2.1 Pengertian Magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan untuk industri otomotif dan lainnya. Setiap magnet memiliki dua kutub, yaitu: utara dan selatan. Kutub magnet adalah daerah yang berada pada ujung-ujung magnet dengan kekuatan magnet yang paling besar berada pada kutub-kutubnya. 2.2 Macam-Macam Magnet Berdasarkan sifat kemagnetannya magnet dapat dibagi menjadi 2 macam, yaitu : a. Magnet Permanen Magnet permanen adalah suatu bahan yang dapat menghasilkan medan magnet yang besarnya tetap tanpa adanya pengaruh dari luar atau disebut magnet alam karena memiliki sifat kemagnetan yang tetap. b. Magnet Remanen Magnet remanen adalah suatu bahan yang dapat menghasilkan magnet yang bersifat sementara. Medan magnet remanen dihasilkan dengan cara mengalirkan arus listrik atau digosok-gosokkan dengan magnet alam. Bila suatu bahan penghantar dialiri arus listrik yang dialirkan, besarnya medan magnet yang dihasilkan tergantung pada besarnya arus listrik yang dialirkan. Medan magnet remanen yang digunakan dalam praktek kebanyakan dihasilkan oleh arus dalam kumparan yang berinti besi. Agar medan magnet yang dihasilkan cukup kuat, kumparan diisi dengan besi atau bahan sejenis besi dan sistem ini dinamakan electromagnet. Keuntungan electromagnet adalah bahwa kemgnetannya dapat dibuat sangat kuat, tergantung dengan arus yang dialirkan. Dan kemagnetannya dapat dihilangkan dengan memutuskan arus listriknya 2.3 Sifat – Sifat Magnet Permanen Sifat – sifat kemagnetan magnet permanen ( hard ferrite ) dipengaruhi oleh kemurnian bahan, ukuran butir (grain size), dan orientasi kristal. Parameter kemagnetan juga dipengaruhi oleh temperatur. Koersivitas dan remanensi akan berkurang apabila temperaturnya mendekati temperatur curie (Tc) dan akan kehilangan sifat kemagnetannya (Taufik, 2006) 2.3.1 Koersivitas Koersivitas digunakan untuk membedakan hard magnet dan soft magnet. Semakin besar gaya koersivitasnya maka semakin keras sifat magnetnya. Bahan dengan koersivitas tinggi berarti tidak mudah hilang kemagnetannya. Tinggi koersivitas, juga disebut medan koersif, dan bahan feromagnetik. Koersivitas biasanya diukur dalam oersted atau ampere / meter dan dilambangkan Hc. (Pooja, 2010) 2.3.2 Remanensi Remanensi atau keterlambatan adalah sisa medan magnet B dalam proses magnetisasi pada saat medan magnet H dihilangkan, atau remanensi terjadi pada saat medan magnet H dihilangkan, atau remanensi terjadi pada saat intensitas medan magnet H berharga nol dan medan magnet B menunjukkan harga tertentu. Bagaimanapun juga koersivitas sangat dipengaruhi oleh remanensinya. Oleh karena itu besar nilai remanensi yang dikombinasikan dengan besar koersivitas pada magnet menjadi sangat penting (Jiles, 1996) 2.3.3 Temperatur Curie Temperatur Curie (Tc) dapat didefinisikan sebagai temperatur kritis dimana fase magnetik bertransisi dari konfigurasi struktur magnetik yang teratur menjadi tidak teratur (Takanori, 2011) 2.3.4 Medan Anisotropi (HA) Medan anistropi (HA), juga merupakan nilai intrinsik yang sangat penting dari magnet permanen karena nilai ini dapat di definisikan sebagai koersivitas maksimum yang menunjukkan besar medan magnet luar diberikan dengan arah berlawanan untuk menghilangkan medan magnet permanen. Anistropi magnet dapat muncul dari berbagai sebab seperti bentuk magnet, struktur kristal, efek strees, dan lain sebagainya (konsorsium magnet). 2.4 Sifat Kemagnetan Bahan Bahan magnetik adalah suatu bahan yang memiliki sifat kemagnetan dalam komponen pembentuknya. Sifat-sifat kemagnetan bahan pada material magnet dapat diklasifikasikan antara lain ferromagnetik, ferrimagnetik, paramagnetik dan diamagnetik. 