TUGAS AKHIR TEKNIK MESIN BAB II LANDASAN TEORI 2.1 Perpindahan Kalor Perpindahan panas adalah proses berpindah nya energi dari suatu tempat ketempat yang lain dikarenakan adanya perbedaan suhu ditempat– tempat tersebut. Perpindahan panas dapat berlangsung dengan beberapa cara seperti: 1. Perpindahan Panas Konduksi Merupakan proses perpindahan panas dari daerah yang bersuhu tinggi kedaerah yang bersuhu rendah didalam medium (padat, cair, dan gas) atau antara medium yang bersinggungan langsung.Jika terdapat suatu gradien suhu,maka menurut pengalaman akan terjadi perpindahan dari bagian bersuhu tinggi kebagian bersuhu rendah. Dapat dikatakan bahwa energi akan berpindah secara konduksi atau hantaran, laju perpindahan kalor dinyatakan sebagai : = − . . ∂ ⁄∂ ............................................................... ref. 1, hal. 2 Universitas Mercu Buana 7 TUGAS AKHIR Dimana : TEKNIK MESIN = laju perpindahan kalor(kJ/s) ∂ ⁄∂ = gradien suhu kearah perpindahan kalor =konduktivitas thermal bahan(W/m. oC) = luas bidang perpindahan kalor(m2) 2. Perpindahan Panas Konveksi Merupakan proses transport energi dengan kerja gabungan dari konduksi panas, penyimpanan energi dan proses mencampur. Proses ini terjadi pada permukaan padat,cair dan gas. Aliran Arus bebas U∞ T∞ U q Dinding Gambar 2.1 perpindahan kalor konveksi dari suatu plat Sumber : helmidadang.wordpress.com Pada gambar 2.1 diatas Tw adalah suhu plat dan T∞ adalah suhu fluida. Apabila kecepatan diatas plat adalah nol, maka kalor hanya dapat perpindah dengan cara konduksi. Akan tetapi apabila fluida diatas plat bergerak dengan kecepatan tertentu, maka kalor perpindah dengan cara konveksi,yang dimana gradien suhu bergantung dari laju fluida Universitas Mercu Buana 8 TUGAS AKHIR TEKNIK MESIN membawa kalor. Sedangkan laju perpindahan kalor dipengaruhi oleh luas permukaan perpindahan kalor (A) dan beda suhu menyeluruh antara permukan bidang dengan fluida yang dapat dirumuskan sebagai berikut: = . .( − Dimana: ) .................................................... ref. 1, hal. 11 = laju perpindahan kalor(kJ/s). = Koefisien Perpindahan Panas Konveksi(W/m.oC). dimana h merupakan koefisian perpindahan panas konveksi.Untuk keadaan yang sederhana, koefisien perpindahan panas konveksi (h) dapat diperhitungkan secara analisis, sedangkan untuk keadaan yangrumit,harus diperhitungkan dengan cara eksperimen atau percobaan. Perpindahan panas konveksi tergantung pada vikositas fluida, disamping ketergantunganya terhadap sifat – sifat termal fluida, seperti : konduktivitas termal, kalor spesifik, dan densitas. Hal ini disebabkan karena viskositas mempengaruhi laju perpindahan energi didaerah dinding.Ada duajenis perpindahan panas konveksi,yaitu: a. Perpindahan panas konveksi alami Fenomena ini tejadi karena fluida yang terjadi karena pemanasan,berubah densitasnya,sehingga fluidanya bergerak. b. Perpindahan panas konveksi paksa Universitas Mercu Buana 9 TUGAS AKHIR TEKNIK MESIN Fenomena ini terjadi apabila sistim dimana fluida didorong oleh permukaan perpindahan kalor,atau melaluinya, fluida bergerak adanya faktor pemaksa. Sebagai gambaran adalah fenomena perpindahan panas aliran atau didalam pipa yang dinyatakan sebagai : = . . = .2 . ( − ) .................................... ref. 1, hal. 252 q m.Cp Aliran 1 dx Tb1 2 Tb2 L Gambar 2.2 Perpindahan kalor menyeluruh dinyatakan dengan beda suhu limbak sumber : chemicalengineersdaily.blogspot.com Angka Nusselt untuk aliran turbulen sepenuhnya adalah : = 0,022 , ........................................... ref. 