41 IV. METODE PENELITIAN 4.1 Jenis dan Sumber Data Analisis integrasi pasar dan transmisi harga merupakan bagian dari analisis data time series. Penelitian ini menggunakan data bulanan pada periode Januari 2000April 2012 sehingga jumlah data pada masing-masing series data adalah 148 buah. Dalam analisis integrasi dan transmisi harga pada pasar CPO domestik dan pasar CPO internasional, data yang digunakan adalah harga CPO internasional (PCPOINT) dan harga CPO domestik (PCPODOM). Harga CPO internasional bersumber dari data World Bank yang mengacu kepada harga CPO di Malaysia dan Eropa, sementara harga CPO domestik bersumber dari Badan Pengawas Perdagangan Berjangka Komoditi (Bappebti) Kementerian Perdagangan, yang mengacu kepada harga spot di Pelabuhan Belawan. Data harga CPO domestik dan harga CPO internasional selanjutnya digunakan dalam analisis integrasi pasar dan transmisi harga pada pasar minyak goreng domestik. Dalam analisis ini juga digunakan data harga minyak goreng domestik (PMGDOM) yang merupakan harga rata-rata minyak goreng dari 33 kota besar di Indonesia. Data harga minyak goreng bersumber dari Ditjen Perdagangan Dalam Negeri Kementerian Perdagangan. Pada analisis transmisi harga horizontal, data yang digunakan adalah harga minyak goreng di beberapa wilayah yang diwakili oleh harga pasar di masingmasing ibu kota propinsi yang terpilih. Data harga minyak goreng antar wilayah pada analisis ini meliputi harga minyak goreng di Medan (PMGMDN), Pekanbaru (PMGPKBR), Palembang (PMGPLBG), Jakarta (PMGJKT), Bandung (PMGBDG), Semarang (PMGSMRG), Surabaya (PMGSRBY), Denpasar (PMGDPSR), Pontianak (PMGPTK) dan Makasar (PMGMKSR). Harga minyak goreng di Medan, Pekanbaru dan Palembang dipilih untuk mewakili harga minyak goreng di wilayah produsen minyak goreng yang juga merupakan sentra kelapa sawit. Dalam hal ini, Sumatera Utara, Riau dan Sumatera Selatan merupakan sentra kelapa sawit di Indonesia. Harga minyak goreng di Jakarta dan Surabaya juga mewakili harga wilayah produsen. Meskipun DKI Jakarta dan Jawa Timur tidak memiliki areal sawit, tetapi kedua wilayah ini 42 mempunyai sentra industri minyak goreng sawit dengan kapasitas yang cukup besar. Wilayah konsumen diwakili oleh harga minyak goreng di Bandung, Semarang, Denpasar, Pontianak dan Makasar. Seluruh kota tersebut kecuali Bandung merupakan kota-kota yang mempunyai sarana pelabuhan. Sementara Jawa Barat merupakan salah satu wilayah yang tingkat konsumsi minyak gorengnya termasuk tertinggi di Indonesia (KPPU, 2010) sehingga keterkaitan pasar minyak goreng di wilayah ini dengan pasar minyak goreng di wilayah lain menjadi penting untuk dianalisa. Selain data tersebut, penelitian juga ditunjang oleh data lain yang terkait dengan agribisnis kelapa sawit yang bersumber dari BPS, Kementerian Pertanian, Kementerian Perindustrian serta institusi lain yang terkait. 4.2 Metode Analisis Analisis yang dilakukan dalam penelitian ini menggunakan bantuan software Eviews 6.1 dan prosedur analisis yang dilakukan meliputi : 4.2.1 Analisis Pergerakan Harga CPO dan Minyak Goreng Pergerakan harga CPO baik pada tingkat domestik maupun internasional serta pergerakan harga minyak goreng dianalisis dari perkembangan harga pada setiap series harga. Pengaruh perubahan kebijakan yang terkait ekspor CPO terhadap stabilitas harga minyak goreng di dalam negeri dilihat dari volatilitas harga minyak goreng yang dianalisis dari nilai Koefisien Variasi (KV) pada periode 2000-2007 dan pada periode 2007-2012. Periodisasi tersebut berdasarkan pada perubahan kebijakan penetapan bea ekspor pada akhir 2007 yang lebih mengacu kepada perubahan harga CPO internasional. Nilai KV digunakan untuk mengetahui kecenderungan data bersifat fluktuatif atau cenderung stabil dibandingkan dengan data