Bab V PEMBAHASAN Menurut HK89, hubungan sumber Z dan sumber Atoll dapat diasumsikan sebagai berikut: 1. Jika FB QPO diabaikan, Power Spectral Density antara FB dan Banana State, memiliki kemiripan. 2. Jika HB QPO diabaikan, Power Spectral Densityantara HB dan Island State memiliki kemiripan. 3. VLFN dan HFN bervariasi dalam sumber Z dari HB-NB-FB dan untuk sumber Atoll dari Island-Lower Banana-Upper Banana. Dari kemungkinan-kemungkinan tersebut, ada dua interpretasi yang dapat diambil, yaitu: 1. Sumber Atoll mirip dengan sumber Z, perbedaannya hanya terdapat pada laju akresinya. 2. Sumber Atoll berbeda dengan sumber Z dalam berbagai aspek dasar seperti medan magnetik, laju spin, inklinasi dan tipe bintang pasangan. Untuk interpretasi pertama, perlu ditelaah kembali apakah sumber Z dan sumber Atoll terjadi akibat dari perbedaan rentang laju akresi massanya saja. Seperti halnya jika kita anggap adanya NB-FB QPO berkaitan dengan laju akresi yang mendekati limit Eddington, maka tidak adanya QPO pada sumber Atoll mengikuti laju akresi yang rendah. Jika laju akresinya tinggi dan mendekati limit Eddington, diperkirakan bahwa pada sumber Atoll pun dapat menunjukkan NB-FB QPO. 37 Menurut interpretasi kedua, kemungkinan adanya aspek lain yang mempengaruhi adanya pembagian kelas LMXB tersebut, ditinjau dari parameterparameter berikut: 1. Laju akresi massa (M˙acc ) yaitu jumlah materi yang jatuh ke bintang kompak per satuan waktu. Laju akresi memiliki interaksi fisis yang dekat dengan bintang kompak, sehingga beberapa karakteristik variabilitas tersebut diperkirakan pencerminan dari karakteristik bintang kompaknya. Untuk kasus ini, jika ditinjau berdasarkan akresi massa, fakta pengamatan menyatakan bahwa sumber Z memiliki laju akresi massa yang lebih besar (mendekati limit Eddington), sebaliknya dengan sumber Atoll. Jika laju akresi massa pada sumber Atoll mendekati limit Eddington, maka karakteristiknya diperkirakan sama dengan sumber Z. Laju akresi massa berbeda dengan laju transfer massa. Laju transfer ˙ ) yaitu aliran massa dari bintang pasangan melalui titik massa (Mtrans Lagrange 1 dan membentuk piringan akresi. 2. Sudut inklinasi yaitu sudut yang dibentuk bidang orbit sistem bintang terhadap sudut pandang. Berdasarkan pengamatan, Sco X-1 dan Cyg X-2 (yang termasuk ke dalam sumber Z) memiliki inklinasi mendekati pole-on (Crampton, et al.,1976 dan Cowley, et al.,1979). HK89 menduga bahwa kemungkinan untuk sumber Atoll memiliki inklinasi edgeon. Jika kita memandang sebuah obyek LMXB dengan sudut inklinasi yang berbeda, maka pancaran sinar-X yang kita lihat pun akan berbeda. Sudut inklinasi yang besar, memunkinkan kita untuk melihat pancaran sinar-X yang lebih besar dibanding sudut inklinasi yang mendekati edgeon. Pada inklinasi edge-on, pancaran sinar-X akan terhalang oleh bintang pasangannya apabila terjadi gerhana. Untuk model piringan akresi berupa benda hitam, kita dapat menangkap sinar-X yang dipancarkan karena adanya scattering. 3. Periode spin yaitu waktu dimana bintang kompak memenuhi satu putaran 38 penuh. Periode spin yang sama dengan gerak Keplerian, disebut sebagai periode setimbang yang dipenuhi oleh persamaan: ! 