1, hal. 252 Dimana : n = nilai eksponen = 0,4 untuk pemanasan Universitas Mercu Buana 10 TUGAS AKHIR TEKNIK MESIN = 0,3 untuk pendinginan Angka Nusselt untuk aliran laminar sepenuhnya adalah : , = 3,66 + , ( ⁄ ) [( ⁄ ) ] ⁄ .......................... ref. 1, hal. 252 Dimana : d = diameter pipa(m). L = panjang pipa(m). Koevisien perpindahan panas konveksi dibantu oleh : = . ................................................................. ref. 1, hal. 260 3. Perpindahan Panas Radiasi Merupakan proses perpindahan panas dari benda bersuhu tinggi kebenda bersuhu rendah bila benda-benda itu terpisah didalam suatu ruangan bahkan bila terdapat suatu ruang hampa diantara benda–benda tersebut. Untuk radiasi diantara dua benda dapat dirumuskan : = . . . ( − ) .......................................... ref. 1, hal. 13 Dimana : Fx = fungsi emisivitas Fg = fungsi geometeri A = luas permukaan bidang σ = konstanta Stefan Boltzman (5,669 x 10-8 W / m2 K4) Universitas Mercu Buana 11 TUGAS AKHIR TEKNIK MESIN 4. Perpindahan Panas Gabungan Dinding datar seperti pada gambar 2.2 dimana pada suatu sisinya terdapat fluida panas A, dan pada sisi lainnya terdapat fluida B yang lebih dingin. Perpindahankalor dinyatakan oleh : = . ( − ) = . ⁄∆ ( = . ( − ) .......................................................... ref. 1, hal. 32 − ) Proses perpindahan kalor dapat digambarkan dengan jaringan tahanan seperti pada gambar 2.2. Perpindahan kalor gabungan dihitung dengan jalan membagi beda suhu menyeluruh dengan jumlah tahanan thermal: = . ∆ .................................................... ref. 1, hal. 32 . . TA Fluida A q Fluida B T1 T2 h1 h2 TB Gambar 2.3 Perpindahan kalor gabungan melalui dinding datar sumber : kadasyouth.wordpress.com Universitas Mercu Buana 12 TUGAS AKHIR TEKNIK MESIN Nilai 1/h. A digunakan untuk menunjukan tahanan konveksi. Aliran kalor menyeluruh sebagai hasil gabungan proses konduksi dan konveksi bisa dinyatakan dengan koevisien perpindahan kalor menyeluruh U, yang dirumuskan dengan hubungan: = . . ∆ (menyeluruh) .............................................. ref. 1, hal. 33 Dimana A adalah luas bidang aliran kalor, koofisien perpindahan kalor menyeluruh adalah: = ∆ ........................................................... ref. 1, hal. 33 Sedangkan pada penukar kalor aliran silang, fluida yang mengalami pertukaran panas berjalan secara menyilang satu sama lain. Dalam penerapan nya penukar kalor air silang, banyak dipakai untuk pemanasan dan pendinginan udara, gas atau air. Sebagai contoh adalah radiator yang konstruksinya menggunakan saluran diantara sirip–sirip. Dengan luas permukaan yang sangat besar persatuan volume yang diwujudkan dalam bentuk konstruksi pipa dan sirip,maka akan memungkinkan terjadinya kontak langsung dengan udara secara lebih luas. Universitas Mercu Buana 13 TUGAS AKHIR TEKNIK MESIN Gambar 2.4 Contoh – contoh konfigurasi penukar kalor kompak sumber : muhammadsyukur21.blogspot.com Keterangan : a. Penukar kalor tabung bersirip dengan tabung – tabung rata. b. Penukar kalor bersirip bundar dalam satuan konfigurasi. c dan d. Menggambarkan cara lain untuk mendapatkan luas permukaan yang sangat besar pada kedua sisi penukar kalor. 