TINJAUAN PUSTAKA Model Interaksi Multiplikatif pada Rancangan Faktorial Dua Faktor Perhatikan rancangan percobaan faktorial dua faktor dengan interaksi yang terdiri atas a faktor baris dan b faktor kolom. Misalkan y ij merupakan respon dari faktor baris ke-i pada faktor kolom ke-j, µ adalah nilai rata-rata umum, τ i adalah pengaruh faktor baris ke-i, β j adalah pengaruh faktor kolom ke-j, γ ij merupakan pengaruh interaksi antara faktor baris ke-i dan faktor kolom ke-j, dan ε ij adalah pengaruh acak dari faktor baris ke-i pada faktor kolom ke-j yang menyebar Normal (0,σ2). Model rancangan tersebut ialah (Marasinghe, 1980) y ij = µ + τ i + β j + γ ij + ε ij (1) dengan asumsi τ ' 1a = 0 , β 1b = 0 , 1a Γ = 0 dan Γ1b = 0 jika Γ=[γij]a×b . ' ' ' Marasinghe (1980) mendeskripsikan parameter interaksi γ ij pada model k (1) dalam bentuk bilinier berikut γ ij = ∑ l r α ir θ jr , dan k ≤ min( b − 1, a − 1) r =1 dengan unsur-unsur dari vektor α 'r = [α 1r α 2r ... α ar ] , r = 1, 2,…, k, merupakan parameter interaksi faktor baris; sedangkan unsur-unsur vektor θ r = [θ 1r ' ... θ br ] , r = 1, 2,…, k, merupakan parameter interaksi faktor θ 2r kolom. Dalam ungkapan bilinier tersebut diasumsikan : l1 ≥ l 2 ≥ ... ≥ l k dan A ' A = B ' B = I k dengan A = [α 1 α2 ... α r ... α k ] dan B = [θ 1 θ2 ... θ r ... θ k ] . Dengan demikian model interaksi multiplikatif dapat ditulis dalam bentuk k y ij = µ + τ i + β j + ∑ l r α ir θ jr + ε ij r =1 (2) atau dapat pula ditulis dalam notasi matriks seperti berikut Y = µ1a 1b + τ 1b + 1a β + AD (l k )B ' + E ' ' ' (3) dengan matriks data Y berordo a×b dan D(lk) adalah matriks diagonal berordo k yang unsur-unsur diagonal utamanya ialah l1, l2, ... , lk, sedangkan E matriks pengaruh acak berordo a×b. 3 Dalam hal ini yang menjadi perhatian pada model (3) ialah pengujian subhipotesis terhadap parameter interaksi pengaruh faktor baris yang dapat diuji dengan menyususn hipotesis berbentuk H 0 : HΑ = 0 dan H 1 : HΑ ≠ 0 , yang artinya ada sekurang-kurangnya satu ungkapan berbentuk H 1 : H α r ≠ 0 , 1 ≤ r ≤ k dengan H merupakan matriks kontras dan berordo s×a. Hal ini disebabkan karena hipotesis H 0 : HΑD(l k )B ' = 0 s×b identik dengan H 0 : HΑ = 0 . s× a Sebagai ilustrasi, misalnya untuk menguji α 1r = α 2 r = α 3 r = α 4 r = 0 untuk r = 1, 2,…, k, maka matriks H dapat berbentuk 3Hk = 1 0 0 0 −1 0 0 | 0 ...... 0 1 −1 0 | 0 ...... 0 1 −1 | 0 0 3× 4 ...... 3× ( a − 4 ) Dengan anggapan k sudah ditentukan dan memisalkan Z=[zij] sebagai matriks interaksi berordo a×b dengan z ij = y ij − y i.. − y. j + y.. , maka menurut Marasinghe (1980) hipotesis di atas dapat diuji dengan menggunakan statistik a Λ= b ∑∑ z i =1 j =1 a b k 2 ij − ∑ λr r =1 k ∑ ∑ z ij2 − ∑ λ*r i =1 j =1 r =1 (4) dengan λr merupakan akar ciri terbesar ke-r dari matriks Z’Z dan λr* merupakan ( ) akar ciri terbesar ke-r dari matriks I − H − H ZZ ' , sedangkan H − adalah matriks kebalikan Moore-Penrose dari matriks H. Hipotesis nol H0 ditolak jika Λ < qφ dengan PH0 (Λ < qφ ) = φ . Simulasi Monte Carlo atau Bootstrap dapat digunakan untuk melakukan aproksimasi bagi sebaran uji statistik Λ. 4 Model AMMI (Additive Main Effect and Multiplicative Interactions) AMMI merupakan suatu teknik analisis data percobaan dua faktor yaitu faktor genotipe dan lingkungan dengan pengaruh utama perlakuan bersifat aditif sedangkan pengaruh interaksi yang bersifat multiplikatif dimodelkan dengan model bilinier. Model AMMI merepresentasikan observasi ke dalam komponen sistematik yang terdiri atas pengaruh utama (main effect) dan pengaruh interaksi melalui suku-suku multiplikatif (multiplicative interactions), di samping komponen acak sisaan atau galat. Komponen acak pada model ini diasumsikan menyebar Normal dengan ragam konstan. Berarti model percobaan faktorial dua faktor yang akan dimodelkan dengan AMMI sama seperti pada model (1), dengan genotipe