yang lain. Semakin besar nilai koefisien ragam, berarti perbedaan harga cenderung fluktuatif dari nilai tengahnya. Koefisien ragam dihitung melalui persamaan berikut : ............................................................................. (4.1) 43 Dimana σ x 2 : Koefisien ragam dari harga pada masing-masing pasar selama periode pengamatan : Rata-rata harga selama periode pengamatan 4.2.2 Pola Disparitas Antar Waktu Harga CPO-Minyak Goreng Analisis disparitas harga antar waktu antara harga CPO dengan harga minyak goreng dilakukan dengan cara melihat perkembangan selisih harga antara kedua komoditas tersebut dan tingkat pertumbuhan harga masing-masing komoditas. Analisis dilakukan secara deskriptif dengan bantuan grafik. 4.2.3 Uji Stasioneritas Data Uji Stasioneritas data merupakan tahap yang penting dalam analisis yang menggunakan data time series. Stasioneritas data time series diuji melalui uji unit root dimana sebuah variabel disebut mempunyai unit root atau I(1) jika data tersebut non-stasioner. Stasioneritas data merupakan syarat penting dalam analisis model ekonometrika yang menggunakan data time series untuk menghindari terjadinya spurious regression, yaitu persamaan regresi yang menghasilkan nilai korelasi yang tinggi tetapi penafsiran hubungan antar series ini dari sisi ekonomi akan menyesatkan. Metode Dickey-Fuller (DF) adalah metode yang dapat digunakan untuk menguji stasioneritas data. Metode ini mengharuskan kita untuk menentukan spesifikasi model dari variabel yang akan diuji. Menurut Vogelvang (2005), persamaan regresi pada umumnya mempunyai tiga bentuk, yaitu: model tanpa konstanta dan tanpa trend, model dengan konstanta tetapi tidak mempunyai trend, dan model dengan konstanta dan trend. Pada umumnya, variabel ekonomi berada pada situasi kedua yaitu model dengan konstanta tetapi tanpa trend. Menurut Vogelvang (2005), konstanta merupakan bagian penting dari model, namun penambahan trend dinilai berlebihan dan tidak perlu. Sementara model dalam bentuk pertama digunakan untuk variabel terdifferensiasi. Persamaan matematika dari model dengan situasi kedua dapat dituliskan sebagai berikut : Yt = 0 + 1 Y t-1 + u t ......................................................................... (4.2) 44 Dimana Y t Y t-1 = Series harga = Series harga periode bulan lalu Hipotesis nol yang digunakan dalam pengujian adalah: H 0 : Y t ~ I(1), terdapat unit root H 1 : Y t ~ I(0), tidak terdapat unit root Untuk mempermudah pengujian maka persamaan (4.2) diubah dalam bentuk: ∆Y t = Jika γ = 1 -1, ∆Y t = 0 +( 1 -1) Y t-1 + u t ............................................................... (4.3) maka persamaan diatas dapat dituliskan menjadi : 0 + γ Y t-1 + u t ....................................................................... (4.4) Selanjutnya angka t-statistik t Ɵ dihitung dengan rumus: tγ= .................................................................................................... (4.5) Dalam penelitian ini, metode yang digunakan untuk menguji unit root adalah Tes Augmented Dickey-Fuller (ADF) dengan persamaan berikut : ∆ yt = α +δ yt-1 + Σλ j ∆ yt-i+1 + ε t .............................................. (4.6) Dimana ∆ yt merupakan first difference dari yt . Hipotesis yang diuji adalah sama dengan metode DF, dimana : H 0 : Y t ~ I(1), terdapat unit root H 1 : Y t ~ I(0), tidak terdapat unit root Nilai t-statistik yang diperoleh dari uji ADF kemudian dibandingkan dengan nilai kritis Mc Kinnon. Jika nilai t-statistik dalam uji ADF lebih kecil dari nilai kritis Mc Kinnon maka Ho diterima yang berarti data tidak stasioner dan perlu dilakukan diferensiasi dari ordo 1. 