2 3 Rmag 2π Peq = = 2π Ωk (r = Rm ag) GM (V.1) Periode spin dapat berubah tergantung waktunya. Bintang Neutron dapat menjadi spin up, berarti periodenya menurun karena momentum sudut yang diberikan oleh aliran akresi. Sebaliknya, saat periodenya semakin meningkat, Bintang neutron berada dalam keadaan spin down. 4. Magnetosfer merupakan daerah dimana di dalamnya tidak ada materi dari piringan akresi . Adanya magnetosfer membuat materi dari piringan tidak dapat jatuh secara langsung ke permukaan bintang kompak. Jika magnetosfernya kuat, maka materi dari piringan akresi akan dialirkan melalui medan magnetnya dan jatuh di kutub-kutub bintang kompak. Sebaliknya, jika magnetosfer lemah, tekanannya tidak mampu untuk menahan tumpukan materi di tepi luar, sehingga materi akan jatuh ke permukaan bintang kompak dan terjadilah akresi massa. Radius magnetosfer disebut juga sebagai radius Alfven, yang dapat dinyatakan melalui persamaan berikut: Bs2 Rs6 √ RA = Ṁ 2GM (V.2) Dimana Bs adalah kuat medan dipol pada permukaan Bintang Neutron, dengan radius Rs dan merupakan laju akresi massa. Secara umum, LMXB memiliki magnetosfer yang lemah dan dalam perhitungan, dapat diabaikan. Sumber Atoll diperkirakan memiliki medan magnet yang lemah, sehingga inner accretion disc tampak menelan bintang kompaknya. 5. Tipe Bintang Pasangan Tipe bintang pasangan memberikan pengaruh yang cukup besar terhadap proses transfer massa. Diperkirakan, tipe bintang pasangan untuk sumber Z sedang mengalami tahap pengembangan. Hal ini berkaitan dengan tinjauan laju akresi massa yang be39 Gambar V.1: Daerah magnetosfer pada bintang Neutron. Magnetosfer menjadi barrier terhadap akresi massa sar. Jika bintang pasangan sedang mengalami pengembangan, otomatis massa yang hilang pun lebih banyak dibanding bintang yang tidak mengembang. Proses itu mempengaruhi laju akresi massanya. Untuk sumber Atoll, dari pengamatan tampak bahwa bintang pasangannya biasanya masih dalam tahap deret utama. Jika kita kaitkan antara tipe bintang pasangan dengan proses akresi massa, kemungkinan berhubungan satu sama lain. Untuk tipe bintang pasangan yang sedang mengembang, massa yang hilang lebih besar daripada bintang yang tidak mengembang. Asumsikan laju transfer massa sama dengan laju akresi massa, dengan begitu, jika laju transfer massa besar akan diikuti oleh laju akresi massa yang besar. Hal ini tampak pada sumber Z yang luminositasnya mendekati limit Eddington. Sebaliknya, untuk bintang pasangan yang tidak mengembang, massa yang hilang lebih sedikit dan laju transfer massa pun akan rendah diikuti dengan laju akresi massanya yang rendah. Dari berbagai pengamatan, hingga tahun 1990-an, para astronom mencoba melihatnya dari satu parameter, yakni parameter laju akresi massa. Dengan merujuk analisis HK89, yang memberikan asumsi bahwa sumber Z memiliki laju akresi yang lebih besar dibanding sumber Atoll. Untuk membuktikan hal itu, perlu diketahui terlebih dahulu perilaku akresi 40 massa pada kedua sumber. V.1 Telaah Terhadap Sumber Z HK89 memberikan asumsi bahwa jika laju akresi massa semua LMXB sama, kemungkinan akan menghasilkan sumber yang sama. Adanya klasifikasi menjadi dua sumber dilihat dari berbagai pengamatan, bahwa untuk sumber Z memiliki kecenderungan laju akresi massa yang tinggi dibanding sumber Atoll. Berdasarkan hasil analisis terhadap diagram dua warna dan dicocokkan dengan pengamatan, laju akresi massa,Ṁacc , meningkat berdasarkan HBNB-FB. Berdasarkan perbandingan antara luminositas dengan laju akresi massa yang sebanding (lihat persamaan II.4), sebagai berikut: Lacc ∝ (V.3) maka jika dilakukan plot antara luminsitas dengan hardness ratio, diharapkan dari HB ke FB, intensitasnya akan meningkat. Untuk mengetahui hal tersebut, ada beberapa teori yang mengajukan pemodelanpemodelan untuk mendukung pembuktian bahwa laju akresi massa memang meningkat dari HB hingga ke FB. Vrtilek (1990) mencoba membandingkan pengamatan antara sinar-X dengan Ultraviolet (UV). Sepanjang jejak huruf Z, kontinum UV dan garis emisi UV meningkat dari HB ke FB. Jika dimodelkan, prediksi adanya garis emisi UV ini dikarenakan dua hal, yaitu: (a) Sinar-X yang dipancarkan mampu memanaskan permukaan bintang pasangan. (b) Sinar-X dihasilkan oleh piringan akresi dan dibandingkan dengan observasi. Obyek