2.2 Heat Balance Suatu massa atur adalah sistem yang mengandung zat yang telah dispesifikasikan, jadi, massanyandiketahui dan tetap. Sesuai dengan pembahasan sebelumnya, energi suatu massa atur dapat diubah dengan perpindahan energi, sebagai panas maupun sebagai kerja, dan kedua cara ini sajalah yang mungkin terjadi. Massa atur dan lingkunganya membentuk sistem yang di isolasi, energi totalnya harus tetap konstan. Apabila energi dari Universitas Mercu Buana 14 TUGAS AKHIR TEKNIK MESIN salah satunya bertambah, energi yang lainya harus berkurang dengan jumlah yang sama. Perpindahan energi sedemikian hanya dapat berlangsung dangan mekanisme perpindahan panas dan kerja. Masukan energi total ke dalam massa atu harus tepat menjadi kenaikan energi di dalam massa atur, pernyataan aljabar bagi tata buku ini disebut Kesetimbangan Energi. Dengan notasi sistem dan berbagai simbol pada gambar 2.23, Kesetimbangan Energi adalah. ● W+Q Pertambahan energy yang terkandung Masukan energy Keterangan : W : Jumlah perpindahan energi (J/s). Q : Jumlah perpindahan Energi Sebagai Kalor(Joule). ● (Notasi ΔE = ΔE = Eakhir - Eawal Δ selalu berarti “akhir dikurangi awal’’, yaitu suatu peratambahan’’). Dapat pula dilakukan analisa massa atur bagi proses infinitesimal. Dan untuk hal sedemikian, balans. ● W+ Q Masukan energy Keterangan : = E Pertambahan energy yang terkandung W : Jumlah perpindahan energi (J/s). Q : Jumlah perpindahan Energi Sebagai Kalor(Joule). Universitas Mercu Buana 15 TUGAS AKHIR TEKNIK MESIN Di sini W dan Q menyatakan jumlah infinitesimal ke dalam massa atur, dan E menyatakan peningkatan infinitesimal dari energi di dalam massa atur (notasi, selalu berarti ‘’pertambahan infinitesimal dari sesuatu notasi berarti jumlah infinitesimal dari sesuatu’’). 2.3 Alat Penukar Kalor Alat penukar panas atau Heat Exchanger adalah alat yang digunakan untuk memindahkan panas dari sistem ke sistem lain tanpa perpindahan massa dan bisa berfungsi sebagai pemanas maupun sebagai pendingin. Biasanya, medium pemanas dipakai adalah air yang dipanaskan sebagai fluida panas dan air biasa sebagai air pendingin (cooling water).Penukar panas dirancang sebisa mungkin agar perpindahan panas antar fluida dapat berlangsung secara efisien.Pertukaran panas terjadi karena adanya kontak, baik antara fluida terdapat dinding yang memisahkannya maupun keduanya bercampur langsung (direct contact).Salah satu contoh sederhana dari alat penukar panas adalah radiator mobil dimana cairan pendingin memindahkan panas mesin ke udara sekitar.Tipe aliran di dalam alat penukar panas ini ada 4 macam aliran,yaitu : 1. Counter current flow (aliran berlawanan arah) 2. Paralel flow/co current flow (aliran searah) 3. Cross flow (aliran silang) Universitas Mercu Buana 16 TUGAS AKHIR TEKNIK MESIN 4. Cross counter flow (aliran silang berlawanan) Jenis–jenis penukar panas antara lain : 1. Penukar panas pipa rangkap (double pipe heat exchanger) Salah satu jenis penukar panas adalah susunan pipa ganda.Dalam jenis penukar panas dapat digunakan berlawanan arah aliran atau arah aliran, baik dengan cairan panas atau dingin cairan yang terkandung dalam ruang annular dan cairan lainnya dalam pipa. Gambar 2.5 Penukar panas jenis pipa rangkap Sumber : beck-fk.blogspot.com 2. Penukar panas cangkang dan buluh ( shell and tube heat exchanger ) Alat penukar panas cangkang dan buluh terdiri atas suatu bundel pipa yang dihubungkan secara parallel dan ditempatkan dalam sebuah pipa mantel (cangkang ). Fluida yang satu mengalir di dalam bundel pipa, sedangkan fluida yang lain mengalir di luar pipa pada arah yang sama, berlawanan, atau bersilangan. Universitas Mercu Buana 17 TUGAS AKHIR TEKNIK MESIN Gambar 2.6 Penukar panas jenis cangkang dan buluh Sumber : http://senangnya-berbagi-info.blogspot.com 3. Penukar Panas Plate and Frame ( plate and frame heat exchanger ) Alat