45 4.2.4 Penentuan Lag (ordo) Optimal VAR Penentuan panjang lag yang optimal sangat penting dalam pembentukan model VAR karena variabel endogen dalam sistem persamaan akan digunakan sebagai variabel eksogen. ditentukan lag Menurut Setiap variabel dalam VAR perlu untuk optimalnya autokorelasi residual. untuk menghindari kemungkinan terjadinya Penentuan lag optimal dapat dilakukan berdasarkan beberapa kriteria. Dalam penelitian ini, lag optimal ditentukan berdasarkan nilai terkecil menurut kriteria SC (Schward Criterion) yang ditentukan dengan persamaan : SC = - 2(l/T) + n log (T) /T ............................................................... (4.7 ) Dimana n = k(d + pk) adalah jumlah total parameter yang diestimasi dalam VAR. 4.2.5 Pengujian Kointegrasi Setelah diketahui bahwa data bersifat non-stasioner, langkah selanjutnya pengujian terhadap adanya kointegrasi. Kointegrasi adalah hubungan jangka panjang yang terjadi antara dua series atau lebih data yang masing-masing bersifat non-stasioner pada level (I(1)), dimana fungsi linier hubungan jangka panjangnya bersifat stasioner (I(0)). Kointegrasi mengakibatkan harga bergerak berdekatan bersama-sama pada jangka panjang meskipun pada jangka pendek bergerak sendiri-sendiri (Vavra dan Goodwin, 2005) . Pegujian kointegrasi bertujuan untuk mengetahui apakah suatu grup yang terdiri dari beberapa data non-stasioner terkointegrasi atau tidak. Salah satu metode pengujian kointegrasi adalah pengujian kointegrasi Johansen. Metode pengujian yang dikembangkan oleh Johansen (1991) ini menggunakan pendekatan maximum likehood untuk menguji hubungan kointegrasi berbasis VAR. Dimisalkan sebuah VAR dengan orde p : y t = A 1 yt-1 + ... + A p yt-p + B x t + ε t ................................................ Dimana yt adalah vektor k dari variabel-variabel non-stasioner I(1) x t adalah vektor d dari variabel deterministik ϵ t adalah vektor dari inovasi (4.8) 46 Selanjutnya bentuk VAR tersebut dapat dituliskan ulang dengan mengurangkan y t-1 pada setiap sisi hingga diperoleh bentuk berikut : ∆yt = Π yt-1 + Dimana i ∆yt -i + B x t + ε t ............................................ (4.9) Π= = Persamaan (4.9) mengandung informasi penyesuaian jangka pendek dan jangka panjang terhadap perubahan yt . Simbol menggambarkan dinamika jangka pendek dan Π adalah matriks koefisien jangka panjang. Menurut teori Granger’s Representation, jika matrik koefisien Π mempunyai rank tereduksi r < k, maka akan terdapat k x r matrik α dan β masing-masing dengan rank r dimana Π = α β’ d an β’ y t adalah I(0). Dalam hal ini r adalah jumlah hubungan kointegrasi yang terjadi (cointegration rank) dan setiap kolom β merupakan vektor kointegrasi. Sementara itu, α adalah adjustment parameter pada model VEC. Metode Johansen mengestimasi matrik Π dari suatu VAR tidak terestriksi dan menguji apakah restriksi yang dilakukan terhadap rank tereduksi dari Π dapat ditolak atau tidak. Pengujian kointegrasi dengan metode Johansen memungkinkan pengujian terhadap vektor kointegrasi yang signifikan melalui dua uji yang berbeda, yaitu melalui penelusuran trace test dan maximum eigenvalue. Trace test ( λ trace (r)) merupakan uji likelihood ratio untuk mengetahui vektor kointegrasi r terbanyak dengan persamaan: λ trace = T ∑ ln (1- ) .......................................................................... (4.10) Dimana T adalah jumlah observasi dan λ trace adalah eigenvalues. Pengujian yang kedua adalah melalui penelusuran maximum eigenvalue yaitu dengan menguji relevansi kolom r+1 dalam β dengan persamaan : λ max (r, r+1) = -T ∑ ln (1- ) ........................................................ (4.11) 47 Metode Johansen dilengkapi dengan nilai kritis baik untuk pengujian trace test maupun maximum eigenvalue yang digunakan untuk menentukan apakah H 0 dapat ditolak atau tidak. Hipotesis dalam pengujian ini adalah : H0 : r = 0 ; H1 : r = 1 H 0 : r <= 1 ; H 1 : r = 2 H 0 : r <= 2 ; H 1 : r = 3 Jika nilai statistik yang diperoleh dari pengujian lebih kecil dari nilai kritis Johansen maka H 0 tidak dapat ditolak. Jika H 0 : r = 0 tidak ditolak maka dapat disimpulkan bahwa tidak terdapat vektor kointegrasi dan pengujian tidak dilanjutkan. Sebaliknya jika H 0 : r = 0 dapat ditolak berarti terdapat satu vektor kointegrasi dan pengujian dilanjutkan sampai diperoleh nilai statistik dimana H 0 tidak dapat ditolak. 4.2.6 Estimasi VAR (Vector Autoregression) dan VECM (Vectors Error Correction Model) VAR adalah suatu sistem persamaan dimana setiap variabel merupakan fungsi linier dari lag variabel itu sendiri dan lag variabel lain. Model ekonometrika ini dibangun dengan meminimalkan pendekatan teori dengan tujuan agar dapat menangkap fenomena ekonomi dengan baik ( Widarjono, 2009). Model ini diperkenalkan oleh Sims (1980) sebagai model alternatif dalam analisis ekonometrika setelah melihat banyak persamaan struktural (persamaan yang didasarkan pada teori ekonomi) yang sulit untuk diimplementasikan karena seringkali terlalu kompleks dan memberikan restriksi yang berlebihan. Seperti halnya model simultan, model VAR juga dapat menganalisis saling ketergantungan antar variabel timeseries. Perbedaan antara model VAR dengan model simultan adalah dalam model simultan setiap variabel diklasifikasikan sebagai variabel eksogen atau variabel endogen. harus Sebaliknya dalam model VAR variabel endogen tidak dibedakan dengan variabel eksogen. Setiap variabel baik endogen maupun eksogen yang dipercaya saling berhubungan harus dimasukkan ke dalam model (Widarjono, 2009). Hubungan saling ketergantungan antar variabel dilakukan dengan memasukkan kelambanan dari 48 setiap variabel untuk menangkap pengaruh setiap variabel terhadap variabel lain dalam model. Pembentukan model VAR dilakukan dalam beberapa tahap, yang diawali uji stasioneritas dan pengujian kointegrasi. Jika dari pengujian stasioneritas disimpulkan jika data sudah stasioner pada tingkat level, maka digunakan model VAR biasa (unrestricted VAR). Sebaliknya jika data tidak stasioner pada level tapi menjadi stasioner setelah dilakukan diferensiasi, selanjutnya harus dilakukan pengujian kointegrasi. Jika terdapat kointegrasi maka model yang digunakan adalah VECM, tetapi jika tidak terdapat hubungan kointegrasi maka digunakan model VAR dalam bentuk diferensiasi (VAR in difference). Model VECM merupakan model VAR non struktural yang juga disebut model VAR terestriksi karena merestriksi hubungan perilaku jangka panjang antar variabel agar konvergen ke dalam hubungan kointegrasi tetapi tetap membiarkan perubahan-perubahan dinamis dalam jangka pendek (Widarjono, 2009). Tahapan permodelan VECM secara umum adalah: 1. Uji stasioneritas terhadap variabel-variabel kointegrasi. 2. Pengujian kointegrasi untuk menduga hubungan jangka panjang antar variabel melalui permodelan VAR yang tidak terestriksi dengan metode maximum likelihood terhadap persamaan : 3. x t = μ t + Π 1 x t-1 + ... + Π k x t-k + ε t , t= 1,...,T .................................. (4.12) Formulasi bentuk VECM dari VAR (restricted VECM) dengan persamaan : ∆x t = μ t + Γ 1 ∆x t-1 + ... + Γ k-1 ∆x t-k + Π x t-1 + ε t , t= 1,...,T............... (4.13) Dimana Γ i = -1 + Π(1,...,k-1) dan Π = -1+ Π 1 +...