yang diambil yaitu Cyg X-2 dengan argumen bahwa Cyg X-2 memiliki ketiga cabang di jejak huruf Z. Dengan begitu, analisis terhadap 41 Gambar V.2: Representasi dari diagram dua warna sinar-X menunjukkan arah yang berarti terjadi peningkatan laju akresi massa sepanjang jejak Z dengan urutan HB-NB-FB(Vrtilek et al.,1990) obyek sumber Z pun dapat lebih akurat. Vrtilek (1990) mendapatkan bahwa pada HB, kontinum UV sangat rendah dan garis emisinya lemah. Untuk NB, garis emisi UV lebih terlihat, dan pada FB kedua garis kontinum dan emisi UV tampak terlihat kuat. Vrtilek (1990) mendapatkan bahwa garis kontinum UV dan fluks meningkat secara stabil dari HB ke FB. Kita dapat mengetahui perubahan fluks yang terjadi, melalui kurva cahaya di bawah ini. Tampak bahwa di setiap cabang sumber Z memiliki fluks yang berbeda, dengan harga fluks paling kecil berada pada HB. Kemudian dari informasi kurva cahaya itu, Vrtilek mencoba melakukan fitting untuk mendapatkan harga laju akresi massa. Fluks UV diintegrasikan dari 1224 hingga 1986 Å terlebih dahulu. Vrtilek mencari informasi mengenai HB, NB, dan FB dari diagram dua warna yang diambil satelit GINGA. Sebagian dari obyek-obyek yang diamati tidak diketahui sedang berada dalam fase HB, NB, atau FB, dan ditulis dengan istilah Unknown (UK). Setelah itu, fit terbaik yang didapat untuk radius outer disc sebesar 3 x 1011 cm, dan dengan laju akresi massa yang beragam. Hasilnya dapat dilihat pad a tabel V.1. 42 Gambar V.3: Contoh yang diambil IUE menunjukkan perbedaan dalam spectral behavior selama 3 kondisi: HB, NB, dan FB(Vrtilek et al.,1990) 43 V.2 Telaah Terhadap Sumber Atoll Seperti yang terjadi pada sumber Z, sepanjang Island State hingga Upper Banana, laju akresi pada sumber Atoll pun meningkat. Gierlinski dan Done (2001) mencoba menelaah 3 sumber Atoll dari data RXTE. Aql X-1, 4U 1608 - 52, 4U 1705 - 44 menjadi obyek-obyek yang dipilih, karena ketiganya memiliki variasi amplitudo luminositas yang besar dan menunjukkan jejak yang mirip huruf Z di diagram dua warnanya. Gambar V.4: 3 sumber Atoll yang diambil dari RXTE, dengan pola yang mirip dengan huruf Z (Gierlinski dan Done, 2001) Gambar 5.4 menunjukkan bagian atas adalah Island State (Upper Branch), dan bagian bawah adalah Banana State (Lower Branch). Sementara yang membentuk diagonal, disebut Diagonal Branch. Banana State tampak lebih terang dibanding Island State (lihat gambar 5.4, lingkaran hitam merupakan banyaknya laju count yang tercatat). Hal ini sesuai dengan kesimpulan yang diambil oleh HK89 bahwa Island State terjadi pada intensitas yang rendah, sementara Banana State terjadi pada intensitas tinggi. Prinsip dasar yang dilakukan oleh Gierlinski et al (2001) yaitu melakukan koreksi terhadap pergeseran yang terjadi pada setiap 44 obyek dan tampak sebagai warna abu-abu dalam diagram dua warna. Fluks bolometrik dihitung dengan mengekstrapolasi dari model spektrum yang tidak terabsorpsi, sehingga dapat dijadikan sebagai korektor (pengkoreksi). Pada diagram dua warnanya, daerah kanan atas didefinisikan dengan S = 1, dan daerah kiri bawah dengan S = 2 (lihat gambar 5.5). Kemudian, fluks bolometrik tersebut diplot terhadap S, sebagai fungsi jarak. Ratarata fluks bolometrik dapat dikaitkan dengan rata-rata laju akresi massa. Gambar V.5: Kombinasi dari plot diagram dua warna 3 sumber Atoll, yang semakin mirip dengan sumbr Z. Sepanjang Upper Branch dan Lower Branch didefinisikan oleh fungsi jarak, S (Gierlinski dan Done, 2001) Pada gambar V.6, kita dapat melihat bahwa hingga S = 1, luminositasnya bergerak naik secara linear. Pada gambar 5.5, daerah S=1 merupakan bagian Island State, atau disebut Upper Branch. Sementara, antara rentang 1 < S < 2, luminositas tampak menurun, dan naik kembali