penukar panas pelat dan bingkai terdiri dari paket pelat – pelat tegak lurus, bergelombang, atau profil lain. Pemisah antara pelat tegak lurus dipasang penyekat lunak ( biasanya terbuat dari karet )terdapat lubang pengalir fluida. Gambar 2.7 Penukar panas jenis plate and Frame Sumber :senangnya-berbagi-info.blogspot.com 4. Adiabatic wheel heat exchanger Universitas Mercu Buana 18 TUGAS AKHIR TEKNIK MESIN Jenis penukar panas ini menggunakan intermediate cairan atau toko yang solid untuk menahan panas, yang kemudian pindah ke sisi lain dari penukar panas akan dirilis. 5. Pillow plate heat exchanger Pelat bantal memungkinkan untuk pendinginan di hampir daerah seluruh permukaan tangki, tanpa sela yang akan terjadi antara pipa dilas ke bagian luar tangki. Pelat bantal dibangun menggunakan lembaran tipis dari logam-spot dilas ke permukaan selembar tebal dari logam.Pelattipis dilas dalam pola teratur dari titik-titik atau dengan pola serpentin garis las. Setelah pengelasan ruang tertutup bertekanan dengan kekuatan yang cukup untuk menyebabkan logam tipis untuk tonjolan di sekitar lasan, menyediakan ruang untuk cairan penukar panas mengalir, dan menciptakan penampilan yang karakteristik bantal membengkak terbentuk dari logam. 6. Dynamic scraped surface heat exchanger Tipe lain dari penukar panas disebut "(dinamis) besot permukaan heat exchanger". Ini terutama digunakan untuk pemanasan atau pendinginan dengan tinggi viskositas produk, proses kristalisasi, penguapan tinggi dan fouling aplikasi. 7. Phase–change heat exchanger Selain pemanasan atau pendinginan cairan hanya dalam satu fasa, penukar panas dapat digunakan baik untuk memanaskan cairan menguap (atau mendidih) atau digunakan sebagai kondensor untuk mendinginkan uap dan mengembun ke cairan. Pada pabrik kimia dan Universitas Mercu Buana 19 TUGAS AKHIR TEKNIK MESIN kilang, reboilers digunakan untuk memanaskan umpan masuk untuk menara distilasi sering penukar panas .Distilasi set–up biasanya menggunakankondensor untuk mengkondensasikan uap distilasi kembali ke dalam cairan.Pembangkit tenaga listrik yang memiliki uap yang digerakkan turbin biasanya menggunakan penukar panas untuk mendidihkan air menjadi uap. Gambar 2.8 Penukar panas jenis Phase–change heat exchanger Sumber : gasproses.blogspot.com dan senangnya-berbagi-info.blogspot.com 2.4 Sistem Pendinginan Mesin Proses pembakaran yang berlangsung terus menerus dalam mesin mengakibatkan mesin dalam kondisi temperatur yang sangat tinggi. Temperatur sangat tinggi akan mengakibatkan desain mesin menjadi tidak ekonomis, sebagian besar mesin juga berada di lingkungan yang tidak terlalu jauh dengan manusia sehingga menurunkan faktor keamanan. Temperatur yang sangat rendah juga tidak terlalu menguntungkan dalam proses kerja Universitas Mercu Buana 20 TUGAS AKHIR TEKNIK MESIN mesin. Sistem pendinginan digunakan agar temperatur mesin terjaga pada batas temperatur kerja yang ideal. Prinsip pendinginan adalah melepaskan panas mesin ke udara, tipe langsung dilepaskan ke udara disebut pendinginan udara (air cooling), tipe menggunakan fluida sebagai perantara disebut pendinginan air.MacamMacam Sistem Pendingin, yaitu : 1. Sistem Pendinginan Udara a. Pendinginan oleh aliran udara secara alamiah. Pada sistem ini panas yang dihasilkan oleh pembakaran gas dalam ruang bakar sebagian dirambatkan keluar dengan menggunakan siripsirip pendingin (coolingfins) yang dipasangkan di bagian luar silinder (Gambar 2). Pada tempat yang suhunya lebih tinggi yaitu pada ruang bakar diberi sirip pendingin yang