilangkan dengan pembasuhan dengan tripsin, demikian halnya pencemaran dengan jumlah bakteri 105 CFU/ml selama 18 jam. Dalam penelitian ini, embrio mencit yang dicemari dengan bakteri E.coli K99 sebanyak 103 CFU/ml dan diinkubasi selama satu jam mampu disingkirkan dengan perlakuan tripsin dan pronase. Dilaporkan sebelumnya bahwa tripsin dapat dipakai secara efektif menyingkirkan atau menginaktivasi patogen-patogen tertentu yang melekat ke permukaan zona pelusida (Stringfellow & Siedel 1990). Tetapi kurang efektif untuk pencucian cemaran E.coli K99, mungkin disebabkan oleh konsentrasi E.coli K99 yang terlalu tinggi. Tripsin merusak reaksi perlekatan mikroorganisma pada zona pelusida (Otoi et al. 1993). Perlekatan E.coli K99 ke permukaan sel epitel difasilitasi oleh fimbriae (Vazquez et al.1996), dan perlekatan bakteri tersebut ke permukaan zona pelusida embrio bersifat spesifik (Batan et al. 2006). Reseptor E.coli berdasarkan bobotnya, 19% mengandung asam amino dan 81% karbohidrat. Unsur karbohidratnya terdiri dari glukosa, manosa, galaktosa dan fukosa (Dean & Isaacson 1985). Sedangkan unsur protein pada reseptor E.coli K99 berdasarkan beratnya terdiri dari tiga unsur, yang memiliki bobot 17 kDa, 29,3 kDa, dan 30,9 kDa (Vazquez et al. 1996). Adanya unsur protein dan karbohidrat inilah yang membuat ikatan terjadi antara bakteri dan reseptor pada zona pelusida. Pengaruh pembasuhan dengan tripsin atau pronase dapat mempengaruhi ikatan tersebut. Dalam penelitian pencemaran E.coli K99 ke embrio mencit, dilakukan untuk mencari model agen infeksius seperti bakteri E.coli K99 yang melekat pada permukaan zona pelusida dan dapatkah agen-agen tersebut dieliminasi dengan pembasuhan. Dengan melakukan pencemaran E.coli K99 sebanyak 103 CFU/ml, menunjukkan bahwa embrio tetap bertahan hidup secara in vitro dalam medium yang dicemari bakteri tersebut selama tiga hari (Batan et al, data tidak dipublikasikan). Pada saat pembuahan oosit oleh spermatozoa, embrio yang terbentuk melintas dalam saluran oviduk menuju uterus. Selama perlintasan tersebut pada permukaan zona pelusida dan ruang perivitelin tertumpuk glikoprotein seperti musin yang berasal dari oviduk (Buhi 2002). Embrio yang melintasi oviduk tersebut mengalami pengerasan (hardening) zona pelusida. Kejadian tersebut membuat zona pelusida lebih resisten terhadap reaksi kimia dan enzimatik. Namun, perubahan resistensi proteolitik zona pelusida tidak mempengaruhi 47 perlekatan patogen ke permukaannya (Bielanski et al. 2003; Buhi 2002). Penelitian-penelitian mendalam yang telah dilakukan menunjukkan bahwa zona pelusida merupakan barier yang efektif guna menahan penetrasi beberapa patogen hewan, dan ada bakteri mau pun virus yang mampu melekat erat ke permukaan zona pelusida (Bielanski 1997). Tingkat perkembangan embrio tercemar E.coli K99 setelah 30 jam diinkubasi menunjukkan tingkat perkembangan lebih lambat dibandingkan dengan embrio yang diberi perlakuan tripsin atau pun pronase. Selanjutnya tingkat perkembangan embrio yang mendapatkan perlakuan tripsin, tingkat perkembangannya tidak berbeda nyata, tetapi bila dibandingkan dengan embrio yang mendapat perlakuan pronase lebih lambat. Tingkat perkembangan embrio setelah 48 jam diinkubasi menunjukkan bahwa embrio yang mendapat perlakuan pronase skor perkembangannya paling tinggi dibandingkan kelompok embrio yang mendapat perlakuan tripsin, atau mPBS (Lampiran 6). Enzim pronase dilaporkan lebih efektif mencerna zona pelusida dibandingkan dengan tripsin. Dalam melakukan pencernaan tersebut enzim pronase menghidrolisis protein ZP1 dan ZP2 dari zona pelusida (Kolbe & Holtz 2005). Proses pencernaan oleh enzim pronase yang lebih efektif membuat bakteri yang melekat pada permukaan zona pelusida lebih banyak pula yang disingkirkan. Embrio yang mengalami hatching dan hatched pada perlakuan pronase menunjukkan persentase yang paling tinggi, yakni 76% dan 36% pada perlakuan tripsin menunjukkan 64% dan 20%, sedangkan pada mPBS adalah 52,15% dan 17,4%, (Ganbar 5.1). Menurut Gilbert (1988), embrio pada stadium blastosis ekspan menghasilkan stripsin suatu bahan sejenis tripsin pada sel-sel trofoblas yang bersinggungan dengan zona pelusida. Adanya perlakuan tripsin dari luar embrio pada pembasuhan embrio menyebabkan zona pelusida lebih mudah ditembus oleh embrio yang ukurannya terus membesar. Begitu pula dengan enzim pronase, selain menginaktivasi reseptor E.coli (987P) dengan merusak ikatan bagian asam amino dan karbohidratnya (Dean & Isaacson 1985), enzim pronase bekerja mengikis permukaan zona pelusida beserta bakteri E.coli yang melekat padanya, juga mencerna zona pelusida sehingga membuat zona pelusida menipis disamping merapuh. Embrio yang terus berkembang dan meluas akan lebih mudah mendesak zona pelusida, membuat embrio yang mendapat perlakuan pronase paling banyak mengalami hatching dan hatched. 48 5.4 SIMPULAN Pencucian embrio menggunakan mPBS, tripsin, atau pronase dapat mengeliminasi cemaran bakteri E.coli K99 103 CFU/ml dan tidak mengakibatkan kematian embrio. Pembasuhan dengan pronase 0,25% dalam mPBS merupakan larutan paling efektif untuk menghilangkan bakteri dari permukaan embrio. 5.5 SARAN Perlu dilakukan penelitian terhadap embrio tercemar yang dibekukan, karena mungkin saja sebelum dibekukan, embrio tercemar tidak terbebas dari agen penyakit walau pun telah dibasuh. Agen yang tidak tercuci kemungkinan tetap mencemari embrio sampai pada saat embrio tersebut akan dibekukan. 49 6. VITRIFIKASI BLASTOSIS MENCIT DiCEMARI ESCHERICHIA COLI K99 DENGAN METODE KRIOLUP 6.1 PENDAHULUAN Pemanfaatan kultur blastosis dan transfer embrio tahap blastosis sebagai keperluan rutin pada klinik in vitro fertilization semakin meningkat (Lane et al. 1999). Pada tahun 2002, sekitar 270.000 embrio sapi dikriopreservasi untuk tujuan komersial. (Thibier 2003). Blastosis umumnya dikriopreservasi dengan teknik slow-freezing, menggunakan krioprotektan berkonsentrasi rendah dan laju pendinginan yang rendah, yakni 0,1-0,30C per menit guna memperlambat dehidrasi sel selama pembekuan dan mencegah terbentuknya kristalisasi intrasel. Kristal es menyebabkan kerusakan pada membran dan organel-organel sel sehingga menurunkan daya tahan hidup embrio yang dibekukan (Rall 1987). Oleh karena itu, perlu dilakukan pengeluaran cairan yang seimbang dari dalam sel, jika terlalu banyak cairan yang dikeluarkan akan meningkatkan konsentrasi bahan terlarut dalam sel, dan keadaan ini bersifat toksik. Teknik pembekuan slow-freezing, harus dilaksanaan secara hati-hati, untuk menghindari terbentuknya kristal es. Terbentuknya kristal es dan kepekaan sel-sel tersebut terhadap pembekuan dapat mengakibatkan kematian embrio (Martino et al. 1996). Sebagai pengganti metode pembekuan slow-freezing, kini umum dilakukan dengan metode pembekuan sangat cepat atau vitrification (vitrifikasi). Vitrifikasi pada awalnya merupakan proses cryoprotection (krioproteksi) pada beberapa tanaman yang bertahan hidup dalam suhu sangat dingin di kutub utara (Hirsh 1987). Pada dasarnya vitrifikasi merupakan pemadatan larutan pada suhu rendah tanpa disertai pembentukan kristal es, dengan cara meningkatkan viskositas larutan dan mempercepat laju pembekuan, yakni 15.000-24.0000C per menit (Vajta et al. 1997). Konsentrasi krioprotektan yang tinggi jika dibekukan dengan cepat menghasilkan substansi seperti jeli, sedangkan laju pendinginan yang cepat mencegah kerusakan akibat pembekuan (Vajta et al. 1998). Embrio yang dikriopreservasi dengan teknik vitrifikasi cepat, lebih baik dibandingkan dengan slow freezing (Mahmoudzadeh et al. 1994). Kriopreservasi dengan metode vitrifikasi, menjadi metode pilihan yang menjanjikan dalam mengawetkan oosit dan embrio mamalia di masa depan. Pelaksanaan metode ini lebih mudah, cepat, dan lebih murah, dibandingkan 50 dengan cara pembekuan lainnya (Cseh et al. 1999). Untuk mencapai proses pembekuan yang cepat pada proses vitrifikasi, perlu mempertimbangkan penggunaan volume larutan vitrifikasi sekecil mungkin, seperti pada electron microscopy grid, kapiler kaca, open-pulled plastic straw, dan cryoloop. Embrio yang ditempatkan dalam alat carrier tersebut dapat langsung dibekukan dengan cara dicelupkan kedalam larutan nitrogen cair (Begin et al. 2003). Metode kriopreservasi semen untuk keperluan inseminasi buatan yang umum diterapkan pada spesies mamalia dan nonmamalia dilaporkan dapat terinfeksi silang oleh Escherichia coli, Staphylococcus aureus lewat nitrogen cair (Piasecka-Serafin 1972 yang disitir Rall 2003). Hal serupa dilakukan oleh Bielanski (2003). Rall (2003) melaporkan bahwa bakteri patogen dan virus mampu bertahan hidup lama jika dibenamkan dalam nitrogen cair. Penelitian ini dilaksanakan untuk menguji daya tahan (viabilitas) blastosis yang dicemari E.coli K99 setelah vitrifikasi, dan menguji efektifitas metode vitrifikasi kriolup. 6.2. MATERI DAN METODE 6.2.1. Superovulasi dan koleksi embrio Superovulasi dan pemanenan embrio dilakukan sama dengan yang telah dikemukakan pada subbab 4.2.1. 6.2.2. Pembuatan kriolup (cryoloop) Kriolup yang digunakan untuk melakukan vitrifikasi berupa jerat (loop) dari bahan filamen kawat tembaga, dengan ketebalan filamen 100µm, dan garis tengah jerat 1250µm (Gambar 6.1). Bagian kawat tembaga yang tidak membentuk jerat dipilin sehingga membentuk tangkai jerat yang dapat dimanfaatkan sebagai pegangan saat melakukan pemuatan embrio dalam proses vitrifikasi. Kriolup sebagai wadah (carrier) blastosis tersebut merupakan modifikasi kriolup nilon seperti yang dipakai oleh Lane et al. (1999) dan Mukaida et al. (2001). 6.2.3. Teknik vitrifikasi kriolup Metode vitrifikasi yang digunakan dalam penelitian ini berdasarkan metode yang telah dilaporkan oleh Lane et al. (1999), sedangkan medium vitrifikasi dan warming seperti yang telah dilaporkan Madihah et al. (2006). 51 Blastosis divitrifikasi dalam dua tahap. Embrio tersebut ditempatkan pada medium ekuilibrasi yang mengandung etilen glikol (EG) 10% dengan PBS yang ditambahkan new born calf serum (NBCS) 20%, selama delapan sampai sepuluh menit, atau hingga batas-batas antar sel embrio menjadi jelas. Pada saat embrio stadium blastosis berada dalam medium ekuilibrasi, kriolup direndam pada larutan vitrifikasi yang mengandung dimethyl sulphoxide (DMSO) 15% (Sigma St Louis USA), EG15%, dan sukrosa 0,5M. Blastosis dalam medium ekuilibrasi dipindahkan ke larutan vitrifikasi, selanjutnya dengan cepat embrio ditransfer ke atas permukaan lapisan larutan vitrifikasi yang terbentuk pada kriolup. Proses perlakuan blastosis pada larutan vitrifikasi tidak melampaui 25-30 detik. Segera setelah kriolup bermuatan blastosis, kriolup tersebut langsung dicelupkan ke 100 ml larutan nitrogen cair. Gambar 6.1. Kriolup yang dipakai dari bahan kawat tembaga, yang digunakan untuk vitrifikasi. 6.2.4. Warming blastosis Warming terhadap blastosis hasil vitrifikasi dilakukan dengan tiga tahap pengenceran sukrosa. kedalam medium mPBS Kriolup yang bermuatan blastosis segera dicelupkan yang mengandung serum 20% dan sukrosa 0,5M. Blastosis pada kriolup akan jatuh kedalam larutan tersebut. Setelah satu menit berada dalam larutan sukrosa 0,5M, blastosis tersebut dipindahkan ke medium yang mengandung sukrosa 0,25M, kemudian 0,1M masing-masing selama dua menit. Setelah perlakuan tersebut, blastosis dicuci empat kali dengan kalium simplex optimized medium (KSOM), selanjutnya dikultur dalam KSOM dan 52 diinkubasikan dalam inkubator CO2 5% pada suhu 370C. Selama enam jam, perkembangannya atau reexpansion dari blastosis, diamati seperti pada evaluasi blastosis hasil warming sebelum dilakukan transfer embrio (Lane et al. 1999: Takahashi et al. 2005). 6.2.5. Viabilitas (daya tahan hidup) embrio sesudah vitrifikasi Setelah warming, embrio yang ditemukan ditempatkan pada cawan petri yang telah berisi tetesan-tetesan medium KSOM dengan volume sekitar 13µl, ditutupi dengan minyak mineral, dan dinkubasikan dalam inkubator CO2 5% dengan suhu 370C (Lieberman & Tucker 2002). Pengamatan dilakukan setiap enam jam dalam periode 48 jam dengan mikroskop inverted (Olympus IX70 Japan). Daya tahan hidup embrio dinilai berdasarkan 1) keutuhan morfologi; 2) reekspansi blastosul; dan 3) perkembangan embrio ke tahap lebih lanjut (Takahashi et al. 2005). 6.2.6. Pewarnaan vital Sel embrio hidup dan sel embrio mati dari blastosis pasca vitrifikasi diamati dengan pewarnaan vital menggunakan bisbenzimide (H-33342) dan propidium iodine. Sebanyak 10µg propidium iodine dan sediaan bisbenzimide dalam jumlah yang sama dilarutkan dalam 1000µl mPBS (Saha et al. 2000). Campuran tersebut ditambah 20% serum. tersebut diteteskan Sebanyak 30µl larutan pewarna ke atas gelas objek, kemudian blastosis dimasukkan ke tetesan pewarna tersebut. Blastosis dibiarkan dalam pewarna tersebut selama 15 menit dalam suasana ruang gelap. Sediaan blastosis dalam zat warna pada gelas objek tersebut ditutup dengan gelas tutup kemudian diperiksa di bawah mikroskop flouresens (Nikon-Eclipse E600, Japan). Sel embrio yang hidup terwarnai menjadi berwarna biru berpendar, dan sel embrio yang mati berwarna merah berpendar. 6.2.7. Penyiapan bakteri dan pemaparan embrio terhadap bakteri E.coli K99 Bakteri E.coli diperoleh dari Balai Penelitian Veteriner (Balitvet) Bogor. Bakteri E.coli O9 K99 diisolasi dari anak sapi asal Sukabumi Jawa Barat (Supar 1986). Isolat E.coli dibiakkan semalam pada media agar Minca plus vitox (Oxoid, UK) yang disiapkan pada 0 cawan petri. Setelah inokulasi selanjutnya diinkubasikan pada suhu 37 C selama satu malam (Guinee et al. 1977). Setelah 53 inkubasi, sel-sel bakteri pada permukaan agar dibilas dengan NaCl fisiologis. Sel-sel itu dicuci tiga kali dengan NaCl fisiologis steril untuk menghilangkan sisasisa medium. Sel-sel dipisahkan dengan sentrifugasi 4000 rpm selama 20 menit. Endapan sel dari pencucian terakhir kemudian dibuat suspensi dengan kekeruhan setara dengan tabung standar Mc Farland nomor 10 (Supar 1986). Sekelompok embrio tahap blastosis yang memiliki zona pelusida utuh ditempatkan pada 80µl medium mPBS 3% dan diberi bakteri E.coli K99 dengan konsentrasi bakteri 105 CFU/ml. Setelah itu biakan embrio diinkubasi dalam inkubator selama satu jam pada suhu 370C. Embrio yang terpapar bakteri kemudian divitrifikasi menurut metode yang dikembangkan oleh Lane et al. (1999). 