Bab V Hasil dan Pembahasan V.1 Hasil Pengujian Model Dari pengujian model dengan simulasi yang dilakukan sebanyak 10.000 iterasi yang merupakan iterasi terpilih, diperoleh hasil-hasil sebagai berikut: V.1.1 Hasil Simulasi Monte Carlo Terhadap Payback Period Hasil simulasi monte carlo terhadap kriteria kelayakan finansial payback period menunjukkan bahwa nilai rata-rata (mean) payback untuk kelima skenario simulasi lebih kecil dari periode investasi (payback period < periode investasi), dengan nilai payback yang sangat bervariasi antara skenario satu dengan yang lainnya sebagaimana terlihat pada Tabel V.1 dibawah ini: Tabel V.1 Data Statistik Hasil Simulasi Monte Carlo Terhadap Payback Period Uraian Minimum Mean Maximum Std Dev Variance Coefficient of Variation Skewness Kurtosis Mode 5th Perc. 95th Perc. 95th Perc.- 5th Perc. A 6,80 8,44 15,93 0,42 0,181 Skenario Cash Flow B C D 6,65 6,03 6,87 8,87 7,23 8,65 17,69 12,02 14,35 0,43 0,34 0,40 0,185 0,119 0,164 E 4,74 6,38 11,60 0,31 0,099 0,0503 0,0485 0,0476 0,0468 0,0493 3,77 40,44 7,98 7,94 9,08 1,14 2,65 31,10 8,48 8,31 9,53 1,23 2,40 20,83 6,93 6,78 7,77 0,99 1,93 16,76 8,68 8,11 9,30 1,19 3,19 32,80 6,15 5,99 6,88 0,89 Hasil simulasi diatas menyajikan informasi yang dapat digunakan dalam pengambilan keputusan investasi. Hasil yang ada menunjukkan bahwa skenario E menawarkan kemungkinan mean payback lebih cepat dibandingkan dengan skenario yang lain, yaitu 6,38 tahun dengan kemungkinan maksimum Payback Period yang dapat dicapai selama 11,60 tahun dan kemungkinan minimum selama 4,74 tahun. Sedangkan skenario B 96 menawarkan kemungkinan mean payback paling lama diantara kelima skenario tersebut yaitu 8,87 tahun dengan nilai maksimum payback period selama 17,69 tahun dan minimum Payback Period selama 6,65 tahun. Dari hasil simulasi di atas dapat diketahui juga besarnya risiko berdasarkan coefficient of variation (CV) pada masing-masing skenario. Semakin besar coefficient of variation (CV) dari investasi maka semakin besar risiko investasi tersebut. Hasil yang ada menunjukkan bahwa skenario D mempunyai coefficient of variation (CV) yaitu 0,0476 yang berarti investasi pada skenario D mempunyai risiko paling kecil dibandingkan dengan skenario yang lain, sedangkan skenario A merupakan skenario yang mempunyai risiko paling besar dengan coefficient of variation (CV) yaitu 0,0503. Untuk membandingkan nilai payback period dari kelima skenario tersebut diatas dapat dilihat melalui kurva distribusi probablitasnya yaitu kurva PDF (Probability Density Function) dan CDF (Cumulative Density Function) pada Gambar V.1. Distribution for Payback Period Distribution for Payback Period 1.400 1.000 1.200 0.800 1.000 0.800 0.600 0.600 0.400 0.400 0.200 0.200 0.000 4 6 8 10 12 14 16 0.000 18 4 6 8 10 12 14 16 18 Gambar V.1 Kurva PDF dan CDF Fit Distribusi Payback Period Kelima Skenario Pada gambar dapat dilihat bahwa kurva PDF dan CDF dari payback period dapat diinterpretasikan dari kecondongan kurva tersebut. Skenario yang mempunyai kurva PDF dan CDF yang lebih condong ke kiri menawarkan kemungkinan payback lebih cepat dibandingkan kurva PDF dan CDF dari skenario yang lebih condong ke kanan, maka dapat diinterpretasikan bahwa semakin kecil payback period yang dihasilkan terhadap periode investasi maka semakin baik usulan investasi tersebut. 97 V.1.2 Hasil Simulasi Monte Carlo Terhadap Net Present Value (NPV) Hasil simulasi monte carlo terhadap kriteria kelayakan NPV menunjukkan bahwa nilai rata-rata (mean) NPV dari kelima skenario hanya empat skenario yang mempunyai nilai mean NPV > 0, dengan nilai NPV yang bervariasi antara skenario satu dengan yang lainnya sebagaimana terlihat pada Tabel V.2 dibawah ini: Tabel II.2 Data Statistik Hasil Simulasi Monte Carlo Terhadap NPV Uraian Minimum Mean Maximum Std Dev Variance Coefficient of Variation Skewness Kurtosis Mode 5th Perc. 95th Perc. 95th Perc.