lebih panjang daripada sirip pendingin yang terdapat di sekitar silinder yang suhunya lebih rendah. Gambar 2.9 Pendinginan Udara Secara Alamiah Sumber : dimasp-30.blogspot.com b. Pendinginan oleh tekanan udara Universitas Mercu Buana 21 TUGAS AKHIR TEKNIK MESIN Udara yang menyerap panas dari sirip–sirip pendingin harus berbentuk aliran atau udaranya harus mengalir agar suhu udara di sekitar sirip tetap rendah sehingga penyerapan panas tetap berlangsung sempurna.Hal ini dapat dicapai dengan jalan menggerakkan sirip pendingin atau udaranya.Bila sirip pendingin yang digerakkan atau mesinnya bergerak seperti pada sepedamotor. Pada mesin stasioner aliran udaranya diciptakan dengan cara menghembuskannya melalui blower yang dihubungkan langsung dengan poros engkol menunjukkan pendinginan udara menggunakan kipas atau blower yang terpasang pada roda gila(flywheel fan). Agar aliran udara pendingin lebih dapat mendinginkan sirip–sirip digunakan pengarah. Gambar 2.10 Kipas udara pada roda gila Sumber : warungoto.blogspot.com 2. Sistem Pendinginan Air Pada sistem ini sebagian panas dari hasil pembakaran dalam ruang bakar diserap oleh air pendingin setelah melalui dinding silinder. Oleh karena itu di luar silinder dibuat mantel air (water jacket). Pada sistem Universitas Mercu Buana 22 TUGAS AKHIR TEKNIK MESIN pendinginan air ini air harus bersirkulasi. Adapun sirkulasi air dapat berupa 2 (dua) macam, yaitu: a. Sirkulasi alamiah atau Thermo–siphon b. Sirkulasi dengan tekanan Pada sistem pendinginan air dengan sirkulasi alamiah, air pendingin akan mengalir dengan sendirinya yang diakibatkan oleh perbedaan massa jenis air yang telah panas dan air yang masih dingin. Agar air yang panas dapat dingin, maka sebagai pembuang panas dipasangkan radiator. Air yang berada dalam mantel air dipanaskan oleh hasil pembakaran sehingga suhunya naik, sehingga massa jenisnya akan turun dan air ini didesak ke atas oleh air yang masih dingin dari radiator. Agar pembuangan panas dari radiator terjadi sebesar mungkin maka pada sistem pendingin dilengkapi juga dengan kipas yang berfungsi untuk mengalirkan udara pada radiator agar panas pada radiator dapat dibuang atau diserap udara. Pada sirkulasi dengan tekanan pada prinsipnya sama dengan sirkulasi alam, tetapi untuk mempercepat terjadinya sirkulasi maka pada sistem dipasang pompa air. 2.5 Komponen Sistem Pendingin Air Pada mobil yang menggunakan bahan bakar sebagai sumber tenaga, pasti menghasilkan panas.Hal tersebut normal, yang tidak normal adalah bila panas tersebut menjadi terlalu panas sehingga dapat menggangu kinerja Universitas Mercu Buana 23 TUGAS AKHIR mesin TEKNIK MESIN (overheating). Ciri–cirri overheating adalah knocking atau menggelitiksampai dengan mesin mobil menjadi mati. Idealnya mesin mobil bekerja pada suhu 80–90 derajat celcius, dibawah itu juga tidak bagus karena mesin menjadi terlalu dingin atau overcooling dan kerja mesin menjadi tidak efisien.Dan jelas kuncinya ada di perawatan, berikut ini adalah komponen– komponen yang harus diperhatikan dan dirawat pada sistempendinginan mobil. Gambar 2.11 Sistem pendingin kendaraan mobil Sumber : doyock-online.blogspot.com 1. Waterpump Waterpump atau pomp air bertugas menyalurkan air dari radiator ke mesin dan dari mesin ke radiator. Biasanya terbuat dari alumunium, dan ditempatkan di bagian kepala silinder. Gambar 2.12 Waterpump Universitas Mercu Buana 24 TUGAS AKHIR TEKNIK MESIN Sumber : http://tm.tangomotor.com/prestashop/234-large/water-pumpkijang-grand-kapsul.jpg 2. Radiator Radiator ini