6.2.8. Rancangan percobaan Penelitian dilaksanakan berdasarkan rancangan acak lengkap pola split in time. Perlakuan yang diberikan kepada embrio tahap blastosis ada tiga yakni, (1) embrio yang dicemari E.coli K99, 105 CFU/ml kemudian divitrifikasi, (2) embrio yang tidak dicemari E.coli K99 dan divitrifikasi, dan (3) embrio yang tidak dicemari dan tidak divitrifikasi (kontrol). Setelah warming, pengamatan dilakukan setiap enam jam selama 48 jam. Setiap perlakuan terdiri dari 20 ulangan dan setiap ulangan terdiri dari satu embrio. Parameter yang diamati adalah viabiltas dan tingkat perkembangan embrio. Tingkat perkembangan embrio dihitung dari jumlah embrio yang berkembang ke tahap lebih lanjut per jumlah yang dikultur. Perkembangan embrio yang diamati adalah mulai dari tingkat blastosis (ada rongga blastosul dalam embrio), blastosis ekspan (rongga blastosul dalam embrio sangat luas), hatching (embrio sedang keluar dari zona pelusida), dan hatched (embrio telah berada di luar zona pelusida) (Gilbert 1988; Hogan et al. 1994). Data tingkat perkembangan embrio dianalisis dengan sidik ragam menggunakan program SPSS versi 10:0. 6.3 HASIL DAN PEMBAHASAN Dari hasil pengamatan embrio perlakuan dan kontrol menunjukkan bahwa embrio tahap blastosis yang dicemari dengan bakteri E.coli K99, blastosis yang tidak dicemari, kemudian divitrifikasi dengan metode kriolup, dapat berkembang kembali pasca vitrifikasi dan warming (Gambar 6.2). Pada kelompok blastosis 54 yang dicemari, kemudian dilakukan vitrifikasi, persentase perkembangan embrio tersebut, enam jam setelah dikultur secara in vitro, relatif tidak berbeda dengan blastosis yang divitrifikasi, tetapi tidak dicemari bakteri E.coli K99. Persentase perkembangan embrio yang tidak dicemari dan tidak divitrifikasi, lebih baik dibandingkan dengan perlakuan blastosis yang divitrifikasi, baik yang dicemari maupun yang tidak dicemari E.coli K99 (Gambar 6.2; Lampiran 6). Blastosis yang dicemari bakteri E.coli dan divitrifikasi serta blastosis yang divitrifikasi, setelah diwarming dan diinkubasi selama 12 jam dalam medium KSOM, menunjukkan peningkatan perkembangan, namun keduanya tidak menunjukkan perbedaan yang nyata. Demikian pula pada pengamatan selanjutnya sampai dengan 48 jam inkubasi, tingkat perkembangan kedua kelompok blastosis tersebut tidak menunjukkan perbedaan yang nyata (Gambar 6.3; Lampiran 7). 110 100 Viabilitas (%) 90 80 70 60 50 40 6 12 18 24 30 36 42 48 Waktu Inkubasi (jam ) E.coli & vitrifikasi non E.coli & vitrifikasi non E.coli & non vitrifikasi Gambar 6.2. Viabilitas embrio tahap blastosis setelah dicemari E. coli K99 dan divitrifikasi Perkembangan blastosis yang dicemari mau pun tidak, yang vitrifikasi nyata lebih rendah pada saat warming atau jam ke-0 dan jam ke-6, dibandingkan blastosis kontrol. Namun, pada jam ke-12 dan 18, perkembangan blastosis yang mendapat perlakuan pencemaran E.coli K99 dan vitrifikasi lebih rendah dibandingkan kontrol, akan tetapi secara statistika tidak berbeda nyata. Memasuki jam ke-24 pasca warming hingga jam ke 48 di dalam kultur, tingkat 55 perkembangan embrio yang mendapat perlakuan vitrifikasi mau pun kontrol secara statistika tidak berbeda nyata (Lampiran 6). Perkembangan blastosis 24 jam pasca warming, viabilitas embrio yang divitrifikasi adalah 89,29% untuk yang dicemari E.coli dan 8,71% untuk yang tidak dicemari E.coli, secara statistika viabilitasnya tidak berbeda nyata dengan viabilitas (94,11%) embrio yang tidak dicemari dan tidak divitrivikasi (Gambar 6.2; Lampiran 7). Tingkat embrio hatched yang paling banyak teramati pada blastosis yang divitrifikasi dan dicemari E.coli K99, yakni 35,7%, sedangkan blastosis yang divitrifikasi tanpa dicemari E.coli adalah 19%, dan blastosis kontrol 29,4% (Gambar 6.3). Blastosis yang divitrifikasi tingkat kematiannya setelah 48 jam pasca warming, lebih tinggi dibandingkan dengan blastosis kontrol. Setelah 48 jam dalam kultur KSOM, viabilitasnya 60,71% untuk yang mendapat perlakuan pencemaran E.coli dan vitrifikasi, 57,14% untuk yang tidak dicemari E.coli tetapi divitrifikasi, dan 82,35% untuk embrio yang tidak dicemari dan tidak divitrifikasi. Sedangkan kematian embrio teramati 42,9% pada blastosis yang divitrifikasi tetapi tidak dicemari E.coli, dan 39,3% pada blastosis yang dicemari E.coli K99 dan divitrifikasi (Gambar 6.4). 120 Perkembangan 100 80 60 40 20 0 Blastosis Blas. Ekspan Hatching Hatched Tahap perkem bangan E.coli & vitrifikasi Gambar 6.3 non E.coli & vitrifikasi non E.coli & non vitrifikasi Tahap perkembangan embrio tercemar E.coli K99 setelah divitrifikasi dan diikultur in vitro selama 24 jam. Blastosis mencit yang divitrifikasi menggunakan kriolup nilon viabilitasnya 100%, namun setelah dikultur selama 24 jam yang terus berkembang sebanyak 56 90,5% (Reed et al. 2002). Jika embrio hasil vitrifikasi itu ditransfer, yang berhasil implantasi tidak jauh berbeda dengan embrio segar yakni sekitar 80%, namun yang berkembang menjadi fetus sekitar 65% (Lane et al. 1999). Pada penelitian ini, viabilitasnya pun 100%, namun yang berkembang setelah dikultur 24 jam sebanyak 85,7% (Gambar 6.3). Perbedaan ini kemungkinan karena perbedaan dalam hal kriolup, medium kultur, dan kandungan krioprotektan dalam larutan vitrifikasi Dalam penelitian ini kriolup yang digunakan bukan kriolup nilon komersial, melainkan kriolup yang diupayakan sendiri dari filamen kawat tembaga. Dari hasil percobaan yang dilaksanakan menunjukkan bahwa blastosis mencit berhasil divitrifikasi dengan larutan vitrifikasi yang dimuat pada kriolup filamen kawat tembaga, kemudian dibekukan dengan cara dicelupkan langsung ke dalam larutan nitrogen cair, didapat hasil yang cukup memuaskan, walau pun tidak sebaik hasil yang diperoleh Reed et al. (2002). Peneliti tersebut melaporkan, 10% blastosis yang divitrifikasi tidak berkembang lebih lanjut setelah dikultur selama 24 jam, sedangkan dalam penelitian ini yang tidak berkembang lebih besar, yakni 15% (Gambar 6.3). Begitu pula hasil yang diperoleh Lane et al. (1999), 95,5% blastosis pasca vitrifikasi berhasil hatching, sedangkan pada penelitian ini yang berhasil hatched adalah 19% untuk blastosis yang divitrifikasi, dan 35,7% untuk blastosis yang dicemari bakteri kemudian divitrifikasi (Gambar 6.3). Hasil yang berbeda ini, kalau dipandang dari kriolup yang digunakan, terdapat perbedaan dalam hal volume yang mengisi kriolup tersebut. 3 penelitian ini volume yang mengisi kriolup sekitar 0.113 mm Pada sedangkan pada Lane et al.(1999), pada peneliti-peneliti lainnya kriolupnya bervolume dibawah 1µl (Menezo et al. 1992). Vitrifikasi embrio menggunakan kriolup memiliki kelebihan dibandingkan cara vitrifikasi yang biasa dilakukan dalam straw. Pada sistem terbuka seperti kriolup tidak diperlukan pelapis termoinsulasi dan volume larutan vitrifikasi yang dibutuhkan sangat sedikit, dengan demikian memungkinkan terjadinya pertukaran panas yang cepat dan merata (Menezo et al. 1992). Pembekuan dengan laju sangat cepat yang dicapai kriolup akan mencegah kerusakan akibat pembekuan pada sel-sel yang peka pembekuan (Martino et al. 1996). Dalam vitrifikasi kecepatan laju pembekuan, konsentrasi krioprotektan dan volume krioprotektan sangat penting. Laju pembekuan yang cepat akan memperkecil volume krioprotektan yang diperlukan sehingga dapat mengurangi efek toksik 57 mau pun osmotiknya. Guna mempercepat laju pembekuan, maka volume larutan vitrifikasi yang dipakai ditekan sekecil mungkin, untuk itu diciptakan wadahwadah pembawa embrio bervolume sekecil mungkin, seperti kriolup (Mukaida et al. 2003). Dari pandangan tersebut di atas jelaslah kriolup yang digunakan dalam penelitian ini memuat volume krioprotektan lebih banyak, sehingga relatif lebih toksik dan laju pembekuannya pun menjadi lebih lamban. Hal ini membuat efektivitasnya lebih rendah dibandingkan kriolup berbahan nilon seperti yang dipakai peneliti-peneliti tersebut. Tetapi jika dapat diupayakan kriolup dengan volume sebanding dengan volume kriolup nilon, niscaya hasil yang didapat akan membaik. warming Hal ini bukanlah tidak mungkin karena evaluasi morfologi pascaterhadap memuaskan. blastosis yang divitrifikasi menunjukkan hasil yang Blastosis pasca-warming, secara morfologi tampak memiliki susunan sel embrio yang rapi, antar sel bersinggungan secara kohesif, permukaan sel embrio cerah, dan blastosul terbentuk kembali. Sangat sedikit ditemukan adanya tanda-tanda degenerasi seluler yang dicirikan dengan suramnya sitoplasma sel, atau adanya reruntuhan di seputar masa embrio. 90 80 Perkembangan (%) 70 60 50 40 30 20 10 0 Blastosis Blas. Ekspan Hatching Hatched Tahap perkem bangan E.coli & vitrifikasi Gambar 6.4 non E.coli & vitrifikasi non E.coli & non vitrifikasi Tahap perkembangan embrio tercemar E.coli K99 setelah divitrifikasi dan diikultur in vitro selama 48 jam. 58 Dalam berbagai metode vitrifikasi ada beberapa cara bagaimana embrio yang ada dalam larutan vitrifikasi dimuat kedalam suatu wadah pembawa embrio, seperti open pulled straw, electron microscopic copper grid, hemistraw, dan cryoloop (Hredzak et al. 2005). Sebelum metode vitrifikasi berkembang seperti sekarang, pada pertengahan tahun 1980-an, blastosis dibekukan dengan teknik slow-freezing, dan krioprotektan yang digunakan adalah gliserol. Namun, teknik tersebut kini dipandang kurang memuaskan karena blastosis yang berhasil hidup setelah thawing sekitar 50% (Menezo et al. 1992). Di samping itu kriopreservasi cepat seperti vitrifikasi, lebih disukai karena selama proses pembekuan, tidak terbentuk kristal es yang dapat mematikan embrio (Takahashi et al. 2005). Blastosis bersifat kurang permeabel terhadap air dan krioprotektan disamping itu respon blastosis terhadap larutan hipertonik lebih lamban dibandingkan dengan embrio tahap cleavage (tahap yang lebih dini), kemungkinan hal inilah yang mendorong terbentuknya kristal es secara intraseluler selama blastosis mengalami kriopreservasi (Mukaida et al. 2003). Vitrifikasi dengan metode kriolup membuat viabilitas blastosis mencit sedikit menurun setelah warming (85-90%). Hal senada telah dilaporkan oleh Lane et al. (1999). Tetapi kemampuan hatching pada penelitian ini lebih rendah dibandingkan yang dilaporkan peneliti tersebut. Medium yang digunakan Lane et al (1999), dan Mukaida et al. (2003), adalah HEPES yang dimodifikasi. Modifikasi pada medium Lane et al. (1999) adalah dengan mengganti senyawa natrium bikarbonat (NaHCO3) dengan HEPES. Medium buffer HEPES dapat digunakan untuk mencegah adanya gangguan pH intrasel embrio selama vitrifikasi kriolup, karena sedikit saja gangguan tingkat keasaman terjadi, blastosis tersebut akan kehilangan kemampuannya untuk berkembang (Lane et al. 1998a; 1998b), karena kriopreservasi menyebabkan penurunan sistem transport pH pada embrio (Lane et al. 1999). Dari hasil penelitian yang diperoleh, dapat diduga bahwa HEPES kelihatannya berperan lebih baik dalam mengendalikan pH dalam sel embrio selama vitrifikasi dibandingkan dengan medium buffer mPBS 20%, seperti yang digunakan dalam penelitian ini. Dalam penelitian ini dipakai dua larutan, pertama adalah medium ekuilibrasi, yang dipakai adalah EG10%. Peneliti sebelumnya yang memakai larutan serupa diantaranya Lane et al. (1999), Mukaida et al. (2003), dan Madihah et al. (2006). Tetapi oleh Lane et al. (1999) EG 10% dikombinasikan 59 dengan DMSO 10% dengan waktu pemaparan yang lebih singkat, yakni dua menit, sedangkan pada penelitian ini diperlukan waktu 8-10 menit untuk mengeluarkan sedikit air dari sel-sel embrio. Gambaran embrio sebelum dan setelah vitrifikasi dapat dilihat pada Gambar 6.5. Mukaida et al. (2003), memakai medium ekuilibrasi namun peneliti tersebut mengistilahkan dengan larutan vitrifikasi I, sangat mirip dengan Lane et al. (1999), tetapi kadarnya 7,5%. Larutan vitrifikasi yang digunakan dalam penelitian ini untuk mengeluarkan lebih banyak air dari dalam sel embrio, adalah krioprotektan EG 15% dan DMSO 15%. Larutan ini mirip dengan yang dipakai oleh Lane et al. (1999), Mukaida et al. (2003), dan Madihah et al. (2006), hanya saja pada Mukaida et al. (2003), dan Lane et al. (1999) ditambahkan 10mg/ml Ficoll-70, begitu pula sukrosanya lebih pekat yakni 0,65 M. Mukaida et al. (2003) beranggapan bahwa kadar etilen glikol 15% dan dimetil sulfoksida 15% pada larutan vitrifikasi, atau peneliti tersebut mengistilahkan dengan larutan vitrifikasi II mengandung kadar krioprotektan relatif rendah dan tidak efektif dalam mencegah terbentuknya kristal es di dalam sel embrio. Efektivitas larutan vitrifikasi tersebut dapat ditingkatkan tanpa perlu meningkatkan toksisitasnya dengan cara memperlakkukan blastosis dengan larutan tersebut tidak pada suhu ruang, seperti yang dilakukan pada penelitian ini, melainkan pada suhu 350C. Disamping itu, laju pembekuan yang sangat cepat dengan menggunakan kriolup sebagai wadah pembawa embrio, akan mengurangi waktu pemaparan embrio terhadap krioprotektan, dengan demikian sitotoksisitasnya pun terkurangi (Lane et al. 1999). Salah satu faktor krioprotektan adalah penting yang perlu dipertimbangkan dalam memilih sifat toksisitasnya yang sangat berkaitan dengan permeabilitasnya. Permeabilitas yang besar dapat menyebabkan toksisitasnya secara kimiawi lebih tinggi terhadap embrio (Dattena et al. 2004). Krioprotektan membuat membran sitoplasma menjadi lebih lentur, dan bahan tersebut secara intrasel mengikat air dan berikatan bersama-sama guna mencegah dehidrasi berlebihan, mengurangi toksisitas garam, dan mencegah pembentukan kristal es berukuran besar. Krioprotektan yang merembes masuk akan mendorong terbentuknya struktur kristal es yang halus (quasiamorphus) dan bahan ini membentuk gel seperti kaca di bawah titik cair (eutectic), dengan demikian mencegah kerusakan sel karena hiperosmotik dan mencegah lesi permukaan karena NaCl. 60 A B C D E F Gambar 6.5. warming. Morfologi embrio tahap blastosis mencit selama proses vitrifikasi dan (A) Blastosis sebelum vitrifikasi; (B) Ekuilibrasi dalam EG 10%, terlihat blastosis sedikit mengkerut; (C) Vitrifikasi dalam EG 15% + DMSO 15%, terlihat embrio mengalami dehidrasi; (D) Warming dalam sukrosa 0,5M, 0,25M, 0,1M, terlihat embrio rehidrasi; (E) Blastosis hatching setelah vitrifikasi, warming, dan diinkubasi; (F) Blastosis hatching setelah vitrifikasi, warming, dan diinkubasi. 