- 5th Perc. Skenario Cash Flow A B C D (5,82E+11) (2,19E+12) 6,24E+10 (5,37E+11) 5,66E+11 1,15E+12 3,89E+11 9,73E+11 1,15E+12 2,99E+12 6,86E+11 1,85E+12 8,95E+10 1,98E+11 4,86E+10 1,56E+11 8,01E+21 3,94E+22 2,36E+21 2,44E+22 E 3,66E+11 1,98E+12 4,11E+12 2,26E+11 5,12E+22 0,158 0,172 0,125 0,160 0,114 (0,431) 12,64 4,98E+11 4,46E+11 7,16E+11 2,70E+11 (0,106) 13,88 9,74E+11 8,80E+11 1,50E+12 6,15E+11 0,673 5,08 3,23E+11 3,23E+11 4,74E+11 1,51E+11 0,330 6,46 8,61E+11 7,55E+11 1,25E+12 4,93E+11 1,037 7,94 1,74E+12 1,68E+12 2,38E+12 6,98E+11 Hasil simulasi diatas menyajikan informasi yang dapat digunakan dalam pengambilan keputusan investasi. Hasil simulasi tersebut menunjukkan bahwa skenario E mempunyai kemungkinan nilai harapan rata-rata NPV terbesar dibandingkan dengan skenario yang lain, yaitu Rp. 1,98 trilyun dengan kemungkinan maksimum NPV yang dapat dicapai sebesar Rp. 4,11 trilyun dan kemungkinan minimum NPV sebesar Rp. 366 milyar. Sedangkan skenario yang mempunyai nilai mean NPV terkecil adalah skenario C. Skenario C mempunyai kemungkinan mean NPV yaitu sebesar Rp. 389 milyar, dengan kemungkinan masksimum NPV sebesar Rp. 686 milyar dan kemungkinan minimum NPV Rp. 62,4 milyar. Dari hasil simulasi di atas dapat diketahui juga besarnya risiko investasi masing-masing skenario. Tabel diatas juga menunjukkan besarnya risiko pada masing-masing skenario. 98 Skenario E mempunyai risiko yang paling kecil dibandingkan dengan skenario yang lain dengan coefficient of variation (CV) yaitu 0,114. Sedangkan skenario B merupakan skenario yang mempunyai risiko paling besar dengan coefficient of variation (CV) yaitu 0,172. Nilai NPV dari kelima skenario tersebut diatas dapat dilihat melalui kurva distribusi probablitasnya yaitu kurva PDF (Probability Density Function) dan CDF (Cumulative Density Function) pada Gambar V.2. Distribution for NPV Distribution for NPV 1.000 Values in 10^ -12 3.500 3.000 0.800 2.500 2.000 0.600 1.500 0.400 1.000 0.200 0.500 0.000 -3 -1 1 3 0.000 -3 5 Values in 10^12 -1 1 3 5 Values in 10^12 Gambar V.2 Kurva PDF dan CDF Fit Distribusi NPV Kelima Skenario Kurva PDF dan CDF dari NPV mempunyai interpretasi yang berbeda dengan interpretasi kurva PDF dan CDF dari payback period, yaitu skenario yang mempunyai kurva PDF dan CDF yang condong ke kanan mempunyai nilai NPV yang lebih besar dibandingkan dengan skenario yang mempunyai kurv PDF dan CDF yang condong ke kiri. Semakin besar nilai NPV yang ditawarkan maka usulan investasi akan semakin menarik, dengan kriteria NPV > 0 maka usulan investasi dianggap layak. V.1.3 Hasil Simulasi Monte Carlo Terhadap Internal Rate of Return (IRR) Hasil simulasi monte carlo terhadap kriteria kelayakan IRR pada kelima skenario menunjukkan bahwa kelima skenario tersebut mempunyai nilai rata-rata (mean) IRR lebih besar dari RRR (IRR > RRR). Data statistik hasil simulasi tersebut dapat dilihat pada Tabel V.3 dibawah ini. 99 Tabel V.3 Data Statistik Hasil Simulasi Monte Carlo Terhadap IRR Uraian Minimum Mean Maximum Std Dev Variance Coefficient of Variation Skewness Kurtosis Mode 5th Perc. 95th Perc. 95th Perc.- 5th Perc. A 9,87% 15,90% 19,42% 0,0094 0,000088 Skenario CashFflow B C D 8,16% 12,76% 5,75% 15,49% 20,51% 15,65% 18,66% 25,44% 19,74% 0,0102 0,0114 0,0101 0,000104 0,000130 0,000103 E 17,46% 23,56% 33,78% 0,0122 0,000148 0,0590 0,0658 0,0556 0,0647 0,0517 (0,76) 7,12 15,22% 14,46% 17,32% 2,86% (0,65) 7,43 15,24% 13,82% 17,09% 3,27% (0,20) 5,47 20,29% 18,78% 22,37% 3,59% (1,02) 13,62 15,71% 14,09% 17,23% 3,14% 0,33 7,81 23,87% 21,71% 25,50% 3,79% Dari tabel diatas diperoleh informasi, bahwa skenario E mempunyai nilai harapan ratarata IRR terbesar dibandingkan dengan skenario yang lain, yaitu sebesar 23,56% dengan kemungkinan maksimum IRR 33,78% dan kemungkinan minimum IRR sebesar 17,46%. Dari kelima skenario yang dikembangkan, skenario B merupakan investasi yang mempunyai nilai mean IRR paling kecil yaitu sebesar 15,49% dengan kemungkinan maksimum IRR 18,66% dan kemungkinan minimum IRR sebesar 8,16%. Skenario E mempunyai risiko yang paling kecil dibandingkan dengan skenario yang lain dengan coefficient of variation (CV) yaitu 0,0517. Sedangkan skenario B merupakan skenario yang mempunyai risiko paling besar dengan coefficient of variation (CV) yaitu 0,0658. Dibawah ini adalah kurva PDF dan CDF dari IRR untuk memudahkan dalam membandingkan nilai IRR dari kelima skenario yang disimulasikan. 100 Distribution for IRR Distribution for IRR 45 1.000 40 0.800 35 30 0.600 25 20 0.400 15 10 0.200 5 0 0.05 0.125 0.2 0.275 0.000 0.05 0.35 0.125 0.2 0.275 0.35 Gambar V.3 Kurva PDF dan CDF Fit Distribusi IRR Kelima Skenario Interpretasi kurva PDF dan CDF dari IRR sama halnya dengan interpretasi kurva PDF dan CDF dari NPV, yaitu kurva yang lebih condong ke kanan nilai mempunyai IRR yang lebih besar daripada kurva yang lebih condong ke kiri. Semakin besar nilai IRR maka investasi tersebut layak dengan kriteria IRR > RRR. V.2 Hasil Analisis Sensitivitas Variabel Ketidakpastian Terhadap Kriteria Kelayakan Finansial Analisis sensitivitas dilakukan untuk mengetahui variabel ketidakpastian mana yang paling