2.4.1 Bahan Ferromagnetik Ferromagnetik merupakan bahan yang memiliki nilai suseptibilitas magnetik positif yang sangat tinggi. Dalam bahan ini sejumlah kecil medan magnetik luar dapat menyebabkan derajat penyearahan yang tinggi pada momen dipol magnetik atomnya. Dalam beberapa kasus, penyearahan ini dapat bertahan sekalipun medan kemagnetannya telah dihilang. Hal ini terjadi karena momen dipol magnetik atom dari bahan-bahan ferromagnetik ini mengarahkan gaya-gaya yang kuat pada atom disebelahnya. Sehingga dalam daerah ruang yang sempit, momen ini disearahkan satu sama lain sekalipun medan luarnya tidak ada lagi. Daerah ruang tempat momen dipol magnetik disearahkan, tetapi arah penyearahnya beragam dari daerah sehingga momen magnetik total dari kepingan mikrokopi bahan ferromagnetik ini adalah nol dalam keadaaan normal (Tipler, 2001) Gambar 2.1 Momen Magnetik Dari Sifat Ferromagnetik 2.4.2 Ferrimagnetik Pada bahan yang bersifat dipol yang berdekatan memiliki arah yang berlawanan tetapi momen magnetiknya tidak sama besar. Bahan ferrimagnetik memiliki nilai susepbilitas tinggi tetapi lebih rendah dari bahan ferromagnetik, beberapa contoh dari bahan ferrimagnetik adalah ferrite dan magnetite (Mujiman, 2004) Gambar 2.2 Momen Magnet Dari Sifat Ferimagnetik 2.4.3 Paramagnetik Bahan paramagnetik adalah bahan – bahan yang memiliki suseptibilitas magnetik Xm yang positif dan sangat kecil. Paramanetik muncul dalam bahan atom – atomnya memiliki momen magnetik hermanen yang berinteraksi satu sama lain secara sangat lemah. Apabila tidak terdapat medan magnetik luar, momen magnetik ini akan berorientasi acak. Dengan adanya medan magnetik luar, momen magnetik ini arahnya cenderung sejajar dengan medannya, tetapi ini dilawan oleh kecenderungan momen untuk berorientasi acak akibat gerak termalnya. Perbandingan momen yang menyearahkan dengan medan ini bergantung pada kekuatan medan pada temperatur yang sangat rendah, hampir seluruh momen akan disearahkan dengan medannya ( Tipler, 2001) Gambar 2.3 Momen Magnetik Dari Sifat Paramagnetik Karakteristik dari bahan yang bersifat paramagnetik adalah memiliki momen magnetik permanen yang akan cenderung menyearahkan diri sejajar dengan medan arah magnet dan harga suseptibilitas megnetiknya berbanding terbalik dengan suhu T adalah merupakan hukum curie (Tipler, 2001) 2.4.4 Diamagnetik Bahan diamagnetik merupakan bahan yang memiliki nilai suseptibilitas negatif dan sangat kecil. Sifat diamagnetik ditemukan oleh faraday pada tahun 1846 ketika sekeping bismuth ditolak oleh kedua kutub magnet, hal ini memperlihatkan bahwa medan induksi dari magnet tersebut menginduksi momen magnetik pada bismuth pada arah berlawanan dengan medan induksi pada magnet (Tipler, 2001) 2.5 Material Magnet Lunak dan Magnet Keras Material magnetik diklasifikasikan menjadi dua yaitu material magnetik lemah atau soft magnetik materials maupun material magnetik kuat atau hard magnetic materials. 2.5.1 Magnet Lunak ( Soft Magnetic ) Bahan magnetik lunak (soft magnetic) dapat dengan mudah termagnetisasi dan mengalami demagnetisasi. Magnet lunak mempertahan kan sifat magnet. Magnet lunak (soft magnetic) menunjukkan histerisis loop yang sempit, sehingga magnetisasi mengikuti variasi medal listrik hampir tanpa hysterisis loss. Magnet lunak (soft magnetic) digunakan untuk meningkatkan fluks, yang dihasilkan oleh arus listrik didalamnya. Faktor kualitas dari bahan magnetik lunak adalah untuk mengukur permeabilitas yang sehubungan dengan medan magnet yang diterapkan. Parameter utama lainnya adalah koersivitas, magnetisasi saturasi dan konduktivitas listrik. Gambar 2.4 Kurva histerisis magnet lunak (soft magnetic) (Poja Chauhan, 2010) Bahan magnetik lunak ideal akan memiliki koersivitas rendah (Hc), saturasi yang sangat besar (Ms), remanen (Br) nol, hysterisis loss