merupakan faktor baris, sedangkan lingkungan sebagai faktor kolom. Pada dasarnya analisis AMMI menggabungkan analisis ragam aditif bagi pengaruh utama perlakuan dengan analisis komponen utama dengan pemodelan bilinier bagi pengaruh interaksi yang memanfaatkan penguraian nilai singular (SVD) pada matriks interaksi, sehingga model percobaan faktorial dua faktor menjadi Y = µ1a 1b + τ 1b + 1a β + AD ' ( dengan D λ t ' ' ( λ )B t ' +E (5) ) adalah matriks diagonal berordo t yang unsur-unsur diagonal utamanya ialah λ 1 , λ 2 ,..., λ t , λ t merupakan nilai singular untuk komponen bilinier ke-t ( λ t merupakan akar ciri terbesar ke-t dari matriks ZZ’ dan λ1 ≥ λ 2 ≥ ... ≥ λt ), dan δ ij adalah simpangan dari pemodelan bilinier (Crossa dalam Mattjik dan Sumertajaya, 2002). Asumsi-asumsi pada model AMMI identik dengan asumsi pada model interaksi multiplikatif yang diungkapkan oleh Marasinghe (1980) dalam menyusun metode pengujian subhipotesis untuk melakukan identifikasi faktor baris (genotipe dalam model AMMI) yang memberikan kontribusi terhadap interaksi baris × kolom (genotipe × lingkungan dalam model AMMI). Oleh karena itu pengujian subhipotesis pada model AMMI dapat dilakukan dengan metode yang diusulkan oleh Marasinghe (1980). Hipotesis nol H 0 : HΑ = 0 lawan H 1 : HΑ ≠ 0 , 5 dengan H merupakan matriks kontras dan berordo s×a; A = [α 1 ... α t ] α2 pada model AMMI-t dapat diuji dengan statistik Λ pada persamaan (4) untuk k = t dengan kriteria yang sama dalam menolak hipotesis H0. Nilai kriteria uji qφ dapat diperoleh dengan proses Bootstrap. Perhitungan Jumlah Kuadrat AMMI Perhitungan pengaruh aditif genotipe dan lingkungan serta jumlah kuadrat dan kuadrat tengah pada model AMMI dilakukan seperti analisis ragam pada umumnya, tetapi berdasarkan pada data rataan per genotipe × lingkungan. Pengaruh ganda genotipe dan lingkungan pada interaksi diduga dengan z ij = y ij . − y i ... − y. j . + y... sehingga jumlah kuadrat interaksi dapat diturunkan sebagai berikut : JK (GL ) = r ∑ z ij2 = r ∑ ( y ij . − y i .. − y . j . + y ... ) 2 i. j = r teras ( ZZ ′) (6) Berdasarkan teorema pada aljabar matriks bahwa teras dari suatu matriks sama dengan jumlah seluruh akar ciri matriks tersebut, tr ( a ZZ ' a ) = k ∑λ r =1 r , maka jumlah kuadrat untuk pengaruh interaksi komponen ke-r adalah akar ciri ke-r pada pemodelan bilinier tersebut (λ r ) , jika analisis ragam dilakukan terhadap rataan per genotipe × lingkungan. Jika analisis ragam dilakukan terhadap data sebenarnya maka jumlah kuadratnya adalah banyak ulangan kali akar ciri ke-r. Pengujian masing-masing komponen ini dilakukan dengan membandingkannya terhadap kuadrat tengah galat gabungan (Gauch dalam Mattjik, 2000). Penentuan Banyaknya Komponen AMMI Salah satu metode yang digunakan untuk menentukan banyaknya Komponen Utama Interaksi (KUI) yang dipertahankan dalam model AMMI (Gauch dalam Mattjik, 2000) yaitu Metode Keberhasilan Total (postdictive success). Metode ini berhubungan dengan kemampuan suatu model tereduksi untuk menduga data yang digunakan dalam membangun model tersebut. 6 Sedangkan banyaknya komponen AMMI sesuai dengan banyaknya KUI yang nyata pada uji-F analisis ragam. Untuk KUI yang tidak nyata digabungkan dengan sisaan. Metode ini diusulkan oleh Gollob yang selanjutnya direkomendasikan oleh Gauch (dalam Mattjik, 2000). Tabel analisis AMMI (Tabel 1) merupakan perluasan dari tabel penguraian jumlah kuadrat interaksi menjadi beberapa jumlah kuadrat KUI. Tabel 1 Tabel Analisis Ragam AMMI Sumber Keragaman Derajat Bebas Jumlah Kuadrat Genotipe a-1 JK(G) Lingkungan b-1 JK(L) (a-1)(b-1) JK(G*L) KUI1 a+b-1-2(1) JK(KUI1) KUI2 a+b-1-2(2) JK(KUI2) .............. .............. KUIt a+b-1-2(t) JK(KUIt) Sisaan Pengurangan JK(Sisaan) Genotipe × Lingkungan ................... Galat gabungan Total b(a-1)(n-1) JK(Galat gabungan) abn-1 n adalah banyaknya ulangan 7