61 Kriopreservasi mengakibatkan terjadinya pengerasan pada zona pelusida, walau pun begitu vitrifikasi dengan kriolup tidak mengakibatkan adanya perbedaan kemampuan hatching secara in-vitro pada embrio mencit setelah vitrifikasi. Pada penelitian ini setelah dikultur selama 24 jam dalam KSOM yang berhasil hatching hanya 35,7% untuk embrio yang dicemari bakteri kemudian divitrifikasi dan 29,4% untuk embrio yang hanya divitrifikasi. Sedangkan yang dilakukan oleh Lane et al. (1999) dilaporkan bahwa setelah 24 jam pengkulturan, blastosis yang hatching 95,5%. Perbedaan hasil ini kemungkinan disebabkan oleh adanya lebih banyak sel embrio embrio yang mati selama vitrifikasi dan sel embrio tersebut tidak mampu memulihkan kembali jumlah sel embrio seperti sebelum vitrifikasi dilaksanakan. Kejadian ini jelas teramati pada blastosis yang divitrifikasi dan diwarnai dengan pewarnaan vital. Dalam gambar tersebut teramati ada sel-sel embrio yang mati selama menjalani proses vitrifikasi dalam penelitian ini (Gambar 6.6), yang ditandai dengan sel embrio berwarna merah berpendar. Vitrifikasi dan warming dapat menyebabkan kerusakan pada zona pelusida, oolemma, dan ooplasma. degenerasi. Kejadian tersebut mendorong terjadinya Zona pelusida yang retak dan oolemma yang lisis merupakan kerusakan morfologi yang paling sering pada oosit yang dibekukan kemudian diwarming. Namun, kerusakan tersebut dapat dikurangi dengan menambahkan sukrosa ke dalam larutan vitrifikasi (Lane et al. 1999; Mukaida et al. 2003; Djuwita et al. 2005). A B Gambar 6.6. Embrio setelah vitrifikasi, diwarnai dengan pewarna vital Hoechts-propidium iodine. Warna hijau menandakan sel-sel embrio hidup, merah sel-sel embrio mati. (A) Embrio yang tidak divitrifikasi; (B) Embrio divitrifikasi dengan sedikit kematian sel embrio 62 Teknologi pembekuan embrio sebagai pengawet plasma nutfah spesies mamalia penerapannya telah mendunia, namun informasi tentang kemungkinan penularan agen penyakit ke embrio setelah kriopreservasi dalam nitrogen cair yang terkontaminasi masih sangat sedikit (Bielanski et al. 2000). Seperti halnya pada metode vitrifikasi yang berkembang sekarang, dalam pelaksanaannya mensyaratkan adanya kontak langsung antara larutan vitrifikasi dengan nitrogen cair (Lieberman et al. 2002). Adanya kontak tersebut menurut Hredzak et al. (2005), merupakan kekurangan metode vitrifikasi, karena nitrogen cair kemungkinan dapat bertindak sebagai sumber penularan agen menular. Bielanski et al. (2000), melaporkan bahwa bovine viral diarrhea virus (BVDV) dan bovine herpes virus-1 (BHV) dapat ditularkan dalam nitrogen cair ke embrio. Sebelumnya telah diketahui pula ada sejumlah bakteri dan virus yang mampu melekat ke zona pelusida dan tahan terhadap krioprotektan, begitu pula pembekuan dengan nitrogen cair, seperti virus hepatitis-B, herpes simplex virus1, papovavirus, adenovirus tipe-2. Dalam penelitian ini embrio tahap blastosis dicemari dengan bakteri E.coli K99 kemudian divitrifikasi, ternyata tingkat perkembangannya tidak berbeda nyata dengan embrio yang divitrifikasi tanpa dicemari E.coli K99. Kemungkinan bakteri tersebut secara tidak sengaja terinaktivasi oleh krioprotektan DMSO 15% yang terdapat dalam larutan vitrifikasi, di samping adanya kematian sel embrio, yang tidak dapat di atasi oleh sel-sel embrio yang selamat (Gambar 6.5B). DMSO dapat menembus dinding sel dan membran sitoplasma, dan bahan tersebut pada kadar yang rendah sebenarnya dapat dipakai untuk mengawetkan bakteri E.coli, tetapi DMSO 10% bersifat toksik terhadap E.coli (Hubalek 2003). Bakteri E.coli K99 pada blastosis kemudian divitrifikasi mau pun blastosis tanpa cemaran yang divitrifikasi, ternyata viabilitas blastosis tersebut setelah warming tidak terpengaruh, begitu pula kemampuannya untuk reekspan dan hatched dalam KSOM. Blastosis yang divitrifikasi tersebut mampu hatched dan tingkat perkembangannya pun tidak berbeda nyata dengan blastosis yang tidak dibekukan. 63 6.4. SIMPULAN Simpulan yang dapat ditarik dari penelitian ini adalah, metode vitrifikasi kriolup dapat digunakan secara efektif untuk kriopreservasi blastosis mencit dan cemaran bakteri E.coli K99 pada blastosis yang divitrifikasi, tidak mempengaruhi tingkat perkembangannya ke tahap lebih lanjut. 6.5. SARAN Perlu dilakukan penelitian secara in vivo terhadap embrio yang telah divitrifikasi melalui transfer embrio ke induk resipien untuk mengevaluasi viabilitas embrio tersebut. 64 7. KEBUNTINGAN HASIL TRANSFER BLASTOSIS MENCIT YANG DIBEKUKAN DENGAN METODE VITRIFIKASI KRIOLUP 7.1. PENDAHULUAN Kelebihan produksi embrio, baik secara in vitro maupun in vivo, agar termanfaatkan, dapat diawetkan dengan pembekuan dan dimanfaatkan di kemudian hari. Berdasarkan cara pembekuan dan konsentrasi krioprotektan yang digunakan, dikenal metode pembekuan lambat dan metode pembekuan cepat (Boediono 2003). Pembekuan dengan teknik pembekuan lambat (slow freezing), menggunakan krioprotektan berkonsentrasi rendah dan laju pembekuan lambat yang dikontrol bertujuan untuk mencegah terbentuknya kristal es (Rall 1987). Namun kerusakan karena terbentuknya kristal es baik pada membran maupun pada organel merupakan penyebab utama kematian embrio pasca kriopreservasi. Di samping itu, pada saat embrio beku di-thawing, kristal es dapat kembali terbentuk. Selain itu, pemasukan air yang terlalu cepat ke dalam sel dapat membuat sel embrio membengkak. Embrio yang dibekukan dengan metode slow freezing, kurang mampu menimbulkan kebuntingan dan mempertahankan kebuntingan tersebut (Lane et al. 1999). Sebagai pilihan lain, pengganti pembekuan lambat, dikembangkanlah teknik kriopreservasi atau pembekuan sangat cepat tanpa terbentuknya kristal es yang disebut vitrifikasi (Rall & Fahy 1985). Vitrifikasi lebih disukai dibandingkan dengan teknik pembekuan lambat, karena kristal es yang terbentuk jauh lebih sedikit di samping lebih murah dan lebih mudah dalam pelaksanaannya (Takahashi et al. 2005). Vitrifikasi menggunakan krioprotektan konsentrasi tinggi, sehingga pada saat proses pembekuan cepat, kristal es tidak terbentuk. Selain itu laju pembekuan yang sangat cepat akan mencegah kerusakan pada sel-sel yang peka terhadap pembekuan (Rall 1987). Pada saat vitrifikasi, seluruh larutan keadaannya berubah bentuknya menjadi seperti kaca (vitreous). Air tidak mengalami presipitasi sehingga kristal es tidak terbentuk (Liebermann et al. 2002). Keberhasilan metode vitrifikasi, dengan mempercepat laju pendinginan seperti penggunaan electron microscope grid dalam proses memvitrifikasi (Martino et al. 1996; Son et al. 2003) atau pada straw tipis (Vajta et al. 1998), hemistraw (Vanderzwalmen et al. 2003) telah dilaporkan, tetapi masalah timbul 65 dalam hal mendapatkan kembali embrio yang memanipulasi embrio tersebut. divitrifikasi mau pun untuk Kini prosedur vitrifikasi menggunakan kriolup dilaporkan sangat memudahkan dalam melakukan manipulasi maupun warming (Lane et al. 1999; Mukaida et al. 2003; Takahsahi et al. 2005). Penggunaan metode kriolup memungkinkan dilakukan pembekuan dengan sangat cepat dan pengurangan volume larutan vitrifikasi yang diperlukan (Takahashi et al. 2005). Pemanfaatan kriolup dilaporkan berhasil digunakan untuk membekukan embrio hamster, sapi, mencit, (Lane et al. 1999). manusia (Lane et al. 1999; Mukaida et al. 2003; Takahashi et al. 2005). Penelitian ini bertujuan untuk membekukan embrio mencit secara vitrifikasi dengan metode kriolup, dan mengevaluasi perkembangan embrio secara in vitro dan secara in vivo dengan cara mentransfer blastosis ke mencit resipien hingga embrio tersebut lahir. 7.2 MATERI DAN METODE 7.2.1 Penyiapan donor dan resipien Dalam penelitian ini dipakai mencit 12 minggu yang bebas penyakit, dirangsang folikulogenesisnya dengan menyuntikkan hormon pregnant mare’s serum gonadotropine (PMSG: Folligon®, Intervet, Boxmeer, Holland) 5IU secara intraperitoneum, dan diikuti dengan penyuntikan hormon human chorionic gonadotropine (hCG: Choruon®, Intervet, Boxmeer, Holland) 5IU 48 jam pascapenyuntikan PMSG. Segera setelah penyuntikan hCG, mencit betina tersebut dikawinkan dengan pejantan dengan perbandingan 1:1. Pagi hari berikutnya, mencit betina yang telah kawin, dicirikan dengan adanya sumbat vagina, dipisahkan dari pejantan. Pada hari teramatinya sumbat vagina ditetapkan sebagai hari pertama. Empat hari kemudian mencit betina yang bunting tersebut dimatikan dengan melakukan dislokasio os aksis tulang leher. Bagian kornua uteri mencit tersebut diisolasi dan ditempatkan pada medium PBS (Dulbecco’s Phosphate Buffer Saline®, Gibco, Auckland, NZ), yang ditambahkan serum 3%. Kornua uteri kemudian dibilas (flushing) menggunakan mPBS yang disemburkan dari jarum 26G yang dihubungkan dengan spoit 1 ml. Cairan hasil bilasan ditampung dalam cawan petri dan diamati di bawah mikroskop. Embrio tahap blastosis yang ditemukan dipanen dan dicuci tiga kali dalam mPBS, dan kemudian disimpan sementara dalam larutan mPBS (Hogan et al.1994). Induk resipien disiapkan dengan cara yang sama mempersiapkan 66 induk donor, tetapi tanpa perlakuan superovulasi, dan pejantan yang digunakan untuk mengawini betina adalah pejantan vasektomi. Perkawinan tetap terjadi, tetapi hanya menimbulkan bunting semu. Betina yang memperlihatkan sumbat vagina setelah dikawini pejantan vasektomi dijadikan sebagai induk resipian, dan siap menerima transfer embrio pada hari ke 3,5 (Mohamad et al. 1999). 7.2.2 Pembuatan kriolup Kriolup yang digunakan untuk melakukan vitrifikasi berupa jerat (loop) kawat tembaga dengan ketebalan 100µm, dan garis tengah jerat 1250µm serupa dengan yang dikemukakan pada subbab 6.2.2. 7.2.3 Teknik vitrifikasi kriolup Metode vitrifikasi yang digunakan dalam penelitian ini berdasarkan metode yang telah dilakukan oleh Lane et al.(1999) dan metode ini serupa dengan metode yang dikemukakan pada subbab 6.2.3. 7.2.4 Warming blastosis Warming terhadap blastosis hasil vitrifikasi dilakukan melalui beberapa tahap pengenceran sukrosa. Kriolup yang bermuatan blastosis dicelupkan langsung dan sesegera mungkin kedalam medium mPBS yang mengandung sukrosa 0,5M. Blastosis akan segera jatuh dari kriolup ke larutan tersebut. Setelah satu menit berada dalam larutan tadi, blastosis tersebut dipindahkan ke medium yang mengandung sukrosa 0,25M, kemudian 0,1M masing-masing selama dua menit. Selanjutnya blastosis tersebut dicuci empat kali dalam medium kultur kemudian dikultur dalam KSOM dan diinkubasikan dalam inkubator CO2 5% pada suhu 370C. Sebagian kecil dari blastosis tersebut secara acak dipilih untuk diwarnai dengan bisbenzimide (Hoechts-33342) dan propidium iodine (Saha et al. 2000), guna melihat sel-sel embrio yang mati dan yang hidup setelah vitrifikasi. Setelah enam jam dikultur terhadap blastosis tersebut dilakukan pengamatan terhadap reexpansion dari blastosis hasil vitrifikasi. Waktu enam jam dipilih karena masa enam jam ini merupakan waktu yang umum dipakai dalam menilai blastosis hasil warming sebelum dilakukan transfer embrio (Lane et al. 1999: Takahashi et al. 2005). 67 7.2.5 Penilaian viabilitas blastosis Setelah warming, embrio ditempatkan pada cawan petri yang telah berisi tetesan-tetesan (drops) dengan volume sekitar 10µl, ditutupi dengan minyak mineral, dan diinkubasi dalam inkubator CO2 5% dengan suhu 370C (Lieberman & Tucker 2002). Dalam penelitian ini medium kultur yang dipakai adalah KSOM. Pengamatan dilakukan setelah embrio dikultur 2-3 jam dengan menggunakan mikroskop inverted (Olympus IX70 Japan). Daya tahan hidup (viabilitas) embrio dinilai berdasarkan keutuhan morfologi blastomer, sel induk, trofektoderm, dan reexpansion blastosul. Blastosis dikatakan mampu bertahan hidup jika blastosis memasuki kembali tahapan perkembangannya dan berkembang ke tahap lebih lanjut (Mukaida et al. 2001; Takahashi et al. 2005). Viabilitas blastosis mencit setelah vitrifikasi diuji dengan melakukan transfer embrio ke resipien mencit yang bunting semu. Keseluruhan blastosis dalam medium yang reekspan dan berkualitas baik, dikumpulkan dan secara acak dipilih untuk ditransfer ke mencit resipien (Lane et al.1999). 7.2.6 Teknik transfer embrio Mencit betina yang mengalami kebuntingan semu 3,5 hari, dibius campuran obat bius xylazine (Iliumxylazil-20®Troy Lab NSW, Australia) dengan ketamine (Ketamil® Troy Lab NSW, Australia), masing-masing campuran 0,2mg dan 1 mg untuk satu ekor mencit (Muhammad et al. 1999). Setelah terbius, pembedahan dengan penyayatan kulit sepanjang 1-2 cm sejajar tulang punggung, dilakukan pada titik tengah garis maya yang menghubungkan pangkal ekor dengan bagian belakang tulang tengkorak. Lubang pada kulit akibat sayatan skalpel tersebut digeser ke kanan, sampai teramati di belakang tulang iga terakhir dan bawah dinding abdomen yang transparan, lemak putih di sekitar ovarium. Dinding abdomen tersebut dilubangi, lemak tersebut ditarik keluar, dan bersamaan dengan itu tanduk uterus kanan pun akan tertarik juga keluar abdomen. Tanduk uterus tersebut dilubangi pada bagian ujungnya dengan jarum 26G, selanjutnya 6-8 embrio tahap blastosis yang telah disiapkan dalam mikropipet ditransfer kedalam uterus melalui lubang yang dibentuk oleh jarum 26G tersebut. Tanduk uterus dikembalikan ke kedudukannya semula, dan sayatan kulit dijahit dengan jahitan sederhana dan dibubuhi bubuk antibiotik (Hogan et al. 1994). 