dan permeabilitas yang sangat besar. Kurva histerisis bahan magnetik lunak ditunjukkan pada gambar 2.4. beberapa bahan penting magnetik lunak diantaranya Fe, paduan Fe-Si, Ferit lunak (MnZnFe2O4), besi silikon dll (Poja Chauhan, 2010) 2.5.2 Magnet Keras ( Hard Magnetic) Bahan magnet keras (hard magnetic) juga disebut sebagai magnet permanen yang digunakan untuk menghasilkan medan yang kuat tanpa menerapkan arus ke koil. Magnet permanen memerlukan koersivitas tinggi, yang membutuhkan koersivitas tinggi. Dalam bahan magnet keras (hard magnetic) anisotropi diperlukan magnetik uniaksial dan sifat magnetik berikut : 1. Koersivitas tinggi (high coersivity) : koersivitas, juga disebut medan magnet koersif, dari bahan feromagnetik adalah intensitas medan magnet yang diterapkan atau diperlukan untuk mengurangi magnetisasi bahan ke nol setelah magnetisasi sampel telah mencapai saturasi. Koersivitas biasanya diukur dalam satuan oersted atau ampere / meter dan dilambangkan Hc. Bahan dengan koersivitas tinggi disebut bahan ferromagnetik keras dan digunakan untuk membuat magnet permanen. 2. Magnetisasi besar (large magnetization) : proses pembuatan substansi sementara atau magnet permanen, dengan memasukkan bahan medan magnet. Gambar 2.5 kurva histerisis magnet keras (hard magnetic) (Poja Chauhan, 2010) 2.6 Magnet Keramik Keramik adalah bahan – bahan yang tersusun dari senyawa anorganik bukan logam yang pengolahan melalui perlakuan dengan temperatur tinggi. Kegunaannya adalah untuk dbuat berbagai keperluan desain teknis khususnya dibidang kelistrikan, elektronika, mekanik dengan memamfaatkan magnet keramik sebagai magnet permanen, dimana material ini dapat menghasilkan medan magnet tanpa harus diberi arus listrik yang mengalir dalam sebuah kumparan atau selonoida untuk mempertahankan medan magnet yang dimilikinya. Disamping itu, magnet permanen juga dapat memberikan medan yang konstan tanpa engeluarkan daya yang kontinu. Bahan keramik bersifat magnetik umumnya merupakan golongan ferit, yang merupakan oksida yang disusun oleh hematite (α-Fe2O3) sebagai komponen utama. Bahan ini menunjukkan induksi magnetik spontan meskipun medan magnet dihilangkan. Material ferit juga dikenal sebagai magnet keramik, bahan ini tidak lain adalah oksida besi yang disebut ferit besi (ferrous ferrite) dengan rumus kimia MO (Fe2O3) dimana M adalah Ba, Sr, atau Pb dengan reaksi kimia sebagai berikut : 6Fe2O3 + SrCO3 6Fe2O3 + SrO CO2 6Fe2O3 + SrO SrO . 6Fe2O3 Ferit dapat digolongan menjadi tiga kelas. Kelas pertama adalah ferit lunak, ferit ini mempunyai formula MFe2O3, dengan M adalah Cu, Zn, Ni, Co, Fe, Mn, Mg dengan struktur kristal seperti mineral spinel sifat bahan ini mempunyai permeabilitas dan hambatan jenis yang tinggi, koersivitas yang rendah. Kelas kedua adalah ferit keras, ferit ini adalah turunan dari struktur magneto plumbit yang dapat ditulis sebagai MFe2O3, dengan M adalah Ba, Sr, atau Pb. Bahan ini mempunyai gaya koersivitas dan remanen yang tinggi dan mempunyai struktur kristal heksagonal dengan momen-momen magnetik yang sejajar dengan sumbu c. Kelas ketiga adalah ferit berstruktur garnet, magnet ini mempunyai magnetisasi spontan yang bergantung pada suhu secara khusus. Strukturnya sangat rumit, berbentuk kubik dengan sel satuan disusun tidak kurangdari 160 atom (N. Idayanti dan Dedi, 2002) Barium heksaferrite merupakan keramik oksida komplek dengan rumus kimia BaO.6Fe2O3 atau BaFe12O19. Barium hexaferrite mempunyai kestabilan kimia yang bagus dan relatif murah dan kemudahan dalam produksi. Walaupun kekuatan magnet heksaferit lebih rendah dibandingkan jenis magnet terbaru berbasis logam tanah jarang, magnet permanen hexaFerrite (Ba-ferrite dan Sr-ferrite) masih menempati tempat teratas dalam