+ Π k . Jika variabel-variabel tersebut terkointegrasi maka sisaan dari regresi keseimbangan dapat digunakan untuk menduga VECM. Secara umum tahapan permodelan VAR dijelaskan pada Gambar 14 berikut: 49 DATA TIME SERIES Uji Stasioneritas Data Stasioner pada Level Data Stasioner pada First Difference Unrestricted VAR Uji Kointegrasi Tidak ada kointegrasi Terdapat Kointegrasi VAR in Difference VECM Gambar 14 Tahapan Pembentukan Model (Sumber : Widarjono,2009) 4.2.7 Pengujian Impulse Response Sebuah guncangan yang terjadi terhadap variabel ke-i tidak hanya berdampak terhadap variabel ke-i saja, tetapi juga ditransmisikan kepada semua variabel endogen melalui struktur dinamis (lag) dari VAR. Impulse Response Function (IRF) dapat melacak dampak dari timbulnya sebuah inovasi (shock) terhadap nilai variabel endogen saat ini dan yang akan datang. Pengujian impulse response dilakukan dengan melakukan penyederhanaan terhadap SVAR menjadi bentuk Vector Moving Average (VMA) yang dapat dituliskan sebagai (Enders, 2004) : x t = μ+ ....................................................................... (4.14) Dalam bentuk vektor, persamaan di atas dapat dituliskan sebagai berikut: ................................. (4.15) 50 dimana merupakan impulse response function. Secara visual perilaku dari y t dan z t sebagai respon dari timbulnya guncangan dapat ditampilkan dengan melakukan ploting keempat koefisien Φ 11 (i), Φ 12 (i), Φ 21 (i) dan Φ 22 (i) terhadap i. 4.2.8 Pengujian Kausalitas Blok (Block Causality Test) Pengujian kausalitas dalam penelitian ini menggunakan metode block causality test yang merupakan generalisasi dari metode Granger causality test ke dalam bentuk multivariate. Dasar dari block causality test adalah pengujian terhadap eksogenitas suatu variabel. Menurut Enders (2004), terdapat sedikit perbedaan antara kausalitas dengan eksogenitas. Suatu variabel z t mempunyai sifat eksogen jika nilai y t saat ini dan nilai masa lalunya tidak berpengaruh terhadap z t . Dengan demikian, meskipun yt tidak Granger cause terhadap z t , tidak selalu z t bersifat eksogenus terhadap y t . Tujuan dari pengujian block causality adalah untuk mengetahui apakah suatu variabel dapat diikutsertakan dalam sistem VAR dengan cara menentukan lag tertentu dari suatu variabel yang Granger-cause terhadap variabel lain dalam sistem. Suatu sistem VAR dengan tiga variabel w t , y t dan z t maka ditentukan lag dari w t yang Granger cause terhadap y t dan z t . Lag dari wt kemudian direstriksi dalam persamaan y t dan z t menjadi sama dengan nol. Langkah selanjutnya adalah mengestimasi y t dan z t menggunakan lag dari y t , z t dan w t kemudian menghitung ∑ u . Selanjutnya dilakukan estimasi ulang dengan mengeluarkan lag w t sehingga diperoleh ∑ r dan dilakukan pengujian likelihood ratio statistic dengan rumus (Enders, 2004) : (T-c)(logI∑ r l -logI∑ u l) ..................................................................... (4.16) Dimana c adalah konstanta dengan nilai 3p +1 Statistik uji ini mempunyai sebaran chi-square dengan derajat bebas sama dengan 2p (dimana p adalah nilai lag dari w t yang telah dikeluarkan dari setiap persamaan). 51 Dalam penelitian ini, pengujian kausalitas blok hanya digunakan untuk analisis transmisi harga spasial, yaitu untuk menentukan arah transmisi pada masiing-masing pasangan harga. Pada analisis transmisi harga vertikal arah transmisi antara harga CPO dengan harga minyak goreng ditentukan berdasarkan asumsi ekonomi yang berlaku, dimana harga CPO sebagai bahan baku utama minyak goreng akan mempengaruhi harga minyak goreng. 4.2.9 Uji Transmisi Harga Asimetris (Asymmetric Price Transmission/APT) Menurut Engle dan Granger (1987), jika dua series harga saling terkointegrasi, maka akan terdapat mekanisme yang disebut error correction representation (ECR). Salah satu metode pengujian APT adalah melalui pendekatan ECM (Error Correction Model). Pendekatan ini diperkenalkan oleh Taubadel& Fahlbusch (1996) dengan cara mengembangkan ECM standar dengan memasukkan asymmetric adjustment terms. Integrasi pasar yang terjadi baik secara vertikal menyebabkan perubahan harga CPO internasional dan CPO domestik ditransmisikan ke pasar minyak goreng sehingga menimbulkan respon