merupakan tempat dimana air didinginkan menggunakan jasa hembusan angin dari depan. Makanya letaknya biasanya didepan moncong mobil, komponen ini terbuat dari aluminium atau tembaga dengan banyak sekat dan didalamnya terdapat puluhan jalur air.Sekat fungsinya untuk menangkap angin dan jalur air yang banyak supaya air lebih terpecah dan cepat didinginkan.Pada komponen inilah air dari mesin yang panas disalurkan ke radiator dan setelah dingin kembali masuk kedalam mesin dengan bantuan pompa air. Gambar 2.13 Radiator Sumber : http://www.kiosban.com/wpcontent/uploads/2011/11/radiator1.jpg 3. Kipas Radiator Universitas Mercu Buana 25 TUGAS AKHIR TEKNIK MESIN Dipasang di belakang radiator pada sisi paling dekat ke mesin adalah satu atau dua kipas listrik di dalam perumahan yang dirancang untuk melindungi jari-jari dan untuk mengarahkan aliran udara. Ini fans yang ada untuk menjaga aliran udara melalui radiator saat kendaraan akan lambat atau berhenti dengan mesin menyala. Jika ini fans berhenti bekerja, setiap kali Anda berhenti, suhu mesin akan mulai naik. Pada sistem lama, kipas terhubung ke depan pompa air dan akan berputar setiap kali mesin itu berjalan karena digerakkan oleh sabuk kipas bukan sebuah motor listrik. Dalam kasus ini, jika driver akan melihat mesin mulai berjalan panas di berhenti dan pergi mengemudi, pengemudi mungkin menempatkan mobil di netral dan putaran mesin untuk menghidupkan kipas angin cepat yang membantu mendinginkan mesin. Gambar 2.14 Kipas Radiator Sumber : www.jagatreview.com 4. Tekanan Topi dan Cadangan Tangki Sebagai pendingin menjadi panas, mengembang.Karena sistem pendingin tertutup, ekspansi ini menyebabkan peningkatan tekanan dalam sistem pendingin, yang normal dan bagian dari desain.Ketika pendingin berada di bawah tekanan, suhu di mana cairan mulai Universitas Mercu Buana 26 TUGAS AKHIR TEKNIK MESIN mendidih jauh lebih tinggi.Tekanan ini, ditambah dengan titik didih lebih tinggi dari etilena glikol, memungkinkan pendingin untuk mencapai suhu aman lebih dari 250 derajat. Tutup tekanan radiator adalah perangkat sederhana yang akan mempertahankan tekanan dalam sistem pendinginan sampai titik tertentu. Jika tekanan menumpuk lebih tinggi dari titik tekanan yang ditetapkan, ada katup pegas dimuat, dikalibrasi dengan benar Pounds per inci persegi (psi), untuk melepaskan tekanan. Gambar 2.15 Tekanan Topi dan Cadangan Sumber : blognyamitra.wordpress.com dan harapansatria.blogspot.com 5. Thermostat Thermostat hanyalah sebuah katup yang mengukur suhu pendingin dan, jika itu cukup panas, terbuka untuk memungkinkan pendingin mengalir melalui radiator. Jika pendingin tidak cukup panas, aliran ke radiator diblokir dan cairan diarahkan ke sistem bypass yang memungkinkan pendingin untuk kembali langsung kembali ke mesin. Universitas Mercu Buana 27 TUGAS AKHIR TEKNIK MESIN Gambar 2.16 Thermostat Sumber : www.parts4engines.com 6. Sistem Bypass Ini adalah bagian yang memungkinkan pendingin untuk memotong radiator dan kembali langsung kembali ke mesin.Beberapa mesin menggunakan selang karet, atau tabung baja tetap. Di mesin lain, ada cast dalam bagian dibangun ke dalam pompa air atau depan perumahan. Dalam kasus apapun, ketika termostat tertutup, pendingin diarahkan untuk melewati ini dan disalurkan kembali ke pompa air, yang mengirimkan pendingin kembali ke mesin tanpa didinginkan oleh radiator. 