pasar magnet permanen dunia baik dalam hal ini uang maupun berat produksi. Barium hexa Ferrite BaO.6Fe2O3 yang memiliki parameter kisi a = 5,8920 Angstrom, dan c = 23,1830 Angstrom. Gambar struktur kristal barium hexa Ferrite BaO.6Fe2O3 diperlihatkan pada gambar 2.6 Gambar 2.6 Struktur kristal BaO.6Fe2O3 (Moulson A.J, et all., 1985) Barium hexaferit dapat disintesa dengan beberapa metoda seperti kristalisasi gas, presipitasi hidrotermal, sol-gel, aerosol, copresipitasi dan pemaduan mekanik. Diantara metoda ini pemaduan/gerus mekanik adalah ekonomis karena ketersedian bahan baku secara komersial dan relatif murah. Selain itu, penanganan material relatif sederhana untuk proses pemaduan mekanik dan produksi skala besar dapat diimplementasikan dengan mudah. 2.7 Metode Metalurgi Serbuk Metalurgi serbuk adalah metode yang terus dikembangkan dari proses manufaktur yang dapat mencapai bentuk komponen akhir dengan mencampurkan serbuk secara bersamaan dan dikompaksi dalam cetakan, dan selanjutnya disinter di dalam furnace ( tungku pemanas). Langka-langkah yang harus dilalui dalam metalurgi serbuk, antara lain : 1. Preparasi material 2. Pencampuran (mixing) 3. Penekanan (kompaksi) 4. Pemanasan (sintering) Proses pemanasan yang dilakukan harus berada di bawah titik leleh serbuk material yang digunakan. Setiap proses dalam pembuatan metalurgi serbuk sangat mempengaruhi kualitas akhir produk yang dihasilkan. Material komposit yang dihasilkan dari proses metalurgi serbuk adalah komposit isotropik, yaitu komposit yang mempunyai penguat (filler) dalam klasifikasi partikulet. Keuntungan proses metalurgi serbuk, antara lain : • Mampu melakukan kontrol kualitas dan kuantitas material • Mempunyai presisi yang tinggi • Kecepatan produksi tinggi Keterbatasan metalurgi serbuk, antara lain : • Biaya pembuatan yang mahal dan terkadang serbuk sulit penyimpanannya. • Dimensi yang sulit tidak memungkinkan, karena selama penekanan serbuk logam tidak mampu mengalir keruang cetakan • Sulit untuk mendapatkan kepadatan yang merata 2.7.1 Pencampuran (Mixing) Ada 2 macam pencampuran, yaitu : Pencampuran basah (wet mixing) Yaitu proses pencampuran dimana serbuk matrik dan filler dicampur terlebih dahulu dengan pelarut polar. Metode ini dipakai apabila material (matrik filler) yang digunakan mudah mengalami oksidasi. Tujuan pemberian pelarut polar adalah untuk mempermudah proses pencampuran material yang digunakan dan untuk melapisi permukaan material supaya tidak berhubungan dengan udara luar sehingga mencegah terjadinya oksidasi pada material yang digunakan. Pencampuran kering (dry mixing) Yaitu proses pencampuran yang dilakukan tanpa menggunakan pelarut untuk membantu melarutkan dan dilakukan diudara luar. Metode ini dipakai apabila material yang digunakan tidak mudah mengalami oksidasi. Faktor penentu kehomogenan distribusi partikel, antara lain : • Kecepatan pencampuran • Lamanya waktu pencampuran • Ukuran partikel • Jenis material • Temperatur • Media pencampuran Semakin besar kecepatan pencampuran, semakin lama waktu pencampuran, dan semakin kecil ukuran partikel yang dicampur, maka distribusi partikel semakin homogen. Kehomogenan campuran sangat berpengaruh pada proses penekanan (kompaksi), karena gaya tekan yang diberikan pada saat kompaksi akan terdistribusi secara merata sehingga ikatan antar partikel semakin baik. 2.7.2 Penekanan (Kompaksi) Kompaksi merupakan proses pemadatan serbuk menjadi sampel dengan bentuk tertentu sesuai dengan cetakannya Ada 2 macam metode kompaksi, yaitu • Cold compressing, yaitu penekanan dengan temperatur kamar. Metode ini dipakai apabila bahan yang digunakan mudah teroksidasi, seperti Al. • Hot compressing, yaitu penekanan dengan temperatur diatas temperatur