Fakultas Teknik BAB IV ANALISA & PERHITUNGAN ALAT Pada pembahasan dalam bab ini akan dibahas tentang faktor-faktor yang memiliki pengaruh terhadap pembuatan dan perakitan alat, gaya-gaya yang terjadi dan gaya yang dibutuhkan. Diharapkan dengan adanya analisa perhitungan terhadap alat ini, maka hasil pembuatan pembuatan dan perakitan dari alat Aero-mechanical Conveyor ini dapat diketahui secara lebih detail dan akurat. Berdasarkan hal tersebut, maka penulis mencoba untuk mengadakan analisa perhitungan yang dilakukan berdasarkan pengambilandata di lapangan dan literatur-literatur dari buku referensi. Adapun analisa perhitungan yang akan dilakukan sesuai dengan batasan masalah yang penulis sudah ungkapkan pada bab I pendahuluan. Aero-mechanical Conveyor 1 Fakultas Teknik 4.1 Perhitungan pada bagian Penggerak. 4.1.1. Perhitungan Besarnya Torsi ( beban ) pada Motor Penggerak ( Motor Listrik ). Perhitungan terhadap beasarnya torsi atau beban pada motor bertujuan untuk mengetahui besarnya daya ( kapasitas ) dari motor penggerak yang akan digunakan pada alat ini. Untuk menghitung torsi motor, perlu diketahui terlebih dahulu faktor-faktor yang mempengaruhi beban pada motor, yaitu : Berat material yang dibawa oleh disc Berat dari disc Berat dari rope/sling Berat pulley 4.1.1.1. Berat material yang dibawa oleh Disc. Material yang dipilih dalam perhitungan ini adalah material yang mempunyai berat jenis terbesar, yaitu Pasir kering dengan berat jenis sebesar 144 lb/ft³ atau bila dikonversikan menjadi 2306 kg/m³. Berat material dihitung dengan menggunakan rumus : Wm = ρ x Vt x g dimana : W m = Berat material yang dibawa oleh disc ( N ) ρ = Berat jenis material ( kg/m³ ) Vt = Volume material dalam satu siklus ( m³ ) g = Aero-mechanical Conveyor percepatan gravitasi = 9,81 ( m/dt² ) 2 Fakultas Teknik Jumlah material yang dibawa/diangkut oleh disc dalam satu siklus dihitung dengan cara sebagai berikut : Jumlah disc efektif yang membawa material pada saat alat beroperasi ( dari Feed-Housing sampai ke Discharge-Housing ) adalah sebanyak n buah n = t + ¼ Sd + ¼ Sf p dimana : n = jumlah disc efektif dalam satu siklus t = tinggi alat ( mm ) S d = keliling lingkaran discharge-housing ( mm ) S f = keliling lingkaran feed-housing ( mm ) p = jarak antar disc ( disc pitch ) dalam mm n = = 3.000 + ¼ ( 3,14 x 298 ) + ¼ ( 3,14 x 298 ) 160 21,67 buah dibulatkan menjadi n = 22 buah Jumlah material antar disc adalah : Vm = Ax p dimana : V m = volume/jumlah material antar disc ( mm³ ) A = luas penampang pipa bagian dalam ( mm² ) p = jarak antar disc ( disc pitch ) dalam mm A = ¼ π x D² Aero-mechanical Conveyor ( D = diameter bagian dalam pipa ) 3 Fakultas Teknik = ¼ x 3,14 x (76)² = 4.534,16 mm² V = A x p = 4.546,1 x 160 = 725.465,6 mm³ dalam satu siklus : Vt = n x V = 22 x 725.465,6 = 15.960.243,2 mm³ sehingga berat material dalam satu siklus : W m = ρ x Vt = ( 2306x10-9 ) x 15.960.243,2 = 361 N 4.1.1.2. Berat Disc. Untuk menghitung berat disc, perlu dihitung lebih dahulu volume disc yaitu : Vd = = dimana : A x td ¼ π x Dd² x td Vd = volume disc ( mm³ ) Dd = diameter disc ( mm² ) td = tebal disc ( mm ) diameter disc ( D d ) = diameter pipa - clearance clearance ( celah ) antara pipa dan disc adalah 2 mm, sehingga : Aero-mechanical Conveyor 4 Fakultas Teknik = 76 - ( 2 x 2 ) = 72 mm Dd Ketebalan disc diasumsikan sebesar 10 mm Bahan yang digunakan untuk disc adalah polyurethane yang mempunyai berat jenis ( ρ ) sebesar 59 lb/ft , dikonversikan menjadi 945,09 kg/m³. Vd = ¼ x 3,14 x ( 72 )² x 10 = 40.694,4 mm³ Jadi berat disc : W d = ρ x V d x 9,81 = ( 945,09 ) x 10-9 x ( 40.694,4 ) x 9,81 = 0,378 N Berat disc dalam satu siklus : W d = 0,378 x 22 = 8,316 N 4.1.2. Berat Wire Rope ( sling ) yang digunakan Jenis Wire Rope (sling) yang dipilih untuk digunakan dalam perancangan alat ini adalah jenis Galvanized Steel dengan ukuran sebagai berikut : Diameter Wire Rope ( D W ) = 6 mm Panjang Wire Rope ( L W ) dihitung dengan cara : LW = t + ½ Sd + ½ Sf dimana : t = tinggi alat ( mm ) S d = keliling lingkaran discharge-housing ( mm ) Aero-mechanical Conveyor 5 Fakultas Teknik S f = keliling lingkaran feed-housing ( mm