berupa perubahan harga minyak goreng. Dalam pasar persaingan sempurna, informasi kenaikan harga CPO akan diteruskan dan direspon dengan kecepatan atau besaran yang sama dengan penurunan harga. Sebaliknya pasar yang tidak efisien akan memberikan respon yang berbeda antara ketika terjadi kenaikan dan penurunan harga. Hal yang sama juga berlaku secara spasial, antara harga pada pasar acuan dengan harga pada pasar lokal/konsumen. Respon yang terjadi pada pasar tujuan dapat diukur dari besaran error correction term (ECT)-nya, yaitu koefisien variabel yang mengukur koreksi terhadap penyimpangan dari keseimbangan jangka panjang. Perbedaan respon dapat dievaluasi dari ECT positif dan ECT negatif, yaitu respon ketika terjadi kenaikan dan penurunan harga. Perbedaan antara koefisien pada kedua variabel tersebut menunjukkan jika transmisi berjalan asimetris. Prosedur pengujian APT melalui pendekatan ECM meliputi: 1. Pengujian stasioneritas data 2. Pengujian kointegrasi 52 Jika harga-harga terkointegrasi maka koefisien yang diestimasi pada OLS merupakan estimasi dari hubungan keseimbangan dalam jangka panjang diantara harga-harga tersebut. 3. Mengestimasi ECM. Model ECM pertama kali diestimasi dengan memasukkan asymmetric adjustment term secara umum, tanpa melihat penyebab adjustment, apakah disebabkan kenaikan atau penurunan harga atau dapat disebut ‘model simetris’. Secara matematis persamaan simetris dapat dituliskan sebagai : ∆P i,t = 0 + 1 ∆P j,t + 2 ECT t-1 + 3 (L) ∆P i,t-1 + 4 (L) ∆P j,t-1 + t (4.17) P i,t dan P j,t pasangan harga yang saling terkointegrasi Dimana ECT t-1 = u t-1 = lag residual dari persamaan kointegrasi 3 (L) dan 4 (L) merupakan lag polinomial Untuk menganalisis APT, Selanjutnya untuk dieksplorasi perbedaan adjustment yang disebabkan kenaikan dan penurunan harga yaitu ECT t-1 dengan melakukan segmentasi dalam bentuk positif dan negatifnya. Persamaan matematikanya model ini menjadi : ∆P i,t = 0 + 1 ∆P j,i + 2 +ECT+ t-1 + 2 –ECT- t-1 + 3 (L) ∆P i,t-1 + 4 (L) ∆P j,t-1 + t ............................................................................................................................... (4.18) Dimana P i,t dan P j,i adalah pasangan harga yang terkointegrasi ECT = error correctiom term, yaitu lag error yang ada pada setiap persamaan jangka panjang masing-masing pasangan harga ECT+ t-1 = ECT t-1 >0; dan ECT- t-1 = ECT t-1 <=0 Error correction terms (ECT) merupakan residual dalam bentuk lag-nya yang diperoleh dari persamaan keseimbangan jangka panjang (persamaan kointegrasi). Koefisien Error correction terms/ECT ( 2 + dan 2 –) merupakan besaran penyesuaian kepada keseimbangan jangka panjang per periode. ECT+ merupakan penyesuaian ketika perbedaan harga antara kedua series harga lebih besar dari kondisi keseimbangannya, dan sebaliknya ECT- adalah penyesuaian 53 ketika perbedaan harga antara kedua series harga lebih kecil dari kondisi keseimbangan. 4. Uji Wald terhadap koefisien ECT+ dan ECTJika 2 + dan 2 – menunjukkan nilai yang berbeda, maka dapat disimpulkan adanya respon terhadap kenaikan dan penurunan harga. Meskipun demikian, secara statistik harus dibuktikan apakah kedua koefisien berbeda nyata. Untuk membuktikan hal tersebut dilakukan Uji Wald terhadap koefisien ECT+ dan ECT-. Null hyphotesis dalam pengujian ini adalah H 0 : ( 2 + = 2 - ) versus H 1 :( 2 + ≠ 2 - ). Jika hipotesis nol ditolak berarti secara statistik terdapat perbedaan dalam penyesuaian terjadinya deviasi dari keseimbangan jangka panjang, antara ketika terjadi kenaikan dan penurunan harga. Hal ini berarti transmisi berjalan asimetris. Sebaliknya jika hipotesis nol tidak dapat ditolak berarti transmisi berjalan simetris, dan hubungan jangka panjang dan jangka pendek dapat diestimasikan dengan persamaan simetrisnya.