7. Kepala Paking, Gasket, dan Intake Manifold Semua mesin pembakaran internal memiliki blok mesin dan satu atau dua kepala silinder.Dalam rangka untuk menutup blok ke kepala, Universitas Mercu Buana 28 TUGAS AKHIR TEKNIK MESIN kita menggunakan paking kepala. Gasket kepala memiliki beberapa hal yang dibutuhkan untuk menutup melawan.Hal utama adalah tekanan pembakaran pada silinder masing–masing. Minyak dan pendingin harus mengalir dengan mudah antara blok dan kepala dan itu adalah tugas dari paking kepala untuk menjaga cairan dari bocor keluar atau ke dalam ruang pembakaran, atau satu sama lain dalam hal ini. Sebuah paking kepala khas biasanya terbuat dari lembaran logam yang lembut yang dicap dengan pegunungan yang mengelilingi semua titik kebocoran. Ketika kepala ditempatkan di blok, paking kepala terjepit di antara mereka. Gambar 2.17Kepala Paking, Gasket, dan Intake Manifold Sumber : www.elise-shop.com 8. Heater Inti Pendingin panas juga digunakan untuk menyediakan panas untuk interior kendaraan bila diperlukan. Ini adalah sistem sederhana dan lurus ke depan yang meliputi inti pemanas, yang terlihat seperti kecil versi radiator, terhubung ke sistem pendingin dengan sepasang selang karet. Satu selang pendingin membawa panas dari pompa air ke inti Universitas Mercu Buana 29 TUGAS AKHIR TEKNIK MESIN pemanas dan selang lainnya pendingin kembali ke atas mesin.Biasanya ada katup kontrol pemanas di salah satu selang untuk memblokir aliran pendingin ke dalam inti pemanas ketika penyejuk udara maksimum disebut untuk.Sebuah kipas, disebut blower, menarik udara melalui inti pemanas dan mengarahkan melalui saluran pemanas untuk interior mobil. Gambar 2.18 Heater Inti Sumber : www.quickheater.com 9. Selang Ada beberapa selang karet yang membentuk pipa untuk menghubungkan komponen-komponen sistem pendingin.Selang utama disebut selang radiator atas dan bawah.Kedua selang sekitar 2 inci dan diameter pendingin langsung antara mesin dan radiator.Dua selang tambahan, disebut selang pemanas, pendingin pasokan panas dari mesin ke inti pemanas.Ini selang sekitar 1 inci diameter. Salah satu selang mungkin memiliki katup kendali pemanas dipasang di garis untuk memblokir pendingin panas dari memasuki inti pemanas ketika AC diatur untuk max–dingin. Sebuah selang kelima, disebut selang bypass, digunakan untuk mengedarkan pendingin melalui mesin, melewati Universitas Mercu Buana 30 TUGAS AKHIR TEKNIK MESIN radiator, ketika termostat ditutup.Beberapa mesin tidak menggunakan selang karet. Sebaliknya, mereka mungkin menggunakan tabung logam atau memiliki bagian built-in di perumahan depan. Gambar 2.19 Selang Radiator 2.6 Aditif Coolant (Cairan Ethylene). Fluida kerja umum yang digunakan didalamsistem pendingin air adalah air apabila air pada sistem pendingin terlalu panas, akan mengakibatkan blok silinder rusak. Oleh karena itu diperlukan suatu bahan aditif yang dapat meningkatkan titik didih dari air. Additive Coolant pada pembuangan panas radiator dilakukan untuk meningkatkan kerja dan efisiensi motor diesel dengan membuang panas berlebih pada motor, degan konsentrasi additive coolant yang bervariasi diharapkan diperoleh komposisi yang tepat konsentrasi coolant pada radiator yang mampu membuang panas terbaiknya. Bahan aditif yang sering digunakan : a. Metil alkohol Universitas Mercu Buana 31 TUGAS AKHIR TEKNIK MESIN Apabila metanol dicampur dengan konsentrasi tepat dengan air, metanol jarang disukai karena dapat menurunkan titik didih menjadi 82⁰C sehingga menyebabkan terjadinya penguapan ketika motor beroperasi lama. Sehingga dapat membahayakan kendaraan. b. Glycol Kebanyakan aditif yang terbuat dari etilen Glycol (C2H6O2) atau propylene Glycol (C3H8O2), Etilen