sensitif dalam menentukan output dan melihat bagaimana variabel ketidakpastian tersebut memberikan perubahan terhadap kriteria kelayakan payback period, NPV dan IRR. Dengan analisis ini, tingkat korelasi dihitung antara output yang dipilih dan masing-masing distribusi dari variabel ketidakpastian. Semakin tinggi korelasi antara variabel ketidakpastian dan output, maka semakin berpengaruh variabel ketidakpastian tersebut dalam penentuan nilai output. Nilai korelasi berkisar antara – 1 dan 1, dimana nilai 0 menunjukkan tidak ada hubungan antar variable ketidakpastian, nilai 1 menunjukkan korelasi positif penuh antar variabel ketidakpastian dan nilai – 1 menunjukkan korelasi negatif antar variabel ketidakpastian. Analisis sensitivitas akan dilakukan dengan 7x simulasi sebanyak 1000 iterasi untuk masing-masing simulasi. Hasil analisis sensitivitas ini yaitu diagram tornado, spider diagram berdasarkan change from base value dan spider diagram berdasarkan 101 distribution percentile. Analisis sensitivitas akan dilakukan terhadap skenario terpilih untuk tiap-tiap kriteria kelayakan Payback Period, NPV dan IRR. V.2.1 Hasil Analisis Sensitivitas Variabel Ketidakpastian Terhadap Payback Period Analisis sensitivitas terhadap kriteria kelayakan payback period diwakilkan melalui skenario A. Adapun untuk mengetahui pengaruh perubahan dari masing-masing variabel ketidakpastian, maka dilakukan analisis regresi dan korelasi antara perubahan variabel ketidakpastian yang terjadi terhadap kriteria kelayakan payback period. Hasil analisis regresi dan korelasi dari variabel ketidakpastian terhadap payback period dapat dilihat pada Tabel V.4 dan Tabel V.5. Dari tabel Tabel V.4 dapat diketahui bahwa Suku Bunga 2007 menempati ranking tertinggi diantara variabel ketidakpastian yang lain. Pada skenario A, Suku Bunga 2007 mempunyai nilai koefisien regresi yaitu 0,756. 102 Tabel V.4 Nilai Regresi Variabel Ketidakpastian Terhadap Payback Period Rank A Std b Coeff Suku Bunga (it) / 2007 Inflasi (ft) / 2009 Suku Bunga (it) / 2008 (0.268) #4 Inflasi (ft) / 2010 (0.236) #5 Inflasi (ft) / 2011 (0.201) #1 #2 #3 #6 #7 #8 #9 Tingkat Penjualan (St) / 2014 Inflasi (ft) / 2012 Tingkat Penjualan (St) / 2015 Suku Bunga (it) / 2014 0.756 0.246 (0.160) (0.159) Skenario Cash flow dan Nilai Koefisien Regresi Std b Std b B C D Coeff Coeff Suku Bunga Suku Bunga Suku Bunga 0.531 0.501 (it) / 2007 (it) / 2008 (it) / 2007 Suku Bunga Suku Bunga Suku Bunga 0.490 0.473 (it) / 2008 (it) / 2007 (it) / 2008 Inflasi (ft) / Inflasi (ft) / Inflasi (ft) / (0.306) (0.298) 2009 2009 2009 Tingkat Inflasi (ft) / Inflasi (ft) / (0.253) Penjualan (0.267) 2010 2010 (St) / 2013 Tingkat Inflasi (ft) / Inflasi (ft) / (0.254) Penjualan (0.231) 2011 2010 (St) / 2015 Tingkat Inflasi (ft) / Inflasi (ft) / (0.207) Penjualan (0.225) 2011 2011 (St) / 2015 Inflasi (ft) / Suku Bunga Suku Bunga 0.170 0.200 2012 (it) / 2013 (it) / 2015 Std b Coeff 0.613 0.352 (0.304) (0.266) E Suku Bunga (it) / 2007 Suku Bunga (it) / 2008 Inflasi (ft) / 2009 Tingkat Penjualan (St) / 2012 Std b Coeff 0.647 0.373 (0.296) (0.238) (0.222) Inflasi (ft) / 2010 (0.233) (0.194) Suku Bunga (it) / 2012 0.192 (0.175) Inflasi (ft) / 2011 (0.171) (0.126) Inflasi (ft) / 2012 (0.186) Suku Bunga (it) / 2011 0.168 Suku Bunga (it) / 2014 0.165 Suku Bunga (it) / 2010 0.161 0.122 Suku Bunga (it) / 2014 0.155 Suku Bunga (it) / 2012 0.158 Suku Bunga (it) / 2012 0.147 Suku Bunga (it) / 2011 0.160 103 Tabel V.5 Nilai Korelasi Variabel Ketidakpastian Terhadap Payback Period Skenario Cash flow dan Nilai Koefisien Korelasi Coef Coef Coef Coef Rank A Rank B Rank C Rank D Rank E Corr Corr Corr Corr Suku Suku Suku Suku Inflasi Bunga Bunga Bunga Bunga 0.385 0.364 #1 0.303 #1 (ft) / (0.328) #1 0.443 #1 #1 (it) / (it) / (it) / (it) / 2009 2007 2007 2007 2007 Suku Inflasi Inflasi Inflasi Inflasi Bunga 0.319 #2 (ft) / (0.309) #3 (ft) / (0.318) #2 (ft) / (0.320) #2 (ft) / (0.299) #2 (it) / 2009 2009 2009 2009 2007 Tingkat Tingkat Tingkat Tingkat Tingkat Penjualan Penjualan Penjualan Penjualan Penjualan #11 0.097 #15 0.082 #8 0.126 #11 0.096 #8 0.176 (St) / (St) / (St) / (St) / (St) / 2008 2008 2008 2008 2008 Coef Corr 104 Berdasarkan Tabel V.5 diatas, ranking sensitivitas untuk kriteria payback period, Suku Bunga 2007 mempunyai nilai koefisien korelasi yang paling tinggi dibandingkan variabel yang lain dan Tingkat Penjualan 2008 mempunyai nilai koefisien korelasi yang paling rendah. Pada skenario A dapat dilihat bahwa terhadap perubahan payback period yaitu 0,443 