68 7.2.7 Rancangan percobaan Penelitian dilaksanakan berdasarkan rancangan acak lengkap pola split in time. Embrio tahap blastosis tersebut divitrifikasi, kemudian dihangatkan, dan selanjutnya dikultur in vitro, dan ditransfer ke induk resipien. Parameter yang diamati adalah tingkat perkembangan embrio secara in vitro, diamati setiap 6 jam, mulai dari tingkat (Hogan et al. 1994), blastosis, blastosis ekspan, hatching, dan hatched (Gilbert 1988; Hogan et al. 1994). Secara in vivo, parameter yang diamati adalah persentase pembentukan fetus dan kelahiran anakan mencit hasil transfer blastosis. 7.3 HASIL DAN PEMBAHASAN Hasil penelitian ini memperlihatkan bahwa blastosis yang telah divitrifikasi dan warming, setelah dikultur selama 24 jam dalam medium KSOM menunjukkan daya tahan hidup (survival rate) sebesar 85,70% (Gambar 7.1). Perkembangan embrio pasca warming teramati mulai terjadi 6 jam setelah dikultur dalam KSOM. Persentase blastosis yang berkembang ke tahap lebih lanjut (blastosis ekspan, hatching dan hatched) adalah sekitar 28,6%, kemudian meningkat menjadi 71,5% pada jam ke 12, selanjutnya menurun menjadi 71,4% pada jam ke 18, dan persentase embrio yang berkembang terus menurun, sampai akhirnya yang berkembang hanya 52,3% pada jam ke 42 (Lampiran 8). Hasil ini lebih rendah dibandingkan dengan laporan Lane et al. (1999), dalam laporan tersebut blastosis mencit yang divitrifikasi dengan carrier kriolup mampu berkembang kembali sebesar 100%. Sedangkan Takahashi et al. (2005) yang melakukan penelitian sejenis pada blastosis manusia melaporkan survival ratenya adalah 85,5%. Tetapi hasil penelitian ini setara dengan yang dilaporkan oleh Ali & Shelton (1993) yang melakukan vitrifikasi blastosis menggunakan straw inseminasi berbahan plastik 0,25 ml sebagai carrier. Tingkat daya tahan hidup yang lebih rendah dalam penelitian ini, kemungkinan disebabkan oleh volume krioprotektan yang terbawa dalam kriolup dalam penelitian ini (0.115 μl) masih terlalu besar jika dibandingkan dengan kriolup nilon yang dipakai Lane et al. (1999), Mukaida et al. (2001), dan Takahashi et al. (2005) menggunakan kriolup yang memiliki volume sekitar 0.05 μl. Pemanfaatan kriolup bervolume sangat kecil tersebut memungkinkan krioprotektan didinginkan dengan sangat cepat. berkonsentrasi 0 tinggi Pendinginan dari 25 C ke -1960C, 69 berkecepatan 2210C/0,5 detik atau 26.5200C/menit (Liebermann et al. 2002). Pendinginan yang sangat cepat tersebut membuat krioprotektan memadat tetapi tidak membeku dan tidak membentuk kristal es yang mematikan sel-sel embrio (Mukaida et al. 2001). Pada penelitian ini, begitu pula pada vitrifikasi menggunakan straw sebagai carrier seperti yang dilakukan Ali & Shelton (1993), volume larutan krioprotektannya relatif besar, akibatnya percepatan pendinginan tidak sepenuhnya tercapai sesuai harapan, sehingga kristal es sangat mungkin 85.7 85.7 85.7 85.7 85.7 90 85.7 terbentuk dan mematikan sebagian atau keseluruhan sel-sel embrio. 66.7 66.7 66.7 57.1 70 60 50 0 14.3 9.5 4.8 4.7 14.3 9.5 4.8 0 0 0 0 0 0 10 0 4.7 14.3 4.8 20 14.3 30 14.4 28.6 40 14.3 Perkembangan (%) 80 6 12 18 24 Waktu inkubasi (jam) Blastosis Blast.eksp Hatching Hatched Hidup Mati Gambar 7.1. Blastosis vitrifikasi yang berkembang ke tahap selanjutnya (n=21) Tingkat kematian embrio vitrifikasi mencapai 14,30% sesaat setelah dilakukan penghangatan (warming) hingga 24 jam kultur (Gambar 7.1). Kematian embrio pasca vitrifikasi terutama disebabkan oleh keracunan akibat terlalu lama bersinggungan dengan krioprotektan berkonsentrasi tinggi dan terbentuknya kristal es. Dalam penelitian ini seperti telah dikemukakan di atas, akibat volume krioprotektan yang lebih besar, mengakibatkan laju percepatan pendinginan menjadi lebih lambat. Kelambatan tersebut, di samping membuat persinggungan embrio dengan krioprotektan menjadi lebih lama, juga memungkinkan terbentuknya kristal es yang merusak membran dan organel sel. Setelah vitrifikasi dengan kriolup sel-sel embrio (kuda) tahap blastosis yang bertahan hidup sekitar 48%. Di samping itu hampir 30% embrio yang divitrifikasi 70 zona pelusidanya mengalami keretakan (Oberstein et al. 2001). Sisa-sisa sel embrio yang bertahan hidup sebenarnya dapat mempertahankan diri untuk selanjutnya berkembang ke tahap lebih lanjut. Tetapi jika disertai dengan keretakan-keretakan (fracture) pada zona pelusida, hal tersebut akan membuat sel-sel embrio yang bertahan hidup akan semakin sulit untuk mempertahankan dirinya, karena pelindung embrio dari gangguan lingkungan yang ekstrim tidak lagi berperan. Gambar 7.2. Pewarnaan vital embrio setelah vitrifikasi dengan metode kriolup. Sel-sel embrio yang bertahan hidup (biru) dan mati (merah) Embrio pasca penghangatan (warming) pada penelitian ini teramati mulai hatching setelah 12 jam dikultur dalam KSOM. Persentase embrio yang hatching sebanyak 4,8% (Gambar 7.1) dan persentasenya terus meningkat sampai sekitar 19% setelah 42 jam dalam kultur (Lampiran 8). Lane et al. (1999) melaporkan 95,5% embrio yang divitrifikasi berhasil hatching setelah dilkultur selama 48 jam. Adanya perbedaan hasil yang diperoleh kemungkinan karena adanya perbedaan dalam hal volume larutan vitrifikasi dalam kriolup seperti telah dikemukakan sebelumnya dan medium kultur yang dipakai. Lane et al. (1999) dalam penelitian tersebut menggunakan larutan vitrifikasi dengan volume yang sangat sedikit, dengan demikian kecepatan pendinginannya menjadi sangat cepat. Pendinginan dan penghangatan yang dilakukan sesingkat mungkin akan mencegah kerusakan sel embrio akibat terbentuknya kristal es dalam sel (Takahashi et al. 2005). Di samping karena volume krioprotektan, rendahnya hatching rate 71 kemungkinan juga karena medium kultur yang dipakai. Menurut Lane et al. (1998a; 1998b) medium bufer yang dipakai dalam vitrifikasi hendaknya medium yang mampu mencegah perubahan pH intraseluler yang terjadi saat vitrifikasi. Perubahan yang sangat kecil sekali pun dalam sel embrio akan membuat embrio tersebut kehilangan kemampuannya untuk berkembang. Vitrifikasi kini diketahui mengakibatkan pH dalam sel menurun, dan menurut Lane et al. (1999), medium bufer HEPES memiliki kelebihan dalam menstabilkan pH, dibandingkan medium sejenis yang lainnya. Pemeriksaan terhadap viabilitas embrio setelah kriopreservasi adalah menguji kemampuan embrio tersebut untuk menimbulkan dan mempertahankan kebuntingan, dilanjutkan dengan lahirnya anak yang fertil (Lane et al. 1999). Pada penelitian ini dipilih secara acak 63 embrio tahap blastosis vitrifikasi yang berkualitas baik. Embrio tersebut ditransfer ke sembilan resipien, masing-masing ditransfer tujuh embrio ke dalam tanduk rahim kanan . Fetus yang berkembang ditemukan pada tanduk kanan rahim dua induk, masing-masing tiga fetus (9,5%). Anak yang lahir adalah empat ekor (6,3%), yaitu tiga dari induk pertama dan satu dari induk kedua. Keberhasilan blastosis vitrifikasi menimbulkan kebuntingan dan kemudian lahir, membuktikan metode vitrifikasi kriolup dapat diandalkan untuk mengawetbekukan (kriopreservasi) embrio. Keberhasilan tersebut selaras dengan yang dilaporkan oleh Hredzak et al (2005), yang nenunjukkan keberhasilan tingkat implantasi (11,1%) embrio pasca vitrifikasi dengan metode straw. Penelitian serupa yang dilakukan Ali & Shelton (1993), melaporkan bahwa jumlah embrio pasca vitrifikasi yang berhasil implantasi sebanyak 25,4%, tetapi yang mati dan kemudian diserap sebesar 13%, dan sisanya berkembang menjadi fetus sebanyak 12,4%. Lebih jauh Hredzak et al (2005), melaporkan bahwa tingkat implantasi blastosis vitrifikasi nyata lebih rendah jika dibandingkan dengan embrio segar mau pun embrio hasil pembekuan slow freezing. Hasil ini memperlihatkan bahwa pembekuan embrio memberi efek buruk terhadap perkembangan embrio, dan vitrifikasi efeknya jauh lebih buruk Embrio tersebut kualitasnya lebih rendah dan kemampuannya untuk implantasi juga menurun, walau pun secara morfologi identik dengan embrio yang tidak divitrifikasi. Kerusakan embrio akibat vitrifikasi mengakibatkan kematian 50% lebih sel-sel embrio (kuda) telah ditunjukkan oleh Oberstein et al. (2001). Begitu pula dalam penelitian ini tampak embrio yang divitrifikasi, sebagian sel-selnya ada yang mati (Gambar 7.2). Sebelumnya dilaporkan oleh Lane et al. (1999), bahwa embrio 72 mencit hasil vitrifikasi dengan metode kriolup yang berhasil implantasi 78% dan sekitar 55% berkembang menjadi fetus. Angka tersebut tidak berbeda jika yang ditransfer embrio segar. Lane et al. (1998, 1999) seperti telah dikemukakan di atas memakai medium yang lebih efisien untuk mengatasi perubahan pH intraseluler, sehingga perkembangan embrio tidak terganggu. Kriolup bervolume sangat kecil, membuat laju pembekuannya menjadi sangat cepat dan kristal es yang mematikan tidak terbentuk. Dari penelitian yang dilakukan diperoleh hasil bahwa, blastosis vitrifikasi yang dapat kembali berkembang (reexpand) sebanyak 85,7% dan dari blastosis tersebut yang berkembang ke tahap lebih lanjut secara in vitro, persentasenya berbeda-beda pada pengamatan yang dilakukan setiap 6 jam. Blastosis vitrifikasi yang mati pasca warming sekitar 14,3% hingga jam ke 24, dan kematian menjadi tiga kali lipat pada saat jam ke 48 (Lampiran 8). Blastosis mulai hatching setelah 12 jam dikultur dan setelah 48 jam, sebanyak 19% blastosis tersebut hatching. Secara in vivo, blastosis vitrifikasi tersebut berhasil berkembang menjadi fetus dan lahir tanpa menunjukkan tanda-tanda cacat. 7.4 SIMPULAN Simpulan yang dapat ditarik dari penelitian ini adalah: Vitrifikasi dengan metode kriolup dapat dipakai untuk kriopreservasi embrio mencit tanpa membuat embrio tersebut kehilangan viabilitasnya; Embrio mencit setelah vitrifikasi, viabilitasnya sedikit menurun; Transfer embrio mencit yang telah divitrifikasi ke resipien, berhasil berkembang menjadi fetus dan lahir menjadi mencit normal. 7.5 SARAN Perlu dilakukan penelitian untuk meningkatkan calving rate blastosis setelah vitrifikasi, dan dicobakan pula pada hewan lainnya. 73 8. PEMBAHASAN UMUM Studi ini membahas cemaran mikroba infeksius pada embrio mencit. Cemaran terhadap embrio oleh agen infeksius telah banyak dilaporkan. Beberapa jenis virus dan bakteri mampu mencemari dan melekat pada permukaan ZP antara lain: virus blue tongue, penyakit mulut dan kuku, bovine herpervirus-1, dan bovine viral diarrhoea (Stringfellow & Givens 2000), bakteri Leptospira spp. (Shisong & Wrathall 1989; Bielanski & Surujballi 1996), Escherichia coli K99, Streptococcus agalactie, Actinomyces pyogenes (Otoi et al. 1992), mikoplasma (Mycoplasma bovis, M bovigenitalium), parasit Tritrichomonas foetus (Bielanski et al. 2000; Bielanski et al. 2004). Pencemaran dengan agen patogenik ini dapat terjadi saat fertilisasi in vitro dan transfer embrio. Di samping itu cakupan infeksi dapat meluas, karena embrio beku kini telah menjadi komoditi perdagangan antar bangsa (Otoi et al. 1992; Otoi et al. 1993). Cemaran terhadap embrio yang akan ditransfer kemungkinan berasal dari semen tercemar yang digunakan untuk membuahi oosit, oosit yang dipanen transvagina, dan peralatan transfer embrio yang tercemar. Mikroba yang tercatat sebagai pencemar pada embrio manusia adalah E.coli, bakteri dipteroid, Mycoplasma hominis, dan Ureaplasma urealyticum (Cottell et al. 1996). Pada ternak infeksi bovine viral diarrhea virus (BVDV) merupakan penyebab utama gangguan reproduksi dan kerugian ekonomi. Dari sudut pandang epidemiologi, ternak yang secara persisten terinfeksi BVDV memegang peran kunci sebagai penyebar penyakit. Strategi pengendalian yang dijalankan selama ini adalah dengan mengidentifikasi dan menyingkirkan ternak yang terindentifikasi. Ternak penderita yang secara persisten terinfeksi BVD dapat menghasilkan anakan yang menderita penyakit BVD persisten juga (Bak et al. 1992). Namun, embrio ternak berkualitas bagus penderita BVD persisten dapat lahir tanpa terinfeksi dengan jalan melakukan embrio transfer ke induk sehat, hanya saja pada ternak penderita BVD persisten, sulit dilakukan superovulasi untuk mendapatkan embrio normal seperti yang diharapkan. Zona pelusida embrio tersebut tidak mampu ditembus oleh BVDV (Singh et al. 1982), dan BVDV dapat disingkirkan dari permukaan zona pelusida dengan melakukan pembasuhan menggunakan metode standar (Vanroose 1999). Embrio ternak tidak mampu berkembang pada 74 uterus yang sengaja diinfeksi dengan BVDV. Embrio tersebut mati setelah tiga hari terinfeksi. Namun beberapa sel somatik, seperti sel-sel oviduk, sel-sel kumulus, dan sel-sel granulosa dapat berperan sebagai penawar efek racun (detoxifying) agen-agen penyakit terhadap perkembangan embrio (Bavister 1995). Penetralan efek racun ini dapat terjadi jika jumlah agen yang mencemari embrio jumlahnya tidak begitu banyak. Kematian embrio transfer pada ternak, terbanyak terjadi antara 30-90 hari kebuntingan. Calving rate dari telaah 20 studi yang dilakukan antara 1989-1998, sekitar 30%, sedangkan rataan conception rate inseminasi buatan sekitar 64% (Peterson & Lee 2003). Di Indonesia calving rate pada suatu balai embrio transfer, setelah mentransfer 416 embrio ternak, 67 ekor (16,1%) bunting, yang berhasil lahir 5 ekor atau calving ratenya 1,20% (Balai Embrio Transfer 1997). Namun, laporan tersebut tidak menyertakan faktor-faktor kendala yang mengakibatkan rendahnya calving rate yang diperoleh. Kebuntingan atau konseptus yang tidak normal, tidak akan bertahan pada trimester kebuntingan, hal ini terutama karena faktor fetus yang tidak normal, dan merupakan faktor utama penyebab kematian fetus. Kematian fetus di bawah dua bulan, terutama karena adanya cacat dalam pembentukan alantois. Cacat pembentukan alantois dapat mencapai 25%, perkembangan yang optimal mencapai 10%, dan alantois yang tidak berkembang mencapai 50%. Perkembangan alantois yang cacat membuat plasentome yang terbentuk