kamar, metode ini dipakai apabila material yang digunakan tidak mudah teroksidasi. Pada proses kompaksi, gaya gesek ruang terjadi antar partikel yang digunakan dan antar partikel komposit dengan dinding cetakan akan mengakibatkan kerapatan pada daerah tepi dan bagian tengan tidak merata. Untuk menghindari terjadinya perbedaan kerapatan, maka pada saat kompaksi digunakan lubricant/pelumas yang bertujuan untuk mengurangi gesekan antara partikel dan dinding cetakan. Dalam penggunaan lubricant/pelumas, dipilih bahan pelumas yang tidak reaktif terhadap campuran serbuk dan yang memiliki titik leleh rendah sehingga pada proses sintering tingkat awal lubricant dapat menguap.Terkait dengan pemberian lubricant pada proses kompaksi, maka terdapat 2 metode kompaksi, yaitu : • Die-wall compressing : penekanan dengan memberikan lubricant pada dinding cetakan. • Internal lubricant compressing : penekanan dengan mencampurkan lubricant pada material yang akan ditekan. Pada proses kompaksi ada 3 kemungkinan model ikatan yang disebabkan oleh gaya van derwals : • Pola ikatan bola – bola Terjadinya bila besarnya gaya tekan yang diberikan lebih kecil dari yield strength (ys) matrik dan filler sehingga serbuk tidak mengalami perunbahan bentuk secara permanen atau mengalami deformasi elastik baik pada matrik maupun pada filler sehingga serbuk serbuk tetap berbentuk bola. • Pola ikatan bola-bidang Terjadi bila besarnya gaya tekan yang diberikan diantara yield strength (ys) dari matrik dan filler. Penekanan ini menyebabkan salah satu material (matrik) terdeformasi plastis dan yang lai (filler) terdeformasi elastis, sehingga berakibat partikel seolah-olah berbentuk bola-bidang. • Pola ikatan bidang-bidang Terjadi bila besarnya gaya tekan yang diberikan lebih besar pada dari yield strength (ys) matrik filler. Penekanan ini menyebabkan kedua material (matrik dan filler) terdeformasi plastis, sehingga berakibat partikel seolaholah berbentuk bidang-bidang. 2.7.3 Pemanasan (sintering) Sintering adalah pengikatan massa partikel pada serbuk oleh interaksi antar molekul atau atom melalui perlakuan panas dengan suhu sintering mendekati titik leburnya sehingga terjadi pemadatan. Tahap sintering merupakan tahap yang paling penting dalam pembuatan keramik. Melalui proses sintering terjadi perubahan struktur mikro seperti seperti pengurangan jumlah dan ukuran pori, pertumbuhan butir serta peningkatan densitas. Faktor-faktor yang menentukan proses dan mekanisme sintering antara lain jenis bahan, komposisi bahan dan ukuran partikel (Ika Mayasari, 2012) Parameter sintering : • Temperatur (T) • Waktu • Kecepatan pendinginan • Kecepatan pemanasan • Atmosfer sintering • Jenis material Berdasarkan pola ikatan yang terjadi pada proses kompaksi, ada 2 fenomena yang mungkin terjadi pada saat sintering, yaitu : • Penyusutan (shringkage) Apabila pada saat kompaksi terbentuk pola ikatan bola-bidang maka pada proses sintering akan berbentuk shringkage, yang terjadi karena saat proses sintering berlangsung gas (lubricant) yang berada pada porositas mengalami degassing (peristiwa keluarnya gas pada saat sintering). Dan apabila temperatur sinter terus dinaikkan akan terjadi difusi permukaan antar partikel matrik dan filler yang akhirnya akan terbentuk liquid bridge/necking ( mempunyai fasa campuran antara matrik dan filler). Liquid bridge ini akan menutupi porositas sehingga terjadi eliminasi porositas/berkurangnya jumlah dan ukuran porositas.Penyusutan dominan bila pemadatan belum mencapai kejenuhan. • Retak (cracking) Apabila pada kompaksi terbentuk pola ikatan antar partikel berupa bidangbidang, sehingga menyebabkan adanya trapping gas (gas/ lubricant terjebak di dalam material ), maka pada saat sintering gas yang terjebak belum