kemudian disusul Inflasi 2009 yang mempunyai nilai koefisien korelasi negatif yaitu 0,320 dan Tingkat Penjualan 2008 yang mempunyai nilai koefisien korelasi 0,097. Nilai korelasi untuk masing-masing distribusi variabel ketidakpastian diatas, selanjutnya akan digunakan untuk analisis sensitivitas lanjut yang akan menghasilkan diagram tornado, spider diagram berdasarkan change from base value dan spider diagram berdasarkan distribution percentile. Diagram tornado sensitivitas payback period terhadap variabel ketidakpastian dapat dilihat pada Gambar V.4 berikut ini. Suku Bunga (i t )/2007 Inputs Suku Bunga (it) / 20 Inflasi Inflasi (ft)(f /t )/2009 2009 Tingkat Penjualan Tingkat Penjualan (S (St )/2008 6.8 7 7.2 7.4 7.6 7.8 8 Mean of Payback Period Gambar V.4 Diagram Tornado Sensivitas Payback Period Terhadap Variabel Ketidakpastian Pada diagram tornado, variabel ketidakpastian yang mempunyai rentang batang terpanjang merupakan veriabel ketidakpastian yang paling sensitif dan memberikan 105 pengaruh yang paling besar terhadap perubahan kriteria kelayakan finansial. Demikian pula sebaliknya, variabel ketidakpastian yang mempunyai rentang batang terpendek memberikan pengaruh yang paling terhadap perubahan kriteria kelayakan. Dari diagram tornado sensitivitas payback period terhadap variabel ketidakpastian diatas dapat dilihat bahwa interpretasi hasil regresi dan korelasi awal yang tersaji pada Tabel V.4 dan Tabel V.5 terbukti adanya. Suku Bunga 2007 mempunyai rentang batang terpanjang dan memiliki pengaruh dalam menentukan cepat lambatnya payback sebesar 0,82 tahun, kemudian disusul dengan Inflasi 2009 sebesar 0,50 tahun. Sedangkan tingkat penjualan mempunyai rentang batang terpendek dengan nilai payback sebesar 0,12 tahun. Kriteria lain yang dapat digunakan untuk menguji sensitivitas sehingga dapat diketahui lebih jelas tentang skenario-skenario perubahan yang terjadi dan dampaknya terhadap kriteria kelayakan finansial adalah menggunakan spider diagram. Hasil analisis melalui spider diagram dapat memberikan informasi yang lebih interaktif dibandingkan dengan diagram tornado, selain itu juga hasil analisis pada spider diagram dapat disajikan dengan dua pendekatan yaitu pertama melalui perbandingan presentase perubahan input dari nilai dasar (base value) terhadap output sedangkan yang kedua dengan perbandingan percentile distribusi input terhadap output. Kedua pendekatan ini menunjukkan bahwa variabel ketidakpastian yang paling berpengaruh dinyatakan dengan variabel yang memiliki kemiringan yang paling besar (gradien terbesar) dibanding variabel-variabel ketidakpastian lainnya. Ilustrasi dari spider diagram berdasarkan kedua pendekatan tersebut ditunjukkan pada Gambar V.5 dan Gambar V.6 berikut ini. 106 8 Payback Period 7.8 Tingkat Penjualan (St) / 2008 K35 7.6 Inflasi (ft) / 2009 L50 7.4 Suku Bunga (it) / 2007 J171 7.2 7 6.8 -43% 7% 57% 107% 157% 207% 257% Change From Base Value (%) Gambar V.5 Spider Diagram (Persentase Change from Base Value Terhadap Mean Payback Period) Berdasarkan pada gambar diatas persentase perubahan variabel ketidakpastian dari nilai dasar (base value) terhadap mean payback period, Suku Bunga 2007 merupakan variabel ketidakpastian yang paling sensitif dibandingkan variabel ketidakpastian lainnya karena memiliki gradien garis terbesar dan Tingkat Penjualan 2008 merupakan variabel ketidakpastian yang paling tidak sensitif diantara ketiga variabel ketidakpastian tersebut. Suku Bunga maksimum yang terjadi pada tahun tersebut yaitu 39,92% yang merupakan perubahan maksimum arah positif dari base value yaitu 260,66% yang akan menghasilkan mean payback 7,11 tahun. Sedangkan Suku Bunga minimum yang terjadi pada tahun tersebut yaitu 7,27% yang merupakan perubahan minimum arah negatif dari base value yaitu 34,29% yang akan menghasilkan mean payback 7,93 tahun. Data persentase change from base value variabel ketidakpastian terhadap mean payback period disajikan pada Tabel V.6 berikut. 