menjadi sedikit, dan hal ini merupakan penyebab utama kematian embrio (Peterson & Lee 2003). Pada awalnya penelitian manipulasi embrio mencit ini didisain untuk pendekatan masalah-masalah yang berhubungan dengan agen infeksius, khususnya bakteri E.coli K99. Bakteri ini sering ditemukan pada ternak sapi neonatal penderita diare. Bakteri ini memiliki antigen perlekatan K99 (pili K99), berfungsi sebagai antigen perlekatan pada reseptor spesifik pada permukaan sel mamalia, seperti pada zona pelusida embrio. Pada penelitian peranan zona pelusida sebagai barier terhadap cemaran Escherichia coli K99, bakteri E.coli K99 teramati tidak menembus zona pelusida pada embrio mencit yang diproduksi secara in vivo pada tahap perkembangan yang berbeda. Untuk mendapatkan penjelasan sementara terhadap fungsi zona pelusida sebagai barier pertahanan terhadap E.coli K99 maka diakukan studi ELISA dan SEM. Pada pemeriksaan ELISA, unsur yang dipakai melapisi 75 sumuran (well plate) pada lempeng ELISA adalah zona pelusida. Selanjutnya direaksikan dengan E.coli K99 dan bakteri atau unsur-unsur bakteri E.coli asal hewan lainnya. Pada pembacaan hasil uji ELISA teramati bahwa pada sumuran tempat zona pelusida dan E.coli K99 direaksikan, terbaca kepadatan optik yang tinggi jika dibandingkan dengan bakteri E.coli lainnya. Hal ini menandakan bahwa terjadi perlekatan antara E.coli K99 dengan zona pelusida mencit. Hasil ini memperkuat penelitian yang dilakukan Otoi et al. (1992;1993) yang mereaksikan E.coli K99 dengan zona pelusida sapi. Penelti tersebut menduga adanya ikatan yang spesifik, karena bakteri yang melekat tidak semuanya tercuci dengan perlakuan tripsin. Bakteri E.coli K99 mampu melekat karena memiliki struktur perlekatan yang dikenal sebagai pili. Pili tersebut akan melekatkan dirinya ke suatu gugus gula tertentu. Reseptor bakteri E.coli K99 adalah asam muramat (muramic acid), galaktosa, dan glukosa (Dean & Isaacson 1985). Zona pelusida terdiri dari tiga unsur glikoprotein yakni ZP1, ZP2, dan ZP3. Rantai polipeptida dan oligosakarida dari glikoprotein tersebut berbeda satu dengan yang lain (Wassarman 1999). Gugus gula yang umum ditemukan pada zona pelusida adalah: D-manosa, glukosamin (Skutelsky et al. 1994). D-glukosa, galaktosa, N-asetil Pada mencit gugus gula yang umum ditemukan adalah galaktosil, L-fukosa, D-manosa, dan metil manosida (Wassarman 1988). Adanya gugus gugus gula monosakharida tersebut membuat pili mempunyai tempat melekat pada zona pelusida. Pada pemeriksaan SEM, teramati permukaan zona pelusida embrio dilekati oleh E.coli K99. Struktur permukaan zona pelusida secara mendasar ada dua pola yang berbeda: 1) zona pelusida berbentuk suatu jalinan seperti spon yang memiliki banyak pori, dan 2) zona pelusida memiliki struktur yang lebih kompak dengan sedikit pori (Familiari et al. 1989; Vanroose 1999). Pada penelitian ini teramati bakteri E.coli K99 terikat ke zona pelusida yang memiliki struktur kompak dan sedikit berpori. Bentuk seperti ini merupakan bentuk khas zona pelusida yang telah terbuahi spermatozoa (Suzuki et al. 1994). Perubahan pola permukaan zona pelusida yang dicirikan dengan struktur benda padat yang seakan meleleh dan disertai dengan sedikit pori tersebut, dikenal sebagai ‘zona pellucida hardening’, struktur tersebut berperan mencegah terjadinya polispermia (Legge 1995). E.coli K99 mampu melekat pada zona pelusida, tetapi E.coli yang berukuran 2,9 µm x 0,64 μm (Boyer 2002) tidak mampu menembus zona 76 pelusida untuk mencapai sel-sel embrio menembus ribuan pori-pori pada permukaan zona pelusida. Pori-pori tersebut pada zona pelusida embrio sapi tahap morula, seperti yang dilaporkan Vanroose (1999) berdiameter 155 nm. Pori-pori pada zona pelusida berbentuk seperti corong, lebar di luar dan menyempit ke dalam, sehingga agen penyakit kemungkinan hanya mampu melekat pada bagian luar pori saja dan tidak mampu menembus zona pelusida. Virus bovine viral diarrhoea sebagai misal yang berukuran 40-50 nm hanya mampu menembus setengah tebal zona pelusida, sedangkan bovine herpesvirus-1 yang berukuran 180-200 nm menembus seperempat ketebalan zona pelusida. Hal ini berkaitan dengan struktur pori-pori yang menyempit ke bagian dalam seperti tersebut di atas (Vanroose 1999). Adanya cemaran agen penyakit terutama bakteri seperti E.coli mesti selalu diwaspadai. Penambahan antibiotik, seperti penisilin dan streptomisin kedalam medium efektif untuk menyingkirkan mikroba pencemar (Cottell et al. 1996). Namun pemberian antibiotik, ke dalam medium kultur kemungkinan dapat menimbulkan cacat pada embrio vertebrata (Holdines 1987). antibiotik pentostatin terhadap embrio mencit dapat Pemberian mengakibatkan perkembangan alantois cacat yang ditandai dengan agenesis atau hipogenesis dan tidak normalnya vaskularisasi ke keseluruhan struktur embrio. Alantois yang sedang berkembang merupakan target toksisitas antibiotik (Airhart et al. 1996). Pada embrio transfer, hingga kini belum pernah dilakukan penelitian secara sistemik mengenai tipe, jumlah antibiotik yang dapat diandalkan untuk digunakan dalam medium, tanpa mengganggu proses embrio transfer tersebut (Peterson & Lee 2003). Walau pun dapat dinyatakan bahwa zona pelusida utuh berperan sebagai barier infeksi penyakit bakterial (Bab 4), masih tetap diperlukan tindakan sanitasi dan perlakuan-perlakuan yang efektif untuk memastikan permukaan zona pelusida bebas dari bakteri, atau setidaknya agen bakteri yang melekat dapat diinaktivasi dalam upaya melindungi embrio dari infeksi bakteri. Ada dua alasan kenapa tindakan tersebut perlu dilakukan: 1) embrio telah terlindungi dengan baik oleh zona pelusida, tetapi embrio dapat terinfeksi pada saat hatching (keluar dari zona pelusida) dalam medium yang tercemar bakteri E.coli K99. Dengan kata lain embrio yang berkualitas layak transfer (morfologi utuh), dengan bakteri melekat pada permukaannya, mungkin saja ditransfer ke induk resipien yang sehat. Bakteri E.coli dapat menginfeksi endometrium dan selanjutnya 77 mengakibatkan endometritis (Zerbe et al. 2002) dan akhirnya membuat kematian pada embrio, dan 2) agen penyakit melekat pada permukaan zona pelusida, akan mendorong terjadinya kompetisi perebutan zat-zat nutrisi. Bakteri E.coli K99 yang tumbuh cepat akan membuat kebutuhan zat nutrisi untuk embrio tak tercukupi selama embrio tersebut berada dalam biakan. Tindakan sanitasi terhadap embrio telah diulas oleh Bielanski dan Jordan (1996). Tindakan rutin untuk mendesinfeksi embrio adalah membasuhi dengan larutan bufer dan perlakuan dengan tripsin. Namun, pembasuhan dan perlakukan tripsin tidak efektif untuk menghilangkan agen yang melekat pada zona pelusida. Menurut Guerin et al. (1997), sebenarnya resiko terinfeksi agen penyakit lebih besar terjadi pada embrio yang diproduksi secara in vitro dibandingkan in vivo, karena struktur zona pelusida embrio produksi in vitro tidak sebaik in vivo. Struktur zona pelusida dari embrio in vivo memperoleh tambahan unsur-unsur yang diperoleh sepanjang perjalanan dalam oviduk. Pada penelitian pemaparan E.coli K99 ke embrio yang memiliki zona pelusida utuh, selama kultur secara in vitro dilakukan, menimbulkan akibat buruk terhadap perkembangannya. E.coli K99 yang berada dan berkembang pada sistem kultur in vitro, teramati laju perkembangan embrio delapan sel ke tahap selanjutnya tidak sebaik embrio yang berkembang dalam medium yang tidak dicemari. Adanya agen bakteri secara berkesinambungan dalam medium kultur embrio, secara normal tidak akan terjadi pada laboratorium-laboratorium yang mengikuti rekomendasi yang dikeluarkan the International Embryo Transfer Society. Tetapi, hendaknya selalu diwaspadai bahwa agen penyakit mungkin menyusup melalui salah satu langkah pemrosesan embrio, seperti: maturasi in vitro, fertilisasi in vitro, dan kultur in vitro, khususnya jika asal oosit, embrio, dan bahan-bahan lainnya tidak jelas. Di samping itu pemanfaatan serum dan bahanbahan biologi lainnya, kini merupakan faktor penting dalam proses produksi embrio, sehingga secara tidak langsung membuka peluang masuknya agen ke sistem produksi embrio (Wrathall 1995). Seperti pada pemakaian bovine serum albumin (BSA), ketika penyakit sapi gila merebak di Inggris dan Eropa, pemerintah Selandia Baru melarang impor segala kebutuhan BSA untuk kepentingan embrio transfer (Peterson & Lee 2003). Cemaran E.coli terhadap spermatozoa pada in vitro fertilisasi dilaporkan mengakibatkan motilitas spermatozoa sangat menurun, bahkan mengakibatkan 78 terjadinya aglutinasi, sebagai akibat E.coli melekatkan ekor spermatozoa satu dengan yang lainnya. Keadaan tersebut membuat spermatozoa tidak mampu melakukan fertilisasi terhadap oosit (Wolff et al. 1993) Pada penelitian yang dilakukan, pencemaran medium kultur KSOM secara in vitro dengan bakteri E.coli K99 mengakibatkan pengaruh buruk terhadap perkembangan embrio. Embrio tahap morula yang ditumbuhkan pada medium tercemar, persentase embrio yang mampu berkembang ternytata lebih rendah dibandingkan dengan morula yang dikembangkan pada medium yang tidak tercemar. Jika dikaitkan dengan cemaran medium oleh virus, ternyata pencemaran medium maturasi in vitro dengan BHV-1 (bovine herpesvirus type-1) dan BVDV bovine viral diarrhea virus) yang dilaporkan oleh Vanroose (1999) mengakibatkan pengaruh buruk pula terhadap perkembangan embrio. Begitu pula tingkat pembelahan oosit-berkumulus yang dicemari dengan BVDV (Booth et al. 1999). Hal senada dilaporkan oleh Guerin et al. (1990) bahwa fertilisasi oosit yang tercemar BHV-1 menjadi sangat rendah. Oosit asal hewan penderita infeksi BHV-1 akut, yang dikultur secara in vitro, tingkat perkembangannya tidak sebaik oosit yang berasal dari hewan sehat (Bielanski & Dubuc 1995). Mekanisme bakteri E.coli K99 dapat mempengaruhi perkembangan embrio, belum sepenuhnya dipahami. Dalam penelitian ini, bakteri E.coli K99 berkembang dengan baik dalam medium kultur KSOM. Padatnya jumlah bakteri pada suatu medium biakan, akan mendorong terjadinya kompetisi antara embrio dengan bakteri untuk mendapatkan zat-zat nutrisi yang dikandung dalam KSOM. Semakin padat jumlah bakteri berarti nutrisi untuk pertumbuhan embrio yang tersedia dalam medium kultur akan semakin terbatas, di samping dihasilkannya produk-produk metabolik seperti hidrogen peroksida dan amonium. Keadaan toksik tersebut mengakibatkan laju perkembangan embrio lambat atau terhenti (Bielanski et al. 2000). Adanya kemungkinan terjadinya cemaran oleh E.coli K99 pada embrio sapi telah dilaporkan oleh Otoi et al. (1992) dan telah diteliti kembali pada penelitian ini. Cemaran pada embrio telah dilaporkan adanya dan disebabkan oleh beberapa agen infeksius. Untuk itu lembaga internasional masyarakat embrio transfer (IETS), mengeluarkan rekomendasi agar embrio dicuci dan diberi perlakuan tripsin sebelum ditransfer ke ternak resipien. Tetapi rekomendasi ini setelah dijalankan ternyata belum mampu untuk menyingkirkan agen infeksius (Otoi et al. 1993; Bielanski & Jordan 1996; Trachte et al. 1998). Pada penelitian 79 ini selain dicuci atau diberi perlakuan tripsin, zona pelusida embrio yang dicemari E.coli K99 juga diberi perlakuan pronase, suatu enzim yang kerap dipakai untuk melisiskan zona pelusida. Hasil yang didapat, zona pelusida embrio tercemari E.coli K99 dan dicuci dengan pronase berkembang lebih baik dibandingkan dengan yang dicuci dengan tripsin, begitu pula embrio tercemar yang diberi perlakuan tripsin berkembang lebih baik dibandingkan dengan yang dicuci dengan mPBS. Zona pelusida seperti telah dikemukakan sebelumnya terdiri dari ZP1, ZP2, dan ZP3 (Wassarman 1988). Enzim pronase dilaporkan lebih efektif dalam mengeliminasi mikroba pada zona pelusida dibandingkan dengan tripsin. Pronase mencerna zona pelusida dengan cara menghidrolisis ZP1 dan ZP2 (Kolbe & Holtz 2005). Proses pencernaan oleh enzim pronase yang lebih efektif membuat E.coli K99 yang melekat ke zona pelusida lebih banyak pula yang disingkirkan dengan pronase. Dengan kemampuan pronase menyingkirkan E.coli K99 lebih efektif dibandingkan tripsin yang telah lama disarankan oleh IETS, enzim pronase dapat dipilih sebagai alternatif untuk menyingkirkan agen infeksius dari embrio yang kemungkinan tercemar. Bakteri dan virus patogen dapat bertahan hidup jika berada dalam nitrogen cair (-1960C) (Rall 2003). Staphylococcus aureus Agen infeksius seperti E.coli dan dapat menulari spermatozoa yang dikriopreservasi, untuk keperluan inseminasi buatan (Bielanski et al. 2003). Pada penelitian ini, embrio yang dicemari E.coli K99 divitrifikasi dengan metode kriolup (Bab 6). Setelah diwarming dan dikultur in vitro dalam KSOM, perkembangan embrio vitrifikasi yang sebelumnya dicemari E.coli K99, tidak berbeda dengan embrio yang tidak dicemari (p>0.05). Hal ini menunjukkan bahwa embrio tercemar tidak menimbulkan akibat negatif setelah divitrifikasi. Dalam hal ini, bakteri E.coli K99 pasca vitrifikasi tidak berkembang dan tidak teramati perkembangannya dalam medium kultur. Kegagalan E.coli K99 berkembang nampaknya karena pengaruh salah satu bahan krioprotektan yang dipakai dalam penelitian ini, yakni dimetilsulfoksida (DMSO) 15%. Menurut Hubalek (2003), DMSO dapat menembus dinding sel dan membran sitoplasma, dan pada kadar yang rendah DMSO dapat dipakai untuk mengawetkan E.coli, tetapi DMSO 10% bersifat toksik terhadap E.coli. Adanya bahan krioprotektan tesebut mengakibatkan kemungkinan embrio tercemar E.coli K99 membawa agen patogen dan 80 menularkannya melalui embrio transfer ke induk resipien lainnya tidak mungkin terjadi, karena agen tersebut telah diinaktivasi oleh krioprotektan tersebut. Di samping diuji secara in vitro, embrio yang divitrifikasi tersebut juga diuji secara in vivo, dengan cara mentransfer embrio tersebut ke induk-induk resipien yang dibuat bunting semu. Blastosis vitrifikasi yang ditransfer adalah yang tidak dicemari E.coli K99. Blastosis vitrifikasi yang dicemari, bakteri E.coli K99-nya mengalami inaktivasi selama proses vitrifikasi. lahir tanpa cacat dan sehat. Sebagian kecil embrio berhasil Persentase kelahiran yang tidak terlalu tinggi tersebut kemungkinan disebabkan oleh sejumlah faktor penghambat. Salah satu faktor penyebabnya adalah kemungkinan sel-sel embrio tersebut sebagian besar mati dan tidak mampu memulihkan dirinya seperti yang dilaporkan oleh Oberstein et al. (2001). Dalam laporannya ditemukan hampir 52% sel-sel yang terdapat dalam embrio mati dan 30% zona pelusida embrio yang divitrifikasi mengalami keretakan. Hal tersebut kemungkinan terjadi karena keracunan akibat kontak yang relatif lama dengan kriprotektan dan laju kecepatan pendinginan yang masih di bawah kecepatan optimum agar proses vitrifikasi dapat berlangsung. Untuk menyempurnakan hasil vitrifikasi, salah satu langkah yang perlu diperhatikan adalah memperkecil volume larutan krioprotektan yang ditempatkan pada kriolup. Volume larutan krioprotektan yang semakin kecil akan mempercepat laju pendinginan dan mempersingkat waktu kontak embrio dengan krioprotektan (Lane et al. 1999; Takahashi et al. 2005) Sari-sari penelitian Hasil penelitian yang telah dilakukan menunjukkan adanya kemungkinan penularan bakteri E.coli K99 melalui embrio. Dari pengamatan yang dilakukan, penelitian ini mendukung peneliti-peneliti yang mengemukakan kemungkinan potensi penularan bakteri melalui embrio yang tercemar. Resiko penularan tersebut karena bakteri E.coli K99 dengan uji ELISA yang telah dilakukan secara spesifik melekat ke zona pelusida. Penelitian ini juga menemukan bukti melalui pemeriksaan SEM, bahwa E.coli K99 secara visual tampak melekat ke permukaan zona pelusida. E.coli K99 yang melekat tersebut mampu berkembang dengan baik dalam medium biakan untuk embrio, yakni KSOM tanpa antibiotik, dan perkembangan bakteri yang pesat menekan perkembangan embrio. 