BAB 2. TEORI POTENSIAL INKOMPRESIBEL 2.1. Garis Aliran, Stream Function, Sirkulasi, Vortisitas Dalam bab ini akan dibahas teori yang mengawali ilmu termodinamika, yaitu tentang medan atau aliran potensial. Mula-mula akan dikenalkan garis aliran atau streamline, kemudian konsep stream function yang merupakan pernyataan lain dari Hukum kekekalan massa fluida incompressible. ditambah dengan konsep sirkulasi dan vortisitas. Vortisitas adalah komponen pusar dari medan aliran. Di sini di definisikan bahwa medan potensial adalah medan dengan vorisitas nol atau ir-rotasional, atau medan aliran dengan komponen pusar. Ternyata hanya beberapa jenis aliran elementer yang termasuk dalam medan potensial, yaitu aliran merata, source/sink, free-vortex dan doublet, yang dari merekalah akan tersusun teori-teori terapan seperti conformal mapping, metoda panel, teori airfoil Glauert dan sebagainya. Tidak kalah penting di sini peran "Teori fungsi variabel kompleks", yang masih diperkenalkan dalam operasi paling sederhana untuk memberikan contoh-contoh pemakaiannya yang menawarkan kernudahan. 1) Teori ini meliputi tinjauan - Aliran incompressible - Mengabaikan viskositas - 2- dimensional Kinematika fluida : deformasi, kecepatan, percepatan fluida. - Metoda Lagrangian - Metoda Eularian 2) Definisi FLUX adalah kecepatan volume dari aliran lewat permukaan yang ditinjau dapat dinyatakan pada : 3-dimensi : 2- dimensi : fluks = ∫ fluks =∫ 3) Persamaan Kontinuitas (HKM) Dalam suatu sistem aliran, Aliran massa + masuk keluar ( ) arah x : : : ( ) ( + ) Keluar dari elemen volumetrik neto = arah y = arah z = ( ( ) ( (arah x) ) ) aliran massa neto keluar dari V = ( )+ ( masa fluida dalam elemen : Perubahan masa fluida : - )+ ( ) Jadi dengan demikian diperoleh persamaan kontinuitas di bawah ini A. Hukum Kekekalan masa (kontinuitas) : Aliran tak mantap, tak mampat Tiga dimensional + B. Aliran mantap, compressible, )+ )+ ( )+ =0: 3-dimensional ( ( ( )+ ( )=0 ( )=0 C. Aliran incompressible : = 3-dimensional + + + + + ∇ + =0 + + 2-dimensional 4) - Kartensian - Kutub (polar) : : Persamaan Garis Aliran a. + + =0 + =0 Cartesian : q = veltor kecepatan yang menyinggung garis aliran y(x) q² = u² + v² persamaan garis aliran : y = y(x) kemiringan (slope) y = y(x) = b. Polar : r = r () Kemiringan di P : = CONTOH : a. Aliran merata : u = U = kons tan v = V = kons tan + =0 = = 2− persamaan garis aliran : = + tan tan =0 b. (i) V = 0 y = konstan (ii) U = 0 x = konstan u=x v = -y a. + b. = =0 → 2− =− → In y + In x = In konstan + =0 xy = konstan persamaan garis adalah : c. source & sink : r² = x² + y² persamaan garis aliran : r = 0 ; titik singular m = strength of the source Source kalau tanda dibalik m =negativ sink d. forced - vortex : persamaan garis aliran rotasi benda padat e. free-vortex : r2 = x2 +y2 sirkulasi k>0 persamaan garis aliran q0 ; r q ; r0 STREAM FUNCTION: : (x, y) flux yang melewati garis Fluks antara A B(B — B) a. Cartensian : HKM (kontinuitas) definisi stream function (11) Menghapus keharusan untuk meyakinkan bahwa aliran adalah : b. Polar : 2-dimensi Incompressible CONTOH : a. Aliran merata : b. Source di O : Stream line = konstan. c. Free-vortex di O : Logarithmis Garis aliran = garis r konstan. d. Forced-vortex pusat di O : Kuadratis PRINSIP SUPERPOSISI : Aliran 1 : Aliran 2 : Kalau : Maka : CONTOH : a. Pasangan SOURCE-SINK : - Source & sink sama kuat (±m) di sumbu x berjarak a dari O - Lingkaran-Iingkaran yang lewat ± m berpusat di sumbu y b. Doublet = pasangan SOURCES-SINK dengan - Bila a kecil konstan ditahan dengan = - Iingkaran-Iingkaran yang lewat O berpusat di sumbu y. SIRKULASI adalah integral garis daripada komponen tangensial mengelilingi kurva tertutup C (berlawanan dengan jarum jam. VORTICITY : vorticity vektor yang arahnya bidang x-y sebagai gambaran : vorticity ROTASI Aliran Irrotasional, Potensial Kecepatan (singgung) kecepatan ALIRAN IRROTATIONAL : Suatu medan yang bebas dari VORTICITY Vorticity ()= 0 dimana-mana dalam medan tersebut Contoh a. Aliran merata : b. Source atau sink (disekeliling) c. Free vortex (disekeliling) Sirkulasi Contoh : a. Aliran shear merata : Vorticity 0, bukan irrotational Aliran rotational Walaupun kecepatan sejajar b. Forced vortex : memang seperti benda padat berputar dimanapun - Aliran rotational Contoh : aliran irrotational Aliran merata Source, sink, doublet Free vortex VELOCITY POTENTIAL () tak tergantung lintasan (ACB atau AC'B) berharga tunggal berharga tunggal (single valued) = potensial kecepatan (velocity potential) selain dititik-titik singular Agar single-valued = 0, aliran irrotational Aliran = POTENTIAL FLOW = single-valued Kalau tidak single-valued (multi-valued) : - Tergantung pada lintasan yang dipilih RINGKASAN : Aliran potential (pengaruh viscos diabaikan) Aliran yang invicid dan irrational ( = ∇ Syarat : ̅ = 0) = vel. Potential single-valued q² = u² + v² atau : syarat irrotational Aliran incompressible (2-dimensi) : definisi Stream function : irrotational TEORI FUNGSI VARIABEL KOMPLEKS : Suatu fungsi adalah analytic ( single-value) dalam suatu domain D bila dan ada dan memenuhi persamaan Cauhy-Riemann Yang akibatnya (x,y) dan (x, y) adalah harmonik dalam D artinya Polar : CONTOH : a) Aliran merata : u=U,v=V a. Source di O : b. Free-vortex di 0 : c. Doublet dengan kekuatan = zam di O 2.2. Pemakaian Aljabar Bilangan Kompleks Karena : vel. Potential () dan stream function ( ) Untuk aliran potential tak mampat (∇ = 0 dan ∇) Dapat menyusun fungsi analitis w(z) POTENSIAL KOMPLEKS Dalam suatu domain D dalam bidang komplex. Analisa dan bisa menggunakan analisa variable komplek. CONTOH : (potential kompleks) a. Aliran merata : b. Source di O : c. Free-vortex di O : d. Doublet di O : Kalau w(z) — analitis (dalam suatu domain) CONTOH : a. Aliran merata b. Source di O : c. Free-vortex di O : d. Doublet di O : Aliran merata melewati benda : Aliran ideal (inviscid) Sama dengan — benda berjalan dengan kecepatan konstan melewati fluida diam. Simulasi diperoleh dengan kombinasi aliran merata + (doublet, source, sink, vortex) Batasan (syarat-syarat) : a) Jauh dari benda, pengaruh adanya tak dirasa b) Tak ada aliran menembus batas benda c) Tak ada "singularity" dalam daerah fluida d) Jumlah "source" dan "sink" dalam benda = nol. Contoh-contoh : a. Half body dari Rankine b. Rankine oval ALIRAN LEWAT SILINDER : Potential kompleks : a. Kekuatan doublet menentukan besarnya silinder : (terhadapV) b. Usahakan lingkaran r = a suatu garis aliran c. Stream function pada lingkaran r = a Misal : d. Potensial kompleks Kekuatan doublet dilingkaran r = a 2.3. ALIRAN LEWAT SILINDER DENGAN SIRKULASI Potential Kompleks: Dengan adanya tambahan sirkulasi (vortex), tidak nol lagi di lingkaran r =a, agar tetap nol, dicari harga c. dilingkaran agar di r = a potensial kompleks : 2.4 THEOREMA BLASIUS Misal w(z) = potensial kompleks aliran dua dimensi invicid lewat benda. X dan Y adalah komponen gays dalam arah x dan y. M adalah momen berlawanan dengan arah jarum jam di z = 0, maka C : kurva yang merupakan batas benda. Contoh : Artinya : X = 0, tidak ada drag di lembert paradox Y= lift hasil dari Kutt - Joukowski. M = 0, lift , bekerja melalui gars lewat 0. 2.5 CONFORMAL MAPPING Fungsi transformasi Catatan : o potensial kompleks dibidang z adalah juga potensial kompleks dibidang o sources, sinks dan vortex tertransformasi ke sources, sinks dan vortex dengan o kecepatan kompleks W tertransformasi mengikuti mapping function di atas. o potential kecepatan (W) kekuatan yang sama 2.6 TRANSFORMASI JOUKOWSKI Jauh dari benda aliran "free stream" Modified Joukowski Transformation : Kelemahan "Joukowski transformation" : sudut pada "trailing edge" (TE) harus nol (cusped). Modifikasi : untuk n=2 transformasi Joukowski. Mirip dengan Joukowski tapi sudut "trailing edge" (TE) tertentu.