107 Tabel V.6 Change From Base Value Terhadap Mean Payback Period Base Value Minimum Maksimum Suku Bunga Payback % Period (tahun) (34,29%) 7,93 260,66% 7,11 Inflasi Payback % Period (tahun) (42,86%) 7,32 149,81% 6,82 Tingkat Penjualan Payback % Period (tahun) (24,50%) 7,14 24,50% 7,26 Sedangkan hasil analisis berdasarkan percentile distribusi, akan dimisalkan pada range percentile 1% dan 99%. Dari hasil analisis, pada percentile 1% dihasilkan kemungkinan Suku Bunga per tahun sebesar 7,27% akan menghasilkan mean payback 7,93 tahun dan pada percentile 99% dengan kemungkinan Suku Bunga per tahun 39,92% yang akan menghasilkan rata-rata payback 7,11 tahun. Ilustrasi dan data dari dampak perubahan variabel-variabel ketidakpastian terhadap NPV, yang didasarkan pada percentile-percentile tertentu dapat dilihat pada Gambar V.6 dan Tabel V.7 dibawah ini. 108 8 Payback Period 7.8 Tingkat Penjualan (St) / 2008 K35 7.6 Inflasi (ft) / 2009 L50 7.4 Suku Bunga (it) / 2007 J171 7.2 7 6.8 0% 20% 40% 60% 80% 100% Percentile Gambar V.6 Spider Diagram (Percentile Terhadap Mean Payback Period) Tabel V. 7 Percentile Terhadap Mean Payback Period Percentile 1% 5% 50% 95% 99% Suku Bunga Payback % Period (tahun) 7,27% 7,11 7,40% 7,12 8,95% 7,15 21,12% 7,46 39,92% 7,93 Inflasi Payback % Period (tahun) 4,76% 7,32 5,16% 7,31 7,42% 7,23 14,51% 7,01 20,81% 6,82 Tingkat Penjualan Payback % Period (tahun) 60,4% 7,14 62% 7,15 80% 7,20 98% 7,25 99,6% 7,26 V.2.2 Hasil Analisis Sensitivitas Variabel Ketidakpastian Terhadap Net Present Value (NPV) Analisis sensitivitas terhadap kriteria kelayakan NPV diwakilkan melalui skenario C. Adapun untuk mengetahui pengaruh perubahan dari masing-masing variabel ketidakpastian, maka dilakukan analisis regresi dan korelasi antara perubahan variabel 109 ketidakpastian yang terjadi terhadap kriteria kelayakan NPV. Hasil analisis regresi dan korelasi dari variabel ketidakpastian terhadap NPV dapat dilihat pada Tabel V.8 dan Tabel V.9 dibawah ini. Dari Tabel V.8 dapat diketahui bahwa nilai koefisien regresi Suku Bunga 2007 menempati ranking tertinggi diantara variabel ketidakpastian yang lain. Pada skenario C, Inflasi 2009 mempunyai nilai koefisien regresi yaitu 0,356. 110 Tabel V.8 Nilai Regresi Variabel Ketidakpastian Terhadap NPV Rank #1 #2 #3 #4 #5 #6 #7 #8 #9 A Suku Bunga (it) / 2007 Inflasi (ft) / 2009 Inflasi (ft) / 2010 Inflasi (ft) / 2011 Inflasi (ft) / 2012 Inflasi (ft) / 2013 Inflasi (ft) / 2014 Inflasi (ft) / 2015 Inflasi (ft) / 2016 Std b Coeff (0.475) 0.329 0.315 0.290 0.273 0.255 0.240 0.225 0.211 Skenario Cash flow dan Nilai Koefisien Regresi Std b Std b B C D Coeff Coeff Suku Bunga Inflasi (ft) Inflasi (ft) / 0.356 0.336 (it) / 2007 / 2009 2009 Inflasi (ft) / Inflasi (ft) Inflasi (ft) / 0.332 0.309 2009 / 2010 2010 Inflasi (ft) / Inflasi (ft) Inflasi (ft) / 0.329 0.302 2010 / 2011 2011 Inflasi (ft) / Inflasi (ft) Suku Bunga 0.299 (0.296) 2011 / 2012 (it) / 2007 Inflasi (ft) / Inflasi (ft) Suku Bunga 0.283 (0.289) 2012 / 2013 (it) / 2008 Inflasi (ft) / Inflasi (ft) Inflasi (ft) / 0.279 0.258 2012 / 2014 2013 Inflasi (ft) / Inflasi (ft) Inflasi (ft) / 0.244 0.267 2014 / 2015 2013 Inflasi (ft) / Inflasi (ft) Inflasi (ft) / 0.221 0.240 2015 / 2016 2014 Inflasi (ft) / Inflasi (ft) Inflasi (ft) / 0.211 0.230 2016 / 2017 2015 111 Std b Coeff (0.354) 0.345 0.325 0.296 0.276 0.269 0.248 0.239 0.218 E Inflasi (ft) / 2009 Inflasi (ft) / 2010 Inflasi (ft) / 2011 Inflasi (ft) / 2012 Inflasi (ft) / 2013 Inflasi (ft) / 2014 Inflasi (ft) / 2015 Suku Bunga (it) / 2007 Inflasi (ft) / 2016 Std b Coeff 0.371 0.330 0.328 0.307 0.277 0.269 0.248 (0.235) 0.226 Tabel V.9 Nilai Korelasi Variabel Ketidakpastian Terhadap NPV Skenario Cash flow dan Nilai Koefisien Korelasi Coef Coef Coef Coef Coef Rank A Rank B Rank C Rank D Rank E Corr Corr Corr Corr Corr Suku Suku Suku Suku Suku Bunga Bunga Bunga Bunga Bunga (0.136) (0.196) #1 (0.116) #1 (0.172) #1 (0.230) #1 #1 (it) / (it) / (it) / (it) / (it) / 2007 2007 2007 2007 2007 Inflasi Inflasi Inflasi Inflasi Inflasi #2 (ft) / 0.208 #2 (ft) / 0.161 #3 (ft) / 0.088 #2 (ft) / 0.188 #2 (ft) / 0.110 2014 2018 2022 2017 2021 Tingkat Tingkat Tingkat Tingkat Tingkat Penjualan Penjualan Penjualan Penjualan Penjualan #22 (0.039) #37 (0.027) #32 (0.028) #28 (0.032) #22 (0.037) (St) / (St) / (St) / (St) / (St) / 2008 2008 2008 2008 2008 112 Berdasarkan Tabel V.9 diatas, ranking sensitivitas untuk kriteria NPV dapat dilihat bahwa Suku Bunga 2007 mempunyai nilai koefisien korelasi yang paling tinggi dibandingkan variabel ketidakpastian lainnya. Pada skenario C nilai koefisien korelasi yaitu negatif 0,116, kemudian disusul Inflasi 2009 yang mempunyai nilai koefisien korelasi yaitu 0,088 dan Tingkat Penjualan 2008 yang mempunyai nilai koefisien korelasi negatif 0,027. Diagram tornado sensitivitas NPV terhadap variabel ketidakpastian dapat dilihat pada Gambar V.7 berikut ini. Inputs Suku Bunga Suku Bunga(I(it) / 20 t )/2007 Inflasi Inflasi (ft)(f /t )/2009 2009 1.15E+12 1.1E+12 1.05E+12 1E+12 9.5E+11 9E+11 8.5E+11 8E+11 Tingkat Penjualan Tingkat Penjualan (S (St )/2008 Mean of NPV Gambar V.7 Diagram Tornado Sensivitas NPV Terhadap Variabel Ketidakpastian Dari diagram tornado sensitivitas NPV terhadap variabel ketidakpastian diatas dapat dilihat bahwa interpretasi hasil regresi dan korelasi awal yang tersaji pada Tabel V.8 dan Tabel V.9 terbukti adanya. Suku Bunga 2007 mempunyai rentang batang terpanjang dan memiliki pengaruh dalam menentukan nilai NPV yaitu Rp. 159,46 milyar, kemudian disusul dengan pengaruh Inflasi 2008 terhadap NPV sebesar Rp. 140,47 milyar. Sedangkan Tingkat Penjualan mempunyai rentang batang terpendek dengan nilai NPVsebesar Rp. 7,45 milyar. 