81 Penelitian ini juga mengungkapkan bahwa zona pelusida utuh pada embrio yang diproduksi secara in vivo, merupakan penahan (barrier) yang efisien untuk melindungi sel-sel embrio yang peka terhadap infeksi bakteri E.coli K99. Hal tersebut dibuktikan dengan percobaan menginfeksi embrio tanpa zona pelusida. Kewaspadaan harus menjadi suatu pertimbangan dalam pemanfaatan teknologi reproduksi seperti kloning embrio, transfer inti, pelubangan zona pelusida (zona drilling), perobekan zona, pembelahan (spliting) embrio, intracytoplasmic sperm injection, semuanya melalui suatu langkah membuat lubang buatan pada zona pelusida, dengan demikian bakteri atau agen lainnya memiliki jalur untuk mencapai sel-sel embrio yang peka. Sepanjang tindakantindakan di atas memungkinkan terjadinya infeksi, maka perdagangan embrio yang mendapat perlakuan tersebut, memerlukan perlakuan khusus untuk mencegah pencemaran agen-agen infeksius. Namun, tindakan yang sangat hatihati, terbukti berhasil membuat berkembangnya hewan hasil chimera sapi (Boedino et al. 1993) dan intracytoplasmic sperm injection (ICSI) pada manusia (Kuramoto et al. 1997). Dalam rangka mencegah perlekatan bakteri E.coli K99 ke permukaan zona pelusida, dilakukan pencucian dan perlakuan dengan enzim tripsin dan pronase. Enzim pronase ternyata lebih efisien menyingkirkan bakteri yang melekat ke permukaan zona pelusida dibandingkan ke dua pencuci tersebut. Dengan vitrifikasi menggunakan metode kriolup, embrio yang tercemar E.coli K99 mampu berkembang seperti embrio yang tidak dicemari. Perlakuan vitrifikasi secara tidak langsung dapat menginaktivasi bakteri E.coli K99, karena larutan krioprotektan yang dipakai. Embrio yang divitrifikasi dapat berkembang secara in vivo dan lahir sehat tanpa cacat. Hal ini menunjukkan bahwa vitrifikasi kriolup cukup efektif dan dapat dipakai untuk mencegah penularan agen penyakit ke hewan lainnya. 82 9. SIMPULAN Berdasarkan penelitian yang telah dilakukan, dapat ditarik beberapa kesimpulan berikut ini: E.coli K99 mampu melekat secara spesifik ke permukaan zona pelusida embrio mencit. Pencemaran bakteri E.coli K99 pada embrio, baik yang memiliki zona pelusida utuh mau pun tanpa zona pelusida dapat menghambatnya perkembangan serta mengakibatkan kematian (degenerasi) embrio. Zona pelusida pada embrio mampu memberi perlindungan terhadap infeksi bakteri E. coli K99. Pembasuhan terhadap embrio yang dicemari bakteri E.coli K99 menggunakan mPBS, tripsin, atau pronase dapat mengeliminasi cemaran bakteri E.coli K99 pronase dan tidak mengakibatkan kematian embrio. Pembasuhan dengan 0,25% dalam mPBS merupakan larutan paling efektif untuk menghilangkan bakteri dari permukaan embrio dibandingkan dengan tripsin atau mPBS. Metode vitrifikasi kriolup dapat digunakan secara efektif untuk kriopreservasi blastosis mencit dan cemaran bakteri E.coli K99 pada blastosis yang divitrifikasi, tidak mempengaruhi tingkat perkembangan embrio ke tahap lebih lanjut Vitrifikasi dengan metode kriolup dapat dipakai untuk kriopreservasi embrio mencit. Vitrifikasi mengakibatkan viabilitas embrio mencit sedikit menurun. Transfer embrio mencit yang telah divitrifikasi ke resipien, berhasil berkembang menjadi fetus dan lahir menjadi mencit normal Zona pelusida dapat melindungi sel-sel embrio dari infeksi E.coli K99, walau pun E.coli K99 terbukti dapat secara spesifik melekat ke permukaan zona pelusida. Bakteri E.coli K99 yang melekat ke permukaan zona pelusida embrio dapat disingkirkan dengan pencucian menggunakan enzim pronase dan embrio tersebut dapat berkembang ke tahap lebih lanjut. Embrio yang memiliki zona pelusida utuh dan divitrifikasi dengan metode kriolup, baik yang tercemar E.coli K99 mau pun tidak, dapat ditransfer dan berkembang sampai lahir. 83 SARAN Perlekatan E.coli K99 bersifat spesifik ke permukaan zona pelusida. Pencemaran bakteri E.coli K99 harus selalu diwaspadai keberadaanya, di samping agen pencemar lainnya. Untuk itu upaya mencegah pencemaran atau mengeliminasi agen pencemar harus selalu diupayakan sebelum embrio tersebut ditransfer ke induk resipien. Pencucian embrio dengan enzim pronase sebaiknya dilakukan terhadap embrio yang akan ditransfer ke induk resipien Pembekuan embrio sebaiknya dilakukan dengan metode vitrifikasi memanfaatkan larutan vitrifikasi EG 15% dan DMSO 15%. Krioprotektan tersebut mampu mematikan agen infeksius yang kemungkinan mencemari permukaan zona pelusida. Embrio yang divitrifikasi dengan metode kriolup dapat berkembang secara in vitro maupun in vivo. Namun, adanya viabilitas yang menurun pada embrio hasil vitrifikasi perlu mendapatkan perhatian agar viabilitasnya dapat ditingkatkan. Pemanfaatan uji ELISA guna melacak cemaran agen infeksius selain E.coli K99 perlu dikembangkan lebih jauh, guna mencegah tularan penyakit yang terbawa oleh embrio. 84 10. DAFTAR PUSTAKA Abe N, Ono E, Yuyama Y, Naiki M. 1992. Adhesin structure of enterotoxigenic E.coli with K99 fimbriae and its receptor structure of piglet intestine. Prpceedings 8th Congress of FAVA. Manila. Pp 283-291. Ali J, Shelton JN. 1993. Vitrification of preimplantation stages of mouse embryos. J Repreod Fertil 98: 459-465. Airhart MF, Robbin CM, Kuudsen TB, Church JK, Shalko RG. 1996. Developing allantois primary site of 2’-deoxycoformycin toxicity. Teratology 53: 361373. Allworth A, Albertini D. 1993. Meiotic maturation in cultured bovine oocyt is accompanied by remodelling of cumullus cell cytoskeleton. Dev Biol, 158: 101-121. Atabay EC, Takahashi Y, Katagiri S, Nagano M, Koga A, Kanai Y. 2004. Vitrification of bovine oocytes and its application to intergenetic somatic cell nucleus transfer. Theriogenology 61: 15-23. Bak A, Callesen H, Meyling A, Greve T. 1992. Calves born after embryo transfer from donor persistently infected with BVD virus. Vet Rec 131: 37. Balai Embrio Transfer. 1997. Laporan Tahunan 1996/1997. Departemen Pertanian Direktorat Jenderal Peternakan. Balai Embrio Ternak Cipelang Bogor. Batan IW, Boediono A, Djuwita I, Lay BW, Supar. 2006. Pelacakan perlekatan bakteri Echerichia coli K99 pada zona pelusida embrio mencit dengan metode enzym linked immunosorbent assay (elisa) dan scanning electron microscope (SEM). J Veteriner. 2006 (7): 29-38. Bavister BD. 1995. Culture of preimplantation embryos: facts and artifacts. Human Reprod Update 1: 91-148. Becker WM, Deamer DW. 1991. The world of the cell. IInd Ed. Benjamin/Cumings Co.Inc. Singapore. Pp. 171-172. The Begin I, Bhatia B, Baldassarre H, Dinnyes A, Keefer CL. 2003. Cryopreservation of goat oocytes and in vivo derived 2-to4-cell embryos using the cryoloop (CLV) and solid-surface fitrification (SSV) methods. Theriogenology 59: 1839-1850. Bertrand E, Van den Berg M, Eglert Y. 1996. Clinical parameters influencing human zona pellucida thickness. Fertil Steril, 66(1): 408-411. Bertschinger HU, Fairbrother JM. 1999. Escherichis coli Infection. In Desease of Swine. 8th Ed. Edited by Straw BE, Allaire SD, Mengering WL, Talyor DJ. Iowa State Uni Press. Ames. Pp. 431-441. Bielanski A, Bergeran H, Lau PCK, Devenish J. 2003. Microbial contamination of embryos and semen during longterm banking in liquid nitrogen. Cryobiology 46: 146-152. 85 Bielanski A, Devenish J, Phipps-Todd B. 2000. Effect of Mycoplasma bovis and Mycoplasma bovigenitalium in Semen on Fertlization and Association with in vitro Produced Morula and Blastocyst Stage Embryo. Theriogenology 53: 1213-1223. Bielanski A, Dubuc C. 1995. In vitro fertilization of ova from cows experimentally infected with a noncytopathic effect strain of bovine viral diarrhea virus. Anim Reprod Sci 38: 215-221 Bielanski A, Ghazi DF, Phipps-Todd B. 2004. Observation on the Fertilization and Development of Preimplantation Bovine Embryos in vitro in the Presence of Trichomonas foetus. Theriogenology 61: 821-829. Bielanski A, Jordan L. 1996. Washing or washing and trypsin treatment is ineffective for removal of noncytopathic bovine viral diarrhea virus from bovine oocytes or embryos after experimental viral contamination of an in vitro fertilization system. Theriogenology 1467-1476. Bielanski A, Lutze-Wallace CL, Nadin-Davis S. 2003. Adherence of bovine viral diarrhea virus to bovine oocytes and embryos with hardened zona pellucida cultured in vitro. Can J Vet Res 67: 48-51. Bielanski A, Nadine-Davis S, Sapp T, Lutze-Wallace C. 2000. Viral contamination of embryos cryopreserved in liquid nitrogen. Cryobiology 40: 110-116. Bielanski A, Surujballi O. 1996. Association of Leptospira borgpetersenii serovar hardjo type hardjobovis with bovine ova and embryo produced by in vitro fertilization. Theriogenelogy 46: 45-55. Bielanski A. 1997. A review on disease transmission studies in relationship to production of embryos by in vitro fertilization and to related new reproductive technology. Biotech Advance 15: 633-656. Bielanski A. 2005. Experimental microbial contamination and desinfection of dry (vapour) shipper dewars designed for short term sorage and transpotation of cryopreserved germplasm and other biology specimens. Theriogenology 63: 1946-1957. Bleil JD, Wassarman PM. 1986. Autoradiographic visualization of the mouse egg’s sperm receptor bound to sperm. J Cell Biol 102:1363-1371. Boediono A, Ooe M, Yamamoto M, Takagi M, Saha S, Suzuki T. 1993. Production of chimeric calves of in vitro fertilized bovine embryos without zonae pellucidae. Theriogenology 40: 1221-1230. Boediono A. 2003. Vitrifikasi vs pendinginan lambat pada pembekuan embrio. Denpasar. Kongres I PATRI, 3-4 Oktober. Booth P, Collins M, Jenner L, Prentice H, Ross J. Badsberg J, Brownlie J. 1999. Association of non-cytopathogenic BVDV with bovine blastocysts: effect of washing, duration of viral exposure and degree of blastocysts expansion. Vet Rec 6: 150-152. 86 Boyer R. 2002. Concept in biochemistry. Brooks/Cole. IInd Ed. Pp 15-17. Singapore. Buhi WC. 2002. Characterization and biological roles of oviduct specific, estrogen-dependent glycoprotein. Reproduction 123: 355-362. Candace LK, Hanna WF, Shapper JH, Wright WW. 2002. Characterization of zona pellucida glycoprotein 3 (ZP3) and ZP2 binding sites on acrosomeintact mouse sperm. Biol Reprod, 66: 1586-1595. Cottell E, McMorrow J, Lennon B, Fawsy M, Cafferkey M, Harrison RF. 1996. Microbial contamination in an in vitro fertilization embryo transfer system. Fertil Steril 66(5): 776-780. Cseh S, Horlacher W, Brem G, Corselli J, Seregi J, Solti L, 1999. Vitrification of mouse embryos in two cryoprotectant solutions. Theriogenology 52: 103113. Dattena M, Accardo C, Pilichi S, Isachenko V, Mara L, Chessa B, Cappai P. 2004. Comparison of different vitrification protocols on viabilitry after transfer of ovine blastocysts in vitro produced and in vivo derrived. Theriogenology 62: 481-493. Dean EA, Isaacson RE. 1985. Purification and characterization of receptor for the 987P pilus of Escherichia coli. Infect Immun. 47(1): 98-105. Djuwita I, Boediono A, Agungpriyono S, Supriatna I, Toelihere M, Sukra Y. 2005. In-vitro fertilization and embryo development of vitrified ovine oocytes stressed in sucrose. Hayati 12(2): 73-76. Dozois CM, Pausbakhsh SA, Fairbrother JM. 1995. Expression of P-type 1 (F1) fimbriae in pathogenic Escherichia coli from poultry. Vet Microbiol 45: 297-309. Drost M, Brand A, Aarts M. 1976. A device for non surgical recovery of bovine embryos. Theriogenology 47: 33-42. Dudkiewicz A.B, Shivers C A.Williams W L. 1976. Ultrastructure of the hamster zona pellucida treated with zona precipitating antibody. Biol Reprod 14: 175-185. Dunbar B.S, Avery S, Lee V, Prasad S, Schwoebel D. 1994. The mammalian zona pellucida : its biochemistry, molecular biology, and development expression. Reprod Fertil Dev ; 6 : 331-347. Dunbar BS, Avery S, Lee V, Prasad S, Schwoebel D. 1994. The mammalian zona pellucida: its biochemistry, molecular biology, and development expression. Reprod Fertil Dev 6 : 331-347. Eberspaecher U, Becker A, Bringman P, Van der Merwe L, Donner P. 2001. Immunohistochemical localization of zona pellucida proteins ZPA, ZPB, and ZPC in human, cyanomologus, monkey, and mouse ovary. Cell Tissue Res, 303: 272-287. Epifano O, Dean J. 1994. Biology and structure of zona pellucida: a target for immunocontraception. Reprod Fertl Dev, 6: 319-330. Fairbrother JM. 1999. Neonatal Escherichia coli diarrhea. In Disease of swine. 