mulai S=2, yang berarti di daerah Banana State atau Lower Branch. Daerah diagonal yang menunjukkan penurunan luminositas, dispekulasikan terjadinya jet. Untuk mengkonversi fluks sinar-X menjadi luminositas yang benar, memerlukan jarak yang akurat. Namun, dengan cara seperti di atas, secara kasar, kita dapat mengetahui bahwa laju akresi massa memang meningkat 45 Gambar V.6: Luminositas yang bergantung terhadap fungsi jarak S (Gierlinski dan Done, 2001) dari Island State ke Banana State. V.3 Teori Laju Akresi Massa Seperti halnya materi yang ada di alam semesta, sebagian besar materi akresi berupa gas. Kita asumsikan bahwa piringan akresi berbentuk sferis simetris, dan terbentuk dari awan gas rakasasa. Untuk memprediksi laju akresi massa yang stabil, Ṁ (gs−1 ), mula-mula kita berikan kondisi sekeliling piringan akresi dari sebagian kecil awan gas yang jauh dari bintang dan beberapa boundary conditions di permukaannya dengan kerapatan ρ dan temperatur T. Kita pecahkan secara matematis dengan koordinat polar (r,θ,φ) dan pusatnya berada di dalam bintang kompak (Frank et al.1992). Kecepatan radial gas, vr = v, dengan θ dan φ adalah variabel bebas. Kita berikan harga negatif untuk kecepatan karena kita anggap materi jatuh, dan untuk v > 0, didefinisikan sebagai angin bintang. Untuk aliran yang stabil, dapat kita turunkan dari persamaan kontinuitas yaitu: 1 d 2 (r ρν) = 0 r2 dr (V.4) 46 Persamaan V.3 dapat dikaitkan dengan laju akresi massa dengan persamaan: 4πr2 ρ(−ν) = Ṁ (V.5) Momentum sudut untuk setiap elemen gas dapat diberikan oleh persamaan Euler: ∂t+ρν.∇ν = -∇P + f persamaan Euler, gaya luar yang berkontribusi berasal dari gravitasi dan hanya memiliki komponen radial: fr = − GM ρ r2 (V.7) Solusi yang didapatkan untuk laju akresi massa pada kondisi infinity: (5−3γ/2(γ−1) 2 2 2 ρ(∞) Ṁ = φG M 3 cs (∞) 5 − 3γ (V.8) Laju akresi pada persamaan V.16 berada dalam kondisi stabil. Laju akresi massa menjadi tidak stabil apabila laju transfer massa > laju akresi. Jika hal tersebut terjadi, kemungkinan akan terjadi penumpukan atau pengosongan pada piringan semakin besar. Hal ini berarti, piringan menjadi tidak stabil. Ketidakstabilan piringan akresi dapat dikaitkan dengan hidrogen terionisasi dan hidrogen netral. Piringan dikatakan stabil jira semua hidrogen dalam keadaan terionisasi ( T > TH > 6500 K). Temperatur efektif model piringan akresi stndar: 4 ∼ 3GM Ṁ Tef σR3 f = 8π (V.9) untuk R >> RN S Jika laju transfer massa lebih besar daripada laju akresi massanya, maka kerapatan materi pada piringan akan meningkat dan temperatur pun meningkat. Gas hidrogen pada piringan akan mengalami ionisasi, hingga piringan mengalami titik jenuh, dan terjadi ketidakstabilan. Temperatur yang tinggi diikuti 47 oleh viskositas yang tinggi. Materi yang jatuh ke piringan yang lebih dalam pun semakin bertambah. Laju akresi massa meningkat sehingga, laju transfer massa menjadi lebih kecil dibanding laju akresi massanya. Materi yang jatuh ke permukaan Bintang Neutron akan diubah menjadi radiasi, sehingga akan menghasilkan luminositas akresi (lihat persamaan II.4), dan luminositas akresi tidak akan melebihi limit Eddington (lihat persamaan II.5). 48 Tabel V.1: Parameter harga untuk laju akresi massa setelah dilakukan fit terhadap fluks yang didapatkan dari pengamatan (Vrtilek, 1990) IUE UV flux X-ray State M˙acc B 0.7 sequence number LWP 13410 SWP 33748 2.31 HB 0.7 SWP 33749 1.91 HB 0.6 NB 0.9 LWP 13418 SWP33743 2.47 NB 0.9 SWP34428 3.53 NB 1.1 FB 1.6 LWP 13405 SWP 33751 3.84 FB 1.2 SWP 33752 4.18 FB 1.2 UK 1.4 LWP 13424 SWP 33750 2.33 UK 0.8 SWP 33753 3.53 UK 1.2 SWP 34411 4.17 UK 1.6 SWP 34412 3.49 UK 1.2 SWP 34413 2.77 UK 0.8 SWP 34417 3.75 UK 1.2 SWP 34433 2.34 UK 1.2 SWP 34434 2.43 UK 0.8 49