113 7E+11 7E+11 Tingkat Penjualan (St) / 2008 K35 NPV 6E+11 Inflasi (ft) / 2009 L50 6E+11 Suku Bunga (it) / 2007 J171 5E+11 5E+11 4E+11 -43% 7% 57% 107% 157% 207% 257% Change From Base Value (%) Gambar V.8 Spider Diagram (Persentase Change from Base Value Terhadap Mean NPV) Berdasarkan pada gambar diatas persentase perubahan variabel ketidakpastian dari nilai dasar (base value) terhadap mean NPV, Suku Bunga 2007 merupakan variabel ketidakpastian yang paling sensitif dibandingkan variabel ketidakpastian lainnya karena memiliki gradien garis terbesar. Suku Bunga maksimum yang terjadi pada tahun tersebut yaitu 39,92% yang merupakan perubahan maksimum arah positif dari base value yaitu 260,66% yang akan menghasilkan mean NPV Rp. 420 milyar. Sedangkan Suku Bunga minimum yang terjadi pada tahun tersebut yaitu 7,27% yang merupakan perubahan minimum dari base value arah negatif sebesar 34,29% yang akan menghasilkan mean NPV Rp. 580 milyar. Data persentase change from base value variabel ketidakpastian terhadap mean NPV disajikan pada Tabel V.10 berikut. 114 Tabel V.10 Change From Base Value Terhadap Mean NPV Base Value Minimum Maksimum Suku Bunga NPV % (Rp. Milyar) (34,29%) 580 260,66% 420 Inflasi % (42,86%) 149,81% NPV (Rp. Milyar) 671 531 Tingkat Penjualan NPV % (Rp. Milyar) (24,50%) 566 24,50% 558 Sedangkan hasil analisis berdasarkan percentile distribusi, akan dimisalkan pada range percentile 1% dan 99%. Dari hasil analisis, pada percentile 1% dihasilkan kemungkinan Suku Bunga yaitu 7,30% yang akan menghasilkan mean NPV sebesar Rp. 580 milyar dan pada percentile 99% dengan kemungkinan Suku Bunga yaitu 39,92% yang akan menghasilkan mean NPV sebesar Rp. 420 milyar. Ilustrasi dan data dari dampak perubahan variabel-variabel ketidakpastian terhadap NPV, yang didasarkan pada percentile-percentile tertentu dapat dilihat pada Gambar V.9 dan Tabel V.11 dibawah ini. 115 6.7E+11 6.2E+11 NPV Tingkat Penjualan (St) / 2008 K35 5.7E+11 Inflasi (ft) / 2009 L50 5.2E+11 Suku Bunga (it) / 2007 J171 4.7E+11 4.2E+11 0% 20% 40% 60% 80% 100% Percentile Gambar V.9 Spider Diagram (Percentile Terhadap Mean NPV) Tabel V.11 Percentile Terhadap Mean NPV Percentile Suku Bunga NPV % (Rp. Inflasi % Milyar) 1% 5% 50% 95% 99% 7,27% 7,40% 8,95% 21,12% 39,92% 580 579 571 512 420 4,76% 5,16% 7,42% 14,51% 20,81% NPV (Rp. Milyar) 531 534 554 616 671 Tingkat Penjualan NPV % (Rp. Milyar) 60,4% 62% 80% 98% 99,6% 566 566 562 559 558 V.2.3 Hasil Analisis Sensitivitas Variabel Ketidakpastian Terhadap Internal Rate of Return (IRR) Analisis sensitivitas terhadap kriteria kelayakan IRR diwakilkan melalui skenario E. Adapun untuk mengetahui pengaruh perubahan dari masing-masing variabel ketidakpastian, maka dilakukan analisis regresi dan korelasi antara perubahan variabel 116 ketidakpastian yang terjadi terhadap kriteria IRR. Hasil analisis regresi dan korelasi dari variabel ketidakpastian terhadap IRR dapat dilihat pada Tabel V.12 dan Tabel V.13. Dari Tabel V.12 dapat diketahui bahwa Suku Bunga 2007 menempati ranking tertinggi diantara variabel ketidakpastian yang lain. Pada skenario E, Inflasi 2009 mempunyai nilai koefisien regresi tertinggi yaitu 0,215. 117 Tabel V.12 Nilai Regresi Variabel Ketidakpastian Terhadap IRR Rank #1 #2 #3 #4 #5 #6 #7 #8 #9 A Suku Bunga (it) / 2007 Inflasi (ft) / 2009 Inflasi (ft) / 2010 Inflasi (ft) / 2013 Suku Bunga (it) / 2008 Inflasi (ft) / 2014 Inflasi (ft) / 2016 Inflasi (ft) / 2017 Suku Bunga (it) / 2009 Std b Coeff (0.170) 0.146 0.117 0.089 (0.078) 0.077 0.062 0.053 (0.042) Skenario Cash flow dan Nilai Koefisien Regresi Std b Std b B C D Coeff Coeff Inflasi (ft) / Suku Bunga Suku Bunga 0.088 (0.290) 2013 (it) / 2007 (it) / 2013 Suku Bunga Inflasi (ft) / Suku Bunga (0.075) 0.183 (it) / 2008 2012 (it) / 2008 Inflasi (ft) / Suku Bunga Inflasi (ft) / 0.066 (0.182) 2009 (it) / 2008 2013 Inflasi (ft) / Inflasi (ft) / Inflasi (ft) / 0.057 0.119 2014 2016 2014 Inflasi (ft) / Inflasi (ft) / Suku Bunga 0.050 0.102 2018 2017 (it) / 2022 Inflasi (ft) / Suku Bunga Inflasi (ft) / 0.046 (0.085) 2016 (it) / 2011 2015 Inflasi (ft) / Inflasi (ft) / Suku Bunga 0.045 0.081 2015 2019 (it) / 2012 Suku Bunga Suku Bunga Inflasi (ft) / (0.042) (0.071) (it) / 2011 (it) / 2010 2017 Suku Bunga Suku Bunga Inflasi (ft) / (0.037) (0.070) (it) / 2010 (it) / 2009 2020 118 Std b Coeff (0.123) (0.080) 0.070 0.067 (0.062) 0.053 (0.041) 0.040 0.036 E Inflasi (ft) / 2009 Inflasi (ft) / 2011 Suku Bunga (it) / 2008 Inflasi (ft) / 2012 Inflasi (ft) / 2013 Inflasi (ft) / 2016 Suku Bunga (it) / 2009 Inflasi (ft) / 2017 Inflasi (ft) / 2021 Std b Coeff 0.215 0.117 (0.096) 0.090 0.086 0.057 (0.056) 0.050 0.047 Tabel V.13 Nilai Korelasi Variabel Ketidakpastian Terhadap IRR Skenario Cash flow dan Nilai Koefisien Korelasi Coef Coef Coef Rank A Rank B Rank C Rank D Corr Corr Corr Suku Suku Suku Suku Bunga Bunga Bunga Bunga (0.039) #1 0.121 #1 0.065 #1 #1 (it) / (it) / (it) / (it) / 2007 2007 2007 2007 Inflasi Inflasi Inflasi Inflasi #2 (ft) / (0.064) #3 (ft) / (0.103) #4 (ft) / 0.034 #2 (ft) / 2009 2009 2009 2009 Tingkat Tingkat Tingkat Tingkat Penjualan Penjualan Penjualan Penjualan #9 (0.055) #9 (0.080) #11 0.029 #10 (St) / (St) / (St) / (St) / 2008 2008 2008 2008 119 Coef Rank Corr 0.079 #1 0.077 #3 0.066 #9 E Coef Corr Suku Bunga 0.078 (it) / 2007 Inflasi (ft) / 0.064 2009 Tingkat Penjualan (0.053) (St) / 2008 Berdasarkan Tabel V.13 diatas, dapat dilihat bahwa ranking sensitivitas untuk kriteria IRR sama halnya dengan kriteria payback period dan NPV, Suku Bunga 2007 juga mempunyai nilai korelasi yang paling tinggi diantara variabel ketidakpastian lainnya. Pada skenario E Suku Bunga 2007 mempunyai nilai koefisien korelasi yaitu 0,078, kemudian disusul Inflasi 2009 yang mempunyai nilai koefisien korelasi yaitu 0,064 dan Tingkat Penjualan 2008 yang mempunyai nilai koefisien korelasi negatif yaitu 0,053. Diagram tornado sensitivitas IRR terhadap variabel ketidakpastian dapat dilihat pada Gambar V.10 berikut ini. Inputs Suku Bunga (i t )/2007 Suku Bunga (it) / 20 Inflasi (f t )/2009 Inflasi (ft) / 2009 Tingkat Penjualan 0.25 0.24 0.23 0.22 0.2 0.21 (St )/2008 Tingkat Penjualan (S Mean of IRR Gambar V.10 Diagram Tornado Sensivitas IRR Terhadap Variabel Ketidakpastian Dari diagram tornado sensitivitas Payback Period terhadap variabel ketidakpastian diatas dapat dilihat bahwa interpretasi hasil regresi dan korelasi awal yang tersaji pada Tabel V.12 dan Tabel V.13 terbukti adanya. Suku Bunga 2007 mempunyai rentang batang terpanjang dan memiliki pengaruh dalam menentukan nilai IRR sebesar 3,62% kemudian disusul dengan Inflasi 2009 yaitu 2,09%. Sedangkan Tingkat Penjualan 2008 mempunyai rentang batang terpendek dengan nilai IRR sebesar 0,29%. 0.25 IRR 0.24 0.23 Tingkat Penjualan (St) / 2008 K35 Inflasi (ft) / 2009 L50 0.22 Suku Bunga (it) / 2007 J171 0.21 0.2 -43% 7% 57% 107% 157% 207% 257% Change From Base Value (%) Gambar V.11 Spider Diagram (Persentase Change from Base Value Terhadap IRR) Berdasarkan pada gambar diatas persentase perubahan variabel ketidakpastian dari nilai dasar (base value) terhadap mean IRR, Suku Bunga 2007 merupakan variabel ketidakpastian yang paling sensitif dibandingkan variabel ketidakpastian lainnya karena memiliki gradien garis terbesar. Suku Bunga maksimum yang terjadi pada tahun tersebut yaitu 39,92% yang merupakan perubahan maksimum arah positif dari base value yaitu 260,66% yang akan menghasilkan mean IRR sebesar 20,44%. Sedangkan suku bunga minimum yang terjadi pada tahun tersebut 7,27% yang merupakan perubahan minimum arah negatif dari base value sebesar 34,29% yang akan menghasilkan mean IRR sebesar 24,05%%. Data persentase change from base value variabel ketidakpastian terhadap mean IRR disajikan pada Tabel V.14 berikut. 