8th Ed. Edited by Straw BE, Allaire SD, Mengering WL, Talyor DJ. Ames. Iowa State Uni Press. Pp. 431-432. 87 Familiari G, Nottola SA, Familiari A, Motta PM. 1989. The three dimensional structure of zona pellucida in growing and atretic ovarian follicle of the mouse. Cell Tissue Res 257: 247-253. Familiari G, Relucenti M, Heyn R, Micara G, Correr S. 2006. Three-dimensional structure of the zona pellucida at ovulation. Micros Res Tech, 69: 415426. Galli C, Duchi R, Crotti G, Turini P, Ponderato N, Colleoni S, Lagutina I, Lazzari G. 2003. Bovine embryo technologies. Theriogenology, 59: 599-616. Gilbert FS. 1988. Development biology. Massachusetts: Sinauer Assoc. Inc. Pub. Pp. 82-92. Grabielsen A, Bhatnager PR, Petersen K, Lindenberg S. 2000. Influence of zona pellucida thickness of human embryos on clinical pregnancy outcome following in-vitro fertilization treatment. J Assist Reprod Genet,17: 323328. Green DP. 1997. Three dimensional structure of the zona pellucida. Reprod, 2: 147-156. Greeve JM, Wassarman PM. 1985. Mouse egg extracellular coat is a matrix inter connected filaments passing a structural repeats. J Mol Biol, 181: 253264. Guerin B, LaGuienne B, Chaffaux S, Harlay T, Allietta M, Thibier M. 1990. Effect de la contamination par le BHV-1 sur la maturation et la fecondation in vitro des oocytes bovins. Rec Med Vet 166: 911-917. Guerin B, Nibart M, Marquant-Le Guienne B, Humbolt P. 1997. Sanitary risk related to embryo transfer in domestic species. Theriogenology 47: 3342. Guinee PAM, Veldkamp J, Jansen WH. 1977. Improved minca medium for detection of K99 antigen in calf enterotoxigenic strains of Escherichia coli. Infect.Immun 15:676-678. Hanada A, Shoiya Y. Suzuki T. 1986. Birth of calves from non-surgical transfer of embryos originated from in vitro fertilized oocytes matured in vitro. Proc. 78th Ann Meet Jpn Soci Zootech Sci, 18. Hirsh AG. 1987. Vitrification in plants as a natural form of cryoprotection. Cryobiology 24: 214-228. Hogan B, Beddington R, Costantini F, Lacy E. 1994. Manipulating the mouse embryo a laboratory manual. 2nd Ed. Danvers: Cold Spring Harbor Laboratory Press. P. 49. Holdines MR. 1987. Teratology of antituberculosis drugs. 15:61-74. Early Hum Dev. Hoshi H. 2003. In vitro production of bovine embryos and their application for embryo transfer. Theriogenology, 59: 675-685. Hredzak R, Ostro A, Maracek I, Kacmarik J, Zdilova V, Vesela J. 2005. Influence of slow rate freezing and vitrification on mouse embryos. Acta Vet Brno 74: 23-27. Hubalek Z. 2003. Protectant used in cryopreservation of microorganism. Cryobiology 46: 205-229. 88 Hyttel P, Xu KP, Greve T. 1988. Scanning Electron Microscopy of in vitro Frtilization in Cattle. Anat Embryol. 178 : 41-46. Jones R. 1990. Identificatian and functions of mammalian sperm-egg recognition molecules during fertilization. J. Reprod Fertil. 42 : 89-105. Kafi M, McGowan MR, Kirkland PD. 2002. In vitro maturation and fertilization of bovine oocyte and in vitro culture of preservative zygotes in the presence of bovine pestivirus. Animal.Reprod. Sci. 71:169-179. Kolbe T, Holtz W. 2005. Differences in protease digestibelity of the zona pellucida of in- vivo and in-vitro derived porcine oocytes and embryos, Theriogenology 65: 1695-1705. Konwinski M, Solter D, Koprowski H. 1978. Effect of removal zona pellucida on subsequent development of mouse blastocysts in vitro. J Reprod Fertil. 54:137-143. Kuramoto T, Boediono A, Sugioka M, Umebayashi T, Fukuda K, Motoishi M, Komatsu K. 1997. Pregnancies from obstructive azoospermia patients after intracytoplasmic sperm injection (ICSI) with testicular spermatozoa. Proc. 10th World Congress of IVF and Assisted Reproduction. Pp.: 523525. Lai AC-H, Ryan J P, Saunders D M. 1994. Removal of zona pellucida and parthenogenetic activation affect rates of survival of ultrarapidly frozen mouse oocytes. Reprod Fertil Dev. 6:771-775. Lane M, Baltz JM, Bavister BD. 1998a. Bicarbonate/chloride exchange regulates intracellular pH of embryos but not oocytes of hamster. Biol Reprod 61: 452-457. Lane M, Baltz JM, Bavister BD. 1998b. Regulation of intracellular pH in hamster preimplantation embryos by the Na+/H+ antiporter. Biol Reprod 59: 14831490. Lane M, Schoolcraft WB, Gardner DK. 1999. Vitrification of mouse and human blastocysts using a novel cryoloop container-less technique. Fertil Steril 72(5): 1073-1078. Legge M. 1995. Oocyte and zygote zona pellucida permeability to macromolecules. J Exp Zool. 271: 145-150. Lieberman J, Nawroth F, Isachenko V, Isachenko E, Rahimi G, Tucker MJ. 2002. Potential impotance of vitrification in reproductive medicine. Biol Reprod 67: 167-168. Liebermann J, Tucker MJ. 2002. Effect of carrier system on the yield of human oocytes and embryos as assesed by survival and development potentioal after vitrification. Reproduction 124: 483-489. Madihah, Kusumaningtyas H, Boediono A, Sumarsono SH. 2006. Kualitas, kemampuan, implantasi, dan viabilitas in-vivo embrio mencit (Mus musculus) galur swiss webster setelah pembekuan dengan metode vitrifikasi. Biota 11(2): 72-79. Mahmoudzadeh AR, VanSoom A, Ysebaert MT, de Kruif A. 1994. A comparison of two vitrification versus controlled freezing on survival of in vitro produced cattle embryos. Theriogenology 42:1389-1399. 89 Martino A, Pollard JW, Leibo SP. 1996. Effect of chilling bovine oocytes on their development competence. Mol Reprod Dev 45:503-512. Menezo Y, Nicollet B, Herbaut N, Andre D. 1992. Freezing cocultur human blastocysts in in-vitro fertilization. Hum Reprod 13: 3434-3440. Miller DJ, Ax RL. 1990. Carbohydrat and fertilization in animals. Mol Reprod Dev, 26: 184-198. Miyano, T., Hirao Y, Ikeda Y, Kato S. 1994. Zona pellucida formation by naked mouse oocytes grown in vitro. J Reprod Dev 40: 189-195. Moller CC, Bleil JD, Kinloch RA, Wassarman PM.1990. Structural and functional relationship between mouse and hamster zona pellucida glycoprotein. Dev Biol, 137: 276-286. Monk, M. 1987. Mammalian development- a practical approach. Washington. IRL Press. Pp 14-23. Muhamad K, Eriani K, Djuwita I, Boediono A. 1999. Perkembangan in-vitro dan in-vivo embrio mencit tanpa zona pelusida. Media Veteriner 6(3): 1-4. Mukaida T, Nakamura S, Tomiyama T, Wada S, Kasai M, Takahashi K. 2001. Succesful birth of transfer of vitrified human blastocysts with use of a cryoloop containerless technique. Fertil Steril 76(1): 618-620. Mukaida T, Nakamura S, Tomiyama T, Wada S, Oka C, Kasai M, Takahashi K. 2003. Vitrification of human blastocysts using cryoloops: clinical outcome of 223 cycles. Hum Reprod 18(2): 384-391. Munnich A, Lubke-Becker A. 2004. Escherichia coli infection in newborn puppies-clinical and epidemiological investigation. Theriogenology 62: 562-575. Oberstein N, O’Donovan MK, Bruemmer JE, Seidel GE, Carnavale EM, Squires EL. 2001. Cryopreservationof equine embryos by open pulled straw, cryoloop, or conventional slow cooling methods. Theriogenology 55: 607613. Orskov I, Orskov F. 1983. Serology of Escherichia coli fimbriae. Prog Allergy 33: 80-105 Otoi T, Tachikawa S, Kondo S, Suzuki S. 1992. Effect of antibiotics treatment of in vitro fertilized bovine embryos to remove adhering . J. Vet. Med. Sci. 54 (4): 763 - 765. Otoi T, Tachikawa S, Kondo S, Suzuki T. 1993. Effect of washing, antibiotic and trypsin treatment of bovine embryos on the removal of adhering K99 Escherichia coli. J. Vet. Med. Sci. 55 (6): 1053-1055. Parillo F, Fagioli O, Dallglio C, Verini SA, 2001. Lectin histochemical detection of sulfoglycan in the zona pellucida of mammalian antral oocytes. Acta Histochemica, 102: 1-10. Parillo F, Verini SA, Stradaioli G, Tortora G, Chiac PF. 1999. Glycohisto chemical investigation of canine and felinbe zona pellucida of mammalian of preantral and antral oocytes. Acta Histochemica, 101: 1-20. Parillo F, Verini-Supplizi A. 2001. Glycochemistry of zona pellucida of developing oocytes in the rabbit and hare. Res Vet Sci, 70: 257-264. 90 Pelletier C, Keefe DL, Trimarchi JR. 2004. Noninvasive polarized light micros copy quantitatively distinguishes the multilaminar structure of the zona pellucida of living human eggs and embryos. Fertil Steril,81 sppl 1:850856. Peterson AJ, Lee RSF. 2003. Improving succesful pregnancies after embryo transfer. Theriogenology 59: 687-689. Phillips DM, Shalgi RM. 2001. Surface properties of the zona pellucida. J Exp Zool, 213: 1-8. Prasetyaningtyas WE, Setiadi MA, Nisa’ C, Fahrudin M, Agungpriyono S. 2005. Morfologi dan Karakteristik Spermatozoa Kancil (Tragulus javanicus). Seminar Kongres Nasional XI & Pekan Ilmiah Nasional Perhimpunan Ahli Anatomi Indonesia. Yogyakarta. 29-30 Juli 2005. Qi H, Williams Z Wassarman MP. 2002. Secretion and assembly of zona pellucida glycoproteins by growing mouse oocytes microinjected with epitope-tagged cDNAs for mZP2 and mZP3. Mol Biol Cell 13: 530-541. Rall WF, Fahy GM. 1985. Ice-free cryopreservation of mouse embryo at -1960C. Nature 313:573-575. Rall WF. 1987. Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology 24:387-402. Rall WF. 2003. Avoidance of microbial cross contamination of cryopreserved gamets, embryos, cells, and tissue during storage in liquid nitrogen. The Embryologists Newsletter 6(2): 4-15. Rankin TL, O’Brien M, Lee E, Wiggleworth K, Eppig J, Jurien D. 2001. Defective zona pellucida in ZP2 nullmice disrupt folliculogenesis, fertility, and development. Development, 128: 1119-1126. Reed LR, Lane M, Gardner DK, Jensen NL, Thompson J. 2002. Vitrification of human blastocysts using the cryoloop method succesful clinical application and birth offspring. J Assist Reprod Genet 19(6): 304-306. Rifqiyati N, Toelihere MR, Agungpriyono S. 2006. Dinamika perkembangan morfologi dengan tinjauan khusus tentang gambaran dan karakteristik histokimia folikel pada ovarium rusa timor (Cervus timorensis). Seminar Tesis Sekolah Pascasarjana IPB, 9 Pebruari 2006. Roux C, Joanne C, Agnanai G, Fromm M, Clevequin MC, Bresson JL. 1995. Morphometric parameter of living human in-vitro fertilized embryos: importance of asynchronous division process. Hum Reprod, 10: 12011207. Saha S, Rajamahendran R, Boediono A, Sumantri C, Suzuki T. 1996. Viability of bovine blastocysts obtain after 7,8, or 9 day of culture in vitro followingvitrification and step rehydration. Theriogenology 46: 331-343. Saha S, Shimizu M, Geshi M, Izaike Y. 2000. In vitro culture of bovine preantral follicles. Anim Reprod Sci 63: 27-39. Salyers AA, Whitt DD. 1994. Escherichia coli Gastrointestinal Infections. In Bacterial Patogenesis a Molecular Approach. ASM Press. Washington. Pp:190-212. 91 Schoenwolf GC. 2001. Laboratory studiies of vertebrate and invertebrate embryos, guide and atlas of descriptive and experimental development. New Jersey. Practice Hall. P.174. Singh EL, Eaglesome MD, Thomas FC, Papp-Vid G, Hare WCD. 1982. The in vitro exposure of preimplantation bovine embryos to akabane, bluetongue, and bovine viral diarrhea. Theriogenology 17: 473. Shabanowitz RB, O’Rand MG. 1988. Characterization of the human zona pellucida from fertilized and unfertilized eggs. J Reprod Fertil, 82: 151161. Shaw JM, Oranratnachai A, Trouson AO. 2000. Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology 53: 59-72. Shisong C, Wrathall E. 1989. The Importance of the zona pellucida for disease control in livestock by embryo transfer. Br.Vet.J.145 (2): 129-140. Skutelsky E, Ranen E, Shalgi R. 1994. Variation in distribution of sugar residues in the zona pellucida as possible species specific determinants of mammalian oocytes. J Reprod Fertil: 100:35-41. Son WY, Yoon SH, Yoon HJ, Lee SM, Lim JH. 2003. Pregnancy outcome following transfer of blastocysts vitrification on electron microscopy grids after induced collapse on the blastocoele. Human Reprod 18: 137-139. Stringfellow D, Ridell K, Zoruvac O. 1991. The potential of embryo transfer for infection disease control in livestock. NZ Vet.J. 39: 8-17. Stringfellow DA and Seidel SM (eds). 1990. Manual of the International Embryos Transfer Society : A procedural guide and general information for the use of embryos transfer technology. Emphasizing sanitary precautions. Champaign IL, IETS: 1-65. Stringfellow DA, Givens MD. 2000. Epidemiologic concerns relative to in vivo and in vitro production of livestock embryos. Animal Reproduction Sci. 60-61: 629-642. Summer CM, McGinnis LK, Lawitts M, Raffin M, Biggers JD. 2000. IVF mouse ova in a simplex optimized medium supplemented with amino acids. Hum Reprod. 15(8): 1791-1801. Supar, Kusmiyati, dan M. B. Poerwadikarta. 1998. Aplikasi vaksin enterotoksigenik Escherichia coli (ETEC) K99, F41 polivalen pada induk sapi perah bunting dalam upaya pengendalian kolibasilosis dan kematian pedet neonatal. J. Ilmu Ternak dan Vet. 3(1): 27-33. Supar, Patten BE, Hirst RG, Djaenuri, Kurniasih. 1993. The use of elisa for detecting anti-fimbrial antibody responses in pigs vaccinated with multivalent Escherichia coli containing K88, K99, F41, and 987P antigens. Penyakit Hewan Vol XXV No 46A (edisi khusus): 21-28.Supar. 1996. Kolibasilosis pada Anak Sapi Perah di Indonesia. Wartazoa 5(1): 26-32. Supar. 1997. Faktor-Faktor Virulensi Enterotoksin dan Perlekatan Escherichia coli Terhadap Kesehatan Ternak dan Manusia. Wartazoa 6(1): 7-17. Supar. 