glycol pada saat mencapai titik beku tidak berlangsung menjadi es, tetapi menghasilkan kristal es yang kecil yang tidak menghasilkan kerusakan pada motor. Berdasarkan para peneliti sebelumnya penggunaan aditif sebanyak 25% volume akan menurunkan titik beku air sampai -12.2⁰C, dan menaikan titik didih air sampai 110⁰C. dan penggunaan 33.3% volume akan menurunkan titik beku air sampai 120⁰C. Konsentrasi yang berbeda disarankan untuk suhu yang berbedabeda. Aditif yang digunakan dalam motor harus bisa menurunkan titik beku air dan menaikan titik didih air. Air murni beku pada suhu 0⁰C sedangkan aditif murni titik beku -19⁰C. Bahan aditif radiator mempunyai fungsi: a. Menaikan titik didih air sehingga penguapan dapat dicegah dan laju pembuangan panas akan lebih baik b. Aditif mengandung zat untuk mencegah korosi pada sistem pendingin sehingga perpindahan panas diantara air dengan logam akan lebih baik. c. Aditif juga berfungsi sebagai pelumas untuk bantalan pompa. Meskipun banyak keuntungan yang ditawarkan oleh aditif untuk kendaraanterutama pada bagian sistem pendingin, namun bahan aditif yang berbahan dasar Universitas Mercu Buana 32 TUGAS AKHIR TEKNIK MESIN etilen glycol. Merupakan zat kimia beracun dan jika terurai akan menghasilkan asam oxilic dan juga bisa menyebabkan karatan. Sehingga penggunaanya harus dijaga dan aditif yang digunakan harus diganti sebelum terurai. Hal yang perlu diperhatikan adalah waktu pencampuran aditif harus mengikuti petunjuk penggunaan yang terdapat pada label additive coolant tersebut. Dalam penelitian ini bahan aditif yang digunakan adalah merek prestone Gambar 2.20 Cairan Ethylene (Aditif Coolant) 2.6. Prinsip Kerja Sistem Pendinginan Air Pada sistem pendinginan air terdapat dua jenis sirkulasi yang digunakan untuk mendinginkan mesin, yaitu : sirkulasi alam dan sirkulasi tekan. Pada sirkulasi alam, prinsip kerjanya mengikuti sifat air.Sedangkan pada sirkulasi tekan, untuk mengalirkan air pendingin menggunakan bantuan pompa air (water pump).Sirkulasi tekan banyak digunakan pada mesin-mesin sekarang, karena proses sirkulasi air yang lebih cepat dan penggunaan radiator yang lebih kecil.Adapun cara kerja dari sistem pendinginan air adalah sebagai berikut : 1. Saat Mesin Hidup Universitas Mercu Buana 33 TUGAS AKHIR TEKNIK MESIN Saat mesin dihidupkan dan belum mencapai temperatur kerja mesin, penyerapan panas oleh air pendingin belum diperlukan.Sirkulasi air hanya disekitar kantong air karena adanya termostat yang belum membuka saat temperatur air pendingin belum mencapai suhu kerja. Air pendingin pada kantong-kantong air yang dipompa akan mengalir melalui saluran by pass, sehingga akan kembali lagi ke kantongkantong air. Air pendingin yang berada pada sistem pendingin akan selalu cenderung panas. Saat suhu mesin melebihi suhu optimal, maka termostat akan membuka dan air yang berada pada kantong-kantong air akan mengalir menuju radiator untuk didinginkan, sedangkan air yang dingin pada radiator akan mengantikan air pada kantong air untuk mendinginkan mesin. 2. Saat Mesin Mati Saat mesin dimatikan, maka air pendingin yang berada pada kantong air akan terus menyerap panas dari mesin. Saat mesin telah dingin, temperatur dan volume cairan pendingin akan berkurang dan membentuk ruangan vakum dalam radiator. Ketika terjadi kevakuman tersebut, maka vacum valve pada tutup radiator akan membuka secara otomatis, yang kemudian akan menghisap udara segar ataupun air dalam tanki cadangan untuk menganti kevakuman dalam radiator. Universitas Mercu Buana 34