121 Tabel V.14 Change From Base Value Terhadap Mean IRR Base Value Minimum Maksimum Suku Bunga IRR % (%) (34,29%) 24,05% 260,66% 20,44% Inflasi % (42,86%) 149,81% IRR (%) 23,12% 25,21% Tingkat Penjualan IRR % (%) (24,50%) 23,60% 24,50% 23,37% Sedangkan hasil analisis berdasarkan percentile distribusi, akan dimisalkan pada range percentile 1% dan 99%. Dari hasil analisis, pada percentile 1% dihasilkan kemungkinan Suku Bunga yaitu 7,27% akan menghasilkan mean IRR sebesar 24,05% dan pada percentile 99% dengan kemungkinan Suku Bunga yaitu 39,92% yang akan menghasilkan mean IRR sebesar 20,44%. Ilustrasi dan data dari dampak perubahan variabel-variabel ketidakpastian terhadap IRR, yang didasarkan pada percentile-percentile tertentu dapat dilihat pada Gambar V.12 dan Tabel V.15 dibawah ini.. 0.25 IRR 0.24 0.23 Tingkat Penjualan (St) / 2008 K35 Inflasi (ft) / 2009 L50 0.22 Suku Bunga (it) / 2007 J171 0.21 0.2 0% 20% 40% 60% 80% Percentile Gambar V.12 Spider Diagram (Percentile Terhadap Mean IRR) 122 100% Tabel V.15 Percentile Terhadap Mean IRR Percentile 1% 5% 50% 95% 99% V.3 Suku Bunga IRR % (%) 7,27% 24,05% 7,40% 23,82% 8,95% 23,67% 21,12% 22,32% 39,92% 20,44% Inflasi % 4,76% 5,16% 7,42% 14,51% 20,81% IRR (%) 23,12% 23,11% 23,40% 24,26% 25,21% Tingkat Penjualan IRR % (%) 60,4% 23,60% 62% 23,59% 80% 23,53% 98% 23,31% 99,6% 23,37% Pembahasan Hasil Penelitian Hasil pengujian model kelayakan finansial pengembangan perumahan yang dikembangkan dengan menggunakan simulasi, memberikan informasi yang lebih beragam dibandingkan dengan model kelayakan finansial pengembangan perumahan yang sudah ada. Model memberikan kemungkinan-kemungkinan pengembalian yang diharapkan dari masing-masing skenario yang dikembangkan, yang dipresentasikan melalui kriteria kelayakan finansial payback period, net present value (NPV) dan internal rate of return (IRR). Model kelayakan finansial pengembangan perumahan yang dikembangkan ini juga memberikan gambaran mengenai besarnya risiko pada masing-masing skenario yang telah dikembangkan. Berdasarkan hasil simulasi monte carlo terhadap kriteria kelayakan finansial pada 5 skenario yang telah dikembangkan, maka dapat diketahui bahwa skenario E merupakan skenario yang menawarkan payback paling cepat dan nilai mean NPV dan IRR paling besar dibandingkan skenario yang lain. Pengambilan keputusan investasi berdasarkan hasil dari simulasi pada 5 skenario yang dikembangkan akan bergantung pada kriteria kelayakan finansial yang digunakan pengembang untuk menilai kelayakan investasi pengembangan perumahan dan persepsi risiko pengembang. 123 Dalam model dilakukan juga analisis sensitivitas lanjut variabel ketidakpastian untuk mengetahui pengaruh perubahan variabel ketidakpastian terhadap kriteria kelayakan finansial finansial payback period, net present value (NPV) dan internal rate of return (IRR). Dari analisis sensitivitas lanjut tersebut diketahui bahwa Suku Bunga merupakan variabel ketidakpastian yang memiliki korelasi yang paling kuat dan pengaruh yang paling signifikan dalam menentukan kelayakan finansial investasi pengembangan perumahan, kemudian diikuti oleh Inflasi dan Tingkat Penjualan. Berdasarkan hasil pengujian model, maka model kelayakan finansial pengembangan perumahan yang dikembangkan dalam penelitian ini mampu menjawab permasalahan yang telah dirumuskan dan tercapainya tujuan-tujuan yang diingikan dalam penelitian ini seperti yang dijabarkan pada Bab I. Hal tersebut diketahui karena model menghasilkan kemungkinan-kemungkinan pengembalian yang diharapkan dan diketahui besarnya risiko pada investasi pengembangan perumahan. Selain itu analisis sensitivitas lanjut dapat memberikan gambaran pengaruh variabel ketidakpastian terhadap kriteria kelayakan finansial. Dalam penerapannya terdapat beberapa hal yang perlu diperhatikan karena sangat menentukan output yang dihasilkan yaitu penentuan fungsi distribusi probabilitas dari variabel ketidakpastian seperti ketersedian data historis menyebabkan timbulnya permasalahan ketepatan terhadap fungsi distribusi probabilitas dari variabel tersebut. Permasalahan yang muncul saat pengembangan model ini yaitu sulitnya mengembangkan biaya perizinan baik perizinan tanah maupun bangunan. Hal tersebut disebabkan karena penelitian ini mencakup 5 wilayah yaitu DKI Jakarta, Bogor, Depok, Tangerang dan Bekasi maka peraturan perizinan yang ditetapkan untuk tiap daerah berbeda-beda tergantung dari kebijakan pemerintah daerah (PEMDA) setempat sehingga cara perhitungan dan nilai dari indeks yang ditetapkan juga berbeda. Secara umum dapat disimpulkan bahwa pengembangan model analisis kelayakan finansial investasi pengembangan perumahan telah mampu menjawab permasalahan yang terkait dengan risiko dan ketidakpastian dalam analisis kelayakan finansial suatu investasi pengembangan perumahan. Model dikembangkan dengan menggunakan 124 software memudahkan perolehan informasi seperti analisis sensitivitas. Terlepas dari permasalahan yang ditimbul dalam pengembangannya, model ini dapat memproyeksikan keadaan di masa yang akan datang dengan menghasilkan berbagai kemungkinan output sehingga pengembang dapat mengambil keputusan lebih baik. 125