Tanah dan Bentuk Lahan Didik Suprayogo Hujan Mudah tidaknya tanah suatu tererosi = Erodibilitas Tanah Erodibiltas Tanah Kehilangan tanah (ton/ha/th) 0 – 14,6 Tingkat Erodibiltas Sangat Rendah 14,7 – 29,2 Rendah 29,3 – 46,9 Sedang 47,0 – 63,0 Agak Tinggi 63,1 – 80,6 Tinggi > 80,6 Sangat Tinggi Erodibiltas dan Sifat Fisik Tanah • Ketahanan tanah terhadap daya rusak dari luar • Kemampuan Tanah untuk menyerap air (inflitrasi dan perkolasi) Ketahanan tanah terhadap daya rusak dari luar • Tekstur tanah • Kemantapan Agregat • Kandungan bahan organik • Bahan semen lainnya SOIL ERODIBILITY - K • Effect of texture – clay (0.1 - 0.2) resistant to detachment – sand (0.05 - 0.15) easily detached, low runoff, large, dense particles not easily transported – silt loam (0.3 - 0.5) moderately detachable, moderate to high runoff – silt (0.4 -0.6) easily detached, high runoff, small, easily transported sediment Time Variable K • • • • Varies during year High when rainfall is high Low when temperature is high Very low below about 25 oF Time Variable K Base K value = 0.37 0.8 0.6 0.5 CA SD 0.4 MA TN 0.3 0.2 0.1 Day in Year 361 337 313 289 265 241 217 193 169 145 121 97 73 49 25 0 1 Daily Soil Erodibility Value 0.7 Menetapkan Erodibiltas Tanah SOIL ERODIBILITY - K • Measure of soil erodibility under standard unit plot condition – 22.2 m long, 9% steep, tilled continuous fallow, up and down hill tillage • Independent of management • Major factors – Texture, organic matter, structure, permeability (runoff potential) L = 22 m S = 9% K = A/R Erodibiltas Tanah Kelas dan Nilai K Tingkat Erodibiltas 1. 0,00 – 0,10 Sangat Rendah 2. 0,11 – 0,20 Rendah 3. 0,21 – 0,32 Sedang 4. 0,33 – 0,43 Agak Tinggi 5. 0,44 – 0,55 Tinggi 6. >0,56 Sangat Tinggi Nomograph Erodibiltas Tanah Klasifikasi Struktur Tanah Kelas Keterangan 1 Granuler sangat halus 2 Granuler halus 3 Granuler sedang-kasar 4 Masif kubus, lempeng Erodibiltas Tanah Klas dan Permiabilitas (cm/jam) 1. >12,5 Tingkat Erodibiltas Cepat 2. 6,25 – 12,5 Agak Cepat 3. 2,00 – 6,25 Sedang 4. 0,50 – 2,00 Agak Lambat 5. 0,125 – 0,50 Lambat 6. < 0,125 Sangat Lambat TOPOGRAPHY FAKTOR LERENG DAN KEMIRINGAN (LS) TOPOGRAPHY • Overland flow path length • Slope lengths for eroding portions of hillslopes • Steepness • Hillslope shape Hillslope Shape Convex Uniform Concave ComplexConvex:concave ComplexConcave:convex Overland Flow Path Length • Distance from the origin of overland flow to a concentrated flow area • This length used when the analysis requires that the entire flow path length be considered. Slope Length for Eroding Portion of Slope • Only works for simple slopes • Traditional definition – Distance from origin of overland flow to concentrated flow or to where deposition begins – Definition is flawed for strips and concave:convex slopes • Best approach: Use overland flow path length and examine RUSLE2 segment erosion rate values Slope Length for Concave Slope Overland flow path length Eroding portion slope length Deposition Rule of Thumb for Deposition Beginning on Concave Slopes Average steepness of concave portion Example: Assume average slope of concave section = 10% ½ of 10% is 5% Deposition begins at location where the steepness is 5% Deposition begins at location where steepness = ½ average steepness of concave portion Deposition begins Slope Length for Concave:Convex Slope Overland flow path length and slope length for lower eroding portion of slope Slope length for upper eroding portion of slope Deposition Insert figures from AH703 to illustrate field slope lengths Basic Principles • Sediment load accumulates along the slope because of detachment • Transport capacity function of distance along slope (runoff), steepness at slope location, cover-management, storm severity (10 yr 24 hr precip) • Deposition occurs where sediment load becomes greater than transport capacity Detachment Proportional to Slope Length Factor • Slope length effect – l= (x/72.6)n – x = location on slope – n = slope length exponent • Slope length exponent – Related to rill:interrill ratio – Slope steepness, rill:interrill erodibility, ground cover, soil biomass, soil consolidation • Slope length factor varies on a daily basis Slope Length Effects • Slope length effect is greater on slopes where rill erosion is greater relative to interrill erosion • Examples: – – – – Steep slopes Soils susceptible to rill erosion Soils recently tilled Low soil biomass Detachment Proportional to Slope Steepness Factor Not affected by any other variable 4.5 4 Factor Value 3.5 3 2.5 2 1.5 1 0.5 0 0 5 10 15 20 Slope Steepness (%) 25 30 35 Effect of Slope Shape on Erosion 100 ft long, 1% to 19% steepness range 200 Erosion rate (t/ac) 150 100 Concave Convex 50 Uniform 0 1 2 3 4 5 6 7 -50 -100 Segment Along Flow Path 8 9 10 Sifat lereng vs energi penyebab erosi: · Kemiringan · Panjang Lereng · Bentuk lereng Hubungan Erosi dan kemiringan EaS b Zing (dalam Baver, 1961) a= 0.065, b= 1.49 à sifat hujan Lal (1979) b= 1.1 – 1.2 Hudson b = 2 à tanaman Djorovic (1978) · rumput a= 0.75 dan b = 2.788 · weat a= 32 dan b 2.121 · jagung a= 160 dan b= 1.163 300 Runoff / Erosi 250 200 Runoff 150 Erosi 100 50 0 0 10 20 30 40 Kemiringan (%) (0.43 0.30s 0.043S ) S 6.574 2 Panjang Lereng l x L( ) 22 x= konstan, 0.5 untuk s>4%, 0.4 unt 4% dan 0.3 <3% 3. Measurement of soil macroporosity: Methyelen Blue Technique Macropore distribution 1.5 m Forest Coffee 7 yr Coffee 1 yr Coffee 10 yr Coffee 3 yr Macroporosity Vertical macropores PORI MAKRO HORISONTAL (horizontal maps) Horizontal macropores PORI MAKRO VERTIKAL (vertical maps) 16 20 14 18 landuse BNT 16 hutan kopi 1th kopi 3th kopi 7th kopi 10th 10 fraction Macropore Jumlah Makropore (%) fraction Macropore Jumlah Makropore (%) 12 8 6 4 2 0 BNT 14 12 10 8 6 4 2 10 30 50 Kedalaman Tanah (cm) 70 Depth of soil layer 90 hutan kopi 1th kopi 3th kopi 7th kopi 10tj landslidg Forest 1 3 Landuse7 10yr old coffee garden ROOT DISTRIBUTION 160 0.4 140 0.35 Number anecic + endogeic 0.3 120 100 0.25 80 0.2 60 0.15 40 0.1 20 0.05 0 0 Remnant Forest Multistrata Shaded Monoculture Forest: Amynthas gracillis & Peryonix excavatus (bigger size) Coffee based: Dichogaster bolaui (smaller size) -2 0.45 No anecic + endogeic, indiv m Ratio tot. biomass to population, g / indiv. Earthworm population Improvement of soil macropore Anecic Outlayer from the forest Linear (Endogeic) Endogeic Linear (Anecic) Number of macropore, % 30 25 20 y = 10.042x + 2.9368 2 R = 0.2741 15 10 y = 2.162x + 2.4942 5 2 R = 0.6722 0 0 1 2 3 4 Earthworm FW, g per indiv 5 6 0 Soil depth, cm 20 40 60 80 100 Forest Multistrata Soil depth, cm 0 20 40 60 80 100 Monoculture Soil macropore on vertical plane 14 12.3 Vertical macropore, % 12 10 8 6 4 2.99 3.47 3.6 Shaded Monoculture 2 0 Remnant Forest Multistrata Macropore on vertikal plane, % Soil surface cover, % 120 y = 4.1193x + 3.5336 100 R2 = 0.823 80 60 40 20 0 0 5 10 15 20 R2 = 0.4631 -1 5 4 3 2 1 0 0 5 10 15 Litter Thickness, mm 20 10 y = 0.7503x - 6.4402 8 R2 = 0.7407 6 4 2 0 5 10 15 20 25 Littter thickness, mm Infiltration, mm min -1 Infiltration, mm min y = 0.1522x + 0.5532 12 0 25 Litter thickness, mm 6 14 25 6 5 4 3 y = 0.2161x + 1.7855 2 R2 = 0.7097 1 0 0 5 10 Macropore on vertical plane, % 15 Infiltration Rate (cm/min) Infiltration Rate under various Coffee-based Systems 10 8 6 5.2 4.7 4 2 2.2 1.9 C+G MiC 2 0 For MoC C+P Coffee-based Systems