sempat keluar tapi liquid bridge telah terjadi, sehingga jalur porositasnya telah tertutup rapat. Gas yang terjebak ini akan mendesak ke segala arah sehingga terjadi bloating (mengembang), sehingga tekanan diporositas lebih tinggi dibanding tekanan diluar. Bila kualitas ikatan permukaan partikel pada bahan komposit tersebut rendah, maka tidak akan mampu menahan tekanan yang lebih besar sehingga menyebaka retakan (cracking). Keretakan juga dapat diakibatkan dari proses pemadatan yang kurang sempurna, adanya shock termal pada saat pemanasan karena pemuaian dari matrik dan filler uang berbeda. Tingkatan sintering Proses sintering meliputi 3 tahap mekanisme pemanasan : • Presintering Presintering merupakan proses pemanasan yang bertujuan untuk : 1. Mengurangi residual stress akibat proses kompaksi (green density) 2. Pengeluaran gas dari atmosfer atau pelumas padat yang terjebak dalam porositas bahan komposit (degassing) 3. Menghindari perubahan temperatur yang terlalu cepat pada saat proses sintering (shock thermal). Temperatur presintering biasanya dilakukan pada 1/3 Tm (titik leleh) • Difusi permukaan Pada proses pemanasan untuk terjadinya transportasi massa pada permukaan antar partikel serbuk yang saling berinteraksi, dilakukan pada permukaan antar partikel serbuk yang saling berinteraksi, dilakukan pada temperatur sintering (2/3 Tm). Atom-atom pada permukaan partikel serbuk saling terdifusi antar permukaan sehingga meningkatkan gaya kohesifitas antar partikel. • Eliminasi porositas Tujuan akhir dari proses sintering pada bahan komposit berbasis metalurgi serbuk adalah bahan yang mempunyai kompaktbilitas tinggi. Hal tersebut terjadi akibat adanya difusi antar permukaan sampel, sehingga menyebabkan terjadinya leher (liquid bridge) antar partikel dan proses akhir dari pemanasan sintering menyebabkan eliminasi porositas (terbentuknya sinter density). Mekanisme transportasi massa Mekanisme transportasi massa merupakan jalan dimana terjadi aliran masa sebagai akibat dari adanya gaya pendorong. Ada 2 mekanisme transport, yaitu : 1. Transport permukaan a. Terjadi pertumbuhan tanpa merubah jarak antar partikel b. Transport permukaan yang terjadi selama proses sintering adalah hasil dari transport massa dan hanya terjadi pada permukaan partikel, tidak terjadi perubahan dimensi dan mempunyai kerapatan yang konstan. 2. Transport Bulk a. Dalam proses sintering akan menghasilkan perubahan dimensi. Atomatom berasal dari dalam partikel akan berpindah menuju daerah leher (liquid bridge) b. Termasuk difusi volume, difusi batas butir, dan aliran viskos. c. Kedua mekanisme pengurangan tersebut daerah akan permukaan menyebabkan untuk terjadinya pertumnbuhan perbedaanya hanya terletak pada kerapatan leher, (penyusutan selama sintering). Faktor-Faktor yang mempengaruhi mekanisme transport : a. Material yang digunakan b. Ukuran partikel c. Temperatur sintering Lapisan Oksida • Terbentuknya lapisan oksida dapat menurunkan kualitas ikatan antar permukaan • Lapisan oksida akan menghalangi terjadinya kontak yang sempurna antara matriks dan filler • Dengan adanya lapisan oksida, maka gaya interaksi adhesi-kohesi tidak bisa berjalan dengan baik. Karena terjadinya interaksi adhesi-kohesi salah satunya disebabkan oleh adanya gaya elektrostatis yaitu gaya tarik – menarik antara partikel-partikel yang bermuantan dalam suatu bahan, maka dengan adanya lapisan oksida tersebut maka permukaannya menjadi netral, ini mengakibatkan ikatan antar permukaan menjadi kurang kuat • Lapisan oksida juga menyebabkan ikatan antara matrik dan filler menjadi lebih sulit karena temperatur yang diperlukan untuk mereduksi oksida tersebut membutuhkan temperatur yang lebih tinggi. 