2002. Elisa Escherichia coli K88 & K99 dalam Escherichia coli dan Kolibasilosis. Balitvet. Bogor 92 Supar.1986.Penggunaan metode enzyme-linked immunosorbent assay (ELISA) untuk deteksi antigen pili K99 dan K88 pada Escherichia coli dari anak sapi dan anak babi diare. Penyakit Hewan Vol XVIII, No 32:159-167. Suzuki H, Yang X, Foote RH. 1994. Surface alteration of bovine oocytes and its investments during and after maturation and fertilization in vitro. Mol Reprod Dev 38: 421-430. Takacs T, Gathy I, Machaty Z, Bajmocy E. 1990. Bacterial contamination of the uterus after parturation and its effect on the reproductive performance of cows on large scale dary farm. Theriogenology 33(4): 851-865. Takahashi K, Mukaida T, Goto T, Oka C. 2005. Perinatal outcome of blastocyst transfer with vitrification using cryoloop: a 4-years follow-up syudy. Fertil Steril 84(1): 88-92. Thibier M. 2003. Statistics of the embryo transfer industry around the world. Embryo Transfer Newsletter 12: 16-17. Tizard I. 2000. Veterinary immunology an introduction. Sixth Ed. W B Saunders. Tokyo. Pp: 195-197. Trachte E, Stringfellow D, Riddell K, Galik P, Riddell Jr M, Wright J. 1998. Washing and trypsin treatment of in vitro derived bovine embryos exposed to bovine viral diarrhea virus. Theriogenology 50: 717-726. Vajta G, Booth PJ, Holm P, Greeve T, Callesen H. 1997. Succesful vitrification of early stage bovine in vitro produced embryo with the open pull straw method (ops). Cryoletter 18:191-195. Vajta G, Holm P, Kuwayama M, Booth PJ, Jacobsen H, Greeve T, Callesen H. 1998. Open pulled straw (OPS) vitrification: A new way to reduce cryo injuries of bovine ova and embryos. Mol Reprod Dev 51: 53-58. Vanderzwalmen P, Bertin G, Debauche Ch, Standaert V, Bollen N, VanRoosendaal E, Vandervorst M, Schoysman R, Zech N. 2003. Vitrification of human blastocysts with the hemi-straw carrier: application of assisted hatching after thawing. Hum Reprod 17: 744-751. Van-Duin, Polman JEM, DeBreel ITM. 1994. Recombinant human zona pellucida protein ZP3 produced by chinese hamster ovary cells induces the sperm acrosome reaction and promotes sperm egg fusion. Biol Reprod, 51: 607-617. Vanroose G. 1999. Interaction of bovine herpesvirus-1 and bovine viral diarrhoea virus with bovine gametes and in vitro produced embryo. Disertation. Univ of Gent. Vanroose G, Nauwynck H, Soom A. Ysebaert MT, Charlier G, Oostveldt PV DeKroof A. 2000. Structural aspect of the zona pellucida of in-vitro produced bovine embryos: a scanning electron and laser scanning microscopy study. Biol Reprod, 62: 463-469. Vazquez F, Gonzales EA, Garabal JI, Blanco J. 1996. Fimbriae Extracts from Enterotoxigenic Escherichia coli Strains of Bovine and Porcine Origin with K99 and/or F41 Antigens. Vet Microbiol 48: 231-241. Voller A, Bidwell D. 1986. Enzyme linked immunosorbent assay. A manual; of clinical laboratory immunology. III ed. Edited by Rose NL, Friedman, H, Fahey J L. American society for microbiologi. Washington DC. Pp 99-109. 93 Wasaarman P, Chen J, Cohen N, Litscher E, Liu C, Qi H, Williams Z. 1999. Structure and functions of mammalian egg zona pellucida. J Exp. Zool. 285: 251-258. Wassarman PM. 1994. Gamete interaction during mammalian fertilization. Theriogenology, 41:31-44. Wassarman PM. 2002. Sperm receptors and fertilization in mammals. Mt Sinai J Med, 69: 148-155. Wood EJ, Benson JD, Critser JK, 2004. Fundamental cryobiology of reproductive cells and tissues. Cryobiology, 48:146-156. Wolff H, Panhans A, Stolz W, Meurer M. 1993. Adherence of Escherichia coli to sperm : a mannose mediated phenomenon leading to agglutination of sperm and Escherichia coli. Fertil Steril 60(1):154-158. Wrathall A E. 1995. Embryo tranfer and disease transmission in livestock; A review of recent research. Theriogenology. 43: 81-88. Wu GM., Lai L. Mao J, McCauley T C, Caamano JN, Cantley T, Rieke A, Murphy C N, Prather R S, Didion B A, Day B N. 2004. Birth piglet by in vitro fertilization of free zona porcine oocyte. Theriogenology 62: 1544-1556. Yamasaki N, Richardson RT, O’Rand MG. 1995. Ezpression of rabbit sper protein sp17 in COS cells and interaction of recombinant sp17 with rabbit zona pellucida. Mol Reprod Dev, 40: 48-55. Yurewicz EC, Sacco AG. 1996. Porcine zona pellucida glycoprotein binding ZPB-ZPC heterocomplex in boar spermvesicle. Biol Reprod, 54: 71. Zerbe H, Obadnik KC, Leibold W, Schuberth HJ. 2002. Lochial secretion of Escherichi coli or Arcanobacterium pyogenes infected bovine uteri modulate the phenotype and the function capacity of neutrophilic granulocyte. Theriogenology 57: 1161-1177. 94 LAMPIRAN 95 Lampiran 1 Medium kultur embrio in vitro Kalium simplex optimation medium (KSOM) Stok A (2x solution) Bahan mM dlm KSOMaa g/L g/50mL g/30mL g/20mL g/10mL 95 11,1000 0,5550 0,3330 0,2220 0,1110 2,5 0,35 0,3720 0,0940 0,0186 0,0047 0,0112 0,0028 0,0074 0,0019 0,0037 0,0009 0,2 0,0990 0,0050 0,0030 0,0020 10 2,1820 0,1091 0,0655 0,0436 0,0218 0,2 0,0440 0,0022 0,0013 0,0009 0,0004 5,5 2,0000 0,1000 0,0600 0,0400 0,0200 2 0,5838 0,0292 0,0175 0,0117 0,0058 25 4,2000 2.000 0,2100 100 0,1260 60 0,0840 40 0,0420 20 NaCl (BM=58,44) KCl (BM=74,56) KH2PO4 (BM=136,09) MgSO4.7H2O (BM=246,68) Sodium lactate (BM=109,1) Sodium pyruvate (BM=110,05) D-Glucose (BM=180,…) Glycyl-Glutamin Hydrate (BM=146,1) NaHCO3 (BM=84,01) Phenol Red 0,5% Catatan: NaHCO3 dicampur pada saat membuat KSOMaa, dengan mencampurkan setengah dosis saja Stok B, C, E (100x solution) Bahan mM dlm KSOMaa g/5ml CaCl2.2H2O (BM=147,0) = Stok B HEPES-Sodium Salt (BM=238,3) = Stok C 1,71 20 0,1256 2,3830 EDTA (BM=372,2) = Stok E 0,01 0,00186 Catatan: - EDTA dilarutkan dalam 200 µl NaOH 1 N kemudian ditambahkan 4,8 ml DI - Stok B,C, dan E dibuat secara terpisah 96 KSOMaa Bahan 100mL 30mL 20mL 10mL 5mL Stok A Diionise water (DI) 50 44,5 15 13,35 10 8,9 5 4,45 2,5 2 Stok B EAA NEAA BSA 0,4% Gentamycin 50µg/ml (µL) Stok E (mL) 1 1 0,5 0,4 100 0,3 0,3 0,15 0,12 30 0,2 0,2 0,1 0,08 20 0,1 0,1 0,05 0,04 10 0,05 0,05 5mL 2,5 2 1 0,3 0,2 0,1 0,05 Catatan: osmolaritas 260; filter medium menggunakan 0,22 µm filter Ekuilibrasi medium sebelum digunakan Medium dapat digunakan selama 1-2 minggu, jika disimpan pada suhu 4oC KSOMaa + HEPES Bahan 100mL 30mL 20mL 10mL 5mL Stok A Diionise water (DI) Stok B Stok C EAA NEAA 50 44,5 1 1 1 0,5 15 13,35 0,3 0,3 0,3 0,15 10 8,9 0,2 0,2 0,2 0,1 5 4,45 0,1 0,1 0,1 0,05 2,5 2 0,05 0,05 0,05 0,025 BSA 0,4% (g) Gentamycin 50µg/ml (µL) Stok E (mL) 0,4 100 0,12 30 0,08 20 0,04 10 0,1 0,02 5 97 Lampiran 2 Medium untuk mengembangkan bakteri E.coli K99 Penyiapan Minca + Iso Vitalex (Minca + Is Larutan A), menurut Ginee et al. (1977). KH2PO4 2.72 g Na2HPO4 20.2 g Air suling 1000 ml Seluruh bahan tersebut diencerkan dalam airsuling dan pastikan pH-nya 7.5, kucurkan 500 ml kedalam labu Erlenmeyer dan selanjutnya di autoklaf pada suhu 1210C selama 15 menit. Larutan garam-garam trace (Minca + Is medium larutan B) MgSO4.7H2O 10 g MnCl2.4H2O 1g FeCl3.6H2O 0.135 g CaCl22H2O 0.4 g Air suling 1000 ml Seluruh bahan tersebut dilarutkan dalam airsuling kemudian dimasukan kedalam labu Erlenmeyer dan disucihamakan pada suhu 1100C selama 10 menit. Minca + Is larutan C Lima gram casein hydrolysate (Oxoid L41) dilarutkan dalam 1000 ml airsuling, pastikan pH-nya menjadi 7.5 dan disucihamakan pada suhu 1210C selama 15 menit. Minca + Is larutan D Dua puluh empatr gram agae Oxoid No 3 (Oxoid 113) dilarutkan dalam 920 ml airsuling dengan penguapan 1000C. Pastikan pH-nya menjadi 7.5 dan kemudian kucurkan sebanyak 460 ml kedalam labu Erlenmeyer 1 liter dan diautoklaf pada suhu 1210C selama 15 menit. Lima ratus mili liter larutan-A dipanaskan hingga 560C dan 460 ml larutan-D dicairkan pada suhu 1000C. Larutan-A dan B dicampur, dan campuran tersebut didinginkan hingga 560C. Vial vitox SR90A diencerkan isinya dengan kandungan vial vitox SR90B dan ditambahkan secara bersamaan dengan 1 ml larutan-B dan 20 ml larutan-C. Medium tersebut dicampur secara perlahan dan dituang sebanyak 5 ml kedalam botol universal steril, 2 ml kedalam botol bijou untuk membuat agar miring, 20 ml kedalam cawan petri gelas yang steril atau cawan petri dispossable, dan 150 ml dimasukan kedalam labu Roux. Setelah media memadat, seluruh media yang disiapkan diinkubasi pada suhu 370C selama 18-24 jam untuk menguji sterilitas medium tersebut. 98 Lampiran 3 Penyiapan reagen untuk uji ELISA 1. Normal saline steril (sodium khlorida 0.85%) 8.5 sodium khlorida dilarutkan dalam 1000 ml airsuling. Pastikan pH-nya menjadi 7.2 dan kucurkan sebanyak 100 ml kedalam beberapa botol, kemudian disucihamakan pada suhu 1210C selama 15 menit. Selanjutnya disimpan pada suhu 40C sampai bahan tersebut digunakan. 2. Phosphate buffer saline (PBS) untuk suspensi sel atau fimbriae NaCl 8.5 g KCl 0.2 g Na2HPO4 1.15 g KH2PO4 0.2 g Airsuling 1000 ml Garam-garam tersebut dilarutkan dalam airsuling dan pH-nya dipastikan 7.2, kemudian dikucurkan kedalam beberapa botol 100 ml dan disucihamakan pada suhu 1210C selama 15 menit, setelah itu disimpan pada suhu 4oC sampai bahan tersebut digunakan. 3. Coating buffer, 0.1M sodium karbonat-bikarbonat 1.06 g Na2HCO3 NaHCO3 0.84 g Airsuling 100 ml Garam-garam karbonat dan bikarbonat dilarutkan dalam airsuling, pastikan pHnya menjadi 9.6 dan langsung digunakan untuk meng-coating sumuran-sumuran cawan ELISA atau disimpan pada suhu 40C. Larutan tersebut tahan seminggu disimpan. 4. Phosphate buffer saline (PBS) pH 7.2 untuk keperluan ELISA Sediaan dengan kekuatan 10 kali (diencerkan 10 kalisebelum dipakai) NaCl KCl Na2HPO4 KH2PO4 Airsuling 85 g 2g 11.5 g 2g 1000 ml 99 Seluruh garam-garam tersebut dilarutkan dalam airsuling kemudian diencerkan dengan airsuling, dan pastikan pH-nya 7.2. 5. Buffer pencuci Sama seperti No 4 di atas, tapi ditambahkan 0.05% Tween 20 (PBST). 6. Buffer sampel (untuk pengenceran serum atau kolostrum) Sebagai buffer pencuci (PBST) dilakukan penambahan ovalbumin sampai konsentrasi akhir menjadi 0.5% (Sigma Chemical Co USA) 7. Buffer sitrat posfat Sitrat (C8H8O7H2O) 21.01 g Na2HPO4 14.2 g Airsuling 1000 ml Garam sitrat atau garam posfat dilarutkan dalam 500 ml airsuling. Larutan posfat kemudian ditambahkan ke larutan sitrat sampai pH-nya meningkat menjadi 4.2. Larutan buffer sitrat posfat tersebut disimpan pada suhu 40c hingga saat digunakan nanti. Buffer tersebut tahan disimpan selama 1-2 minggu. 8. Larutan ABTS Sebanyak 286 mg ABTS dilarutkan dalam 10 ml airsuling dan disimpan dalam botol berdinding gelap hingga digunakan (tahan seminggu). 0.2 ml larutan tersebut ditambahkan ke 10 ml buffer sitrat posfat (larutan No 7 di atas) yang mengandung 0.005% hidrogen peroksida (H2O2) sesaat sebelum digunakan. 100 Lampiran 4 Medium vitrifikasi dan warming. Medium vitrifikasi 10 ml mPBS 10%EG dalam mPBS 15%EG + 15%DMSO + 0.5M sukrosa dalam mPBS Sukrosa (g) - PBS (ml) 8 DMSO (ml) - EG (ml) - Serum (ml) 2 - 7 - 1 2 1.712 Hingga 10 1.5 1.5 2 Keterangan: EG, ethylene glycol; DMSO, dimethyl sulphoxida; PBS, phosphate buffer saline Medium warming 0.5M sukrosa dalam mPBS Sukrosa PBS (ml) (g) 1.712 Hingga 10 0.25M sukrosa dalam mPBS 0.85601 Hingga 10 2 0.1M sukrosa dalam mPBS 0.3423 Hingga 10 2 Catatan: serum yang dipakai adalah fetal bovine serum Serum (ml) 2 101 Lampiran 5: Skor perkembangan embrio setelah dicemari E.coli K99 kemudian dibasuh mPBS, tripsin, dan pronase. Pengamatan pada jam ke : 1 6 12 18 24 30 36 42 48 Rataan skor perkembangan embrio pada perlakuan mPBS 8,52±5,12a 13,45±5,12 a 17,30±5,12 a 28,52±5,12 b 45,22±5,12 b 57,74±5,12 a 69,57±5,12 a 94,61±5,12 a 104,35±5,12 a Tripsin 8,52±5,12 a 14,44±5,12 a 16,00±5,12 a 27,83±5,12 b 41,04±5,12 a 66,78±5,12 b 82,09±5,12 a 98,78±5,12 a 114,09±5,12 a Pronase 8,26±5,12 a 14,42±5,12 a 16,00±5,12 a 22,26±5,12 a 45,91±5,12 b 64,00±5,12 a 97,39±5,12 b 109,91±5,12 b 132,17±5,12 b Keterangan : Dalam satu baris, rataan yang diikuti oleh huruf yang sama, tidak berbeda nyata setelah diuji dengan uji jarak berganda duncan. Lampiran 6 Skor perkembangan embrio tahap blastosis yang dicemari E.coli K99 dan divitrifikasi setelah warming. PascaSkor rataan pada perlakuan warming E.coli & Tanpa E.coli Tanpa E.coli & (jam) vitrifikasi & vitrifikasi tanpa vitrifikasi 0 64,00Aa 64,00aA 64,00aA aA aA 6 73,14 82,29 124,24bB abB aB 12 123,21 112,67 138,94bBC abB aB 18 136,64 121,81 142,71bC aB aB 24 141,14 121,81 144,47aC 30 142,21aB 123,24aB 146,24aC aB aB 36 143,29 126,19 146,24aC aB aB 42 143,29 127,62 146,24aC aB aB 48 143,29 130,67 146,24aC Keterangan: huruf kecil superscript sama ke arah baris atau huruf besar superscript sama kearah kolom, tidak berbeda nyata. 102 Lampiran 7. Tahap perkemba ngan 8 sel Pro Trip mPBS Morula Pro Trip mPBS K.Morula Pro Trip mPBS Blastosis Pro Trip mPBS B.ekspan Pro Trip mPBS Hatching Pro Trip mPBS Hatched Pro Trip mPBS Persentase perkembangan in vitro embrio delapan sel yang tercemar E.coli K99, kemudian dibasuh dengan pronase, tripsin, atau mPBS Pengamatan pada inkubasi jam ke: 1* 6 12 18 24 30 36 42 48 92,00 91,30 91,30 0,00 0,00 17,40 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 8,00 8,70 8,70 88,00 88,00 60,90 0,00 0,00 4,30 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 12,00 12,00 21,75 100 100 87,00 52,00 36,00 47,85 12,00 8,00 21,75 4,00 4,00 4,35 4,00 0,00 0,00 4,00 0,00 0,00 4,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 8,70 48,00 64,00 39,15 44,00 52,00 34,8 8,00 20,00 26,10 8,00 8,00 13,02 4,00 8,00 4,35 0,00 8,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 13,00 44,00 40,00 43,50 40,00 64,00 69,60 40,00 64,00 73,95 40,00 48,00 47,85 20,00 28,00 47,85 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 48,00 12,00 0,00 48,00 32,00 13,02 28,00 36,00 48,75 40,00 44,00 34,15 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 24,00 8,00 0,00 36,00 20,00 17,40 Keterangan: 1* = Satu jam setelah embrio dicemari bakteri E.coli. 103 Lampiran 8 Persentase blastosis vitrifikasi yang berkembang ke tahap perkembangan lebih lanjut (n=21) Lama waktu kultur (jam) Persentase tahapan perkembangan embrio (%) Blastosis Blastosis Hatching Hatched ekspan Embrio hidup (%) Embrio mati (%) 0 85.7 0.0 0.0 0.0 85.7 14.3 6 57.1 28.6 0.0 0.0 85.7 14.3 12 14.5 66.7 0.0 4.8 85.7 14.3 18 4.7 66.7 9.5 4.8 85.7 14.3 24 4.7 66.7 9.5 4.8 85.7 14.3 30 4.7 57.1 4.8 9.5 76.2 23.8 36 4.7 42.9 4.8 14.3 66.7 33.3 42 4.7 33.3 0.0 19.0 57.1 42.9 48 0.0 38.0 0.0 19.0 57.1 42.9