2.8 Karakterisasi Material Magnet Untuk mengetahui sifat-sifat dan kemampuan suatu material maka perlu dilakukan pengujian dan analisis. Beberapa jenis pengujian dan analisis yang dibahas untuk keperluan penelitian ini antara lain : pengujian sifat fisis (densitas, porositas, kekuatan magnet ), dan analisa struktur kristal dengan menggunakan alat uji XRD (X-Ray Diffraction). 2.8.1 Sifat Fisis A. Densitas Densitas merupakan ukuran kepadatan dari suatu material atau sering didefinisikan sebagai perbandingan antara massa (m) dengan volume (v) dalam hubungannya dapat dituliskan sebagai berikut (M. Ristic, 1979) ρ= Dengan : 𝑚𝑚 𝑣𝑣 ....................................................................................................(2.1) ρ = Densitas (gram/cm3) m = Massa sampel (gram) v = Volume sampel (cm3) Dalam pelaksanaannya kadang – kadang sampel yang diukur mempunyai ukuran bentuk yang tidak teratr sehingga untuk menentukan volumenya menjadi sulit, akibatnya nilai kerapatan yang diperoleh tidak akurat. Untuk menentukan rapat massa (bulk density) digunakan hukum archimedes yang persamaannya sebagai berikut : Densitas : ρ = 𝑚𝑚 Dengan : 𝑚𝑚 𝑘𝑘 𝑘𝑘 − 𝑚𝑚 𝑏𝑏 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎 ....................................................................(2.2) Mk = Massa sampel kering (gram) Mb = Massa saturasi sampel ( gram ) B. Porositas Porositas dapat didefinisikan sebagai perbandingan antara jumlah volume lubang-lubang kosong yang dimiliki oleh zat padat (volume kosong) dengan jumlah dari volume zat padat yang ditempati oleh zat padat. Porositas pada suatu material dinyatakan dalam (%) rongga fraksi volume dari suatu rongga yang ada di dalam material tersebut. Besarnya porositas pada suatu material bervariasi mulai dari 0% sampai dengan 90% tergantung dari jenis dan aplikasi material tersebut. Porositas suatu bahan umumnya dinyatakan dengan persamaan sebagai berikut : Porositas : P = Dengan : 𝑚𝑚 𝑘𝑘 − 𝑚𝑚 𝑏𝑏 𝑚𝑚 𝑏𝑏 x 100% ................................................ ............(2.3) Mk = Massa sampel kering (gram) Mb = Massa saturasi sampel ( gram ) 2.8.2 XRD ( X-Ray Diffraction) Fenomena interaksi dan difraksi sudah dikenal pada ilmu optik. Standart pengujian laboratorium fisika adalah untuk menentukan jarak antara dua gelombang dengan mengetahui panjang gelombang sinar, dengan mengukur sudut berkas sinar yang terdifraksi. Pengujian ini merupakan aplikasi langsung dari pemakaian sinar-X untuk menentukan jarak antar atom adalam kristal. Gambar 2.7 Difraksi Bidang Atom (Smallman,1991) Gambar 2.7 menunjukkan suatu berkas sinar X dengan panjang gelombang λ, jatuh pada sudut θ pada sekumpulan bidang atom berjarak d. Sinar yang dipantulkan dengan sudut θ hanya dapat terlihat jika berkas dari setiap bidang yang berdekatan, dan menempuhkan jarak sesuai dengan perbedaan kisi yaitu sama dengan panjang gelombang n λ. Untuk mengetahui fasa dan struktur material yang diamati dapat dilakukan dengan cara sederhana, yaitu dengan cara membandingkan nilai d yang terukur dengan nilai d pada data standart. Data d standard dapat diperoleh melalui Joint Commitee On Powder Difraction Standart (JCPDS) atau dengan metode Hanawalt file. Magnet untuk meteran air Sistem meteran air yang digunakan disetiap rumah tangga di Indonesia menggunakan magnet permanen berbasis ferit untuk sistem sensor elektroniknya. Gambar 2.8 adalah contoh produk alat meter air dan magnet sebagai komponen sensornya Gambar 2.8 Alat Meteran Air(Prijo, 2012) Alat meter air model kincir menggunakan magnet untuk mengukur debit air yang mengalir pada sistem meteran air. Magnet sensor untuk alat meter air memiliki diameter luar sekitar 8 mm dan tebal sekitar 4 mm. Kuat magnetnya antara 600 sampai 950 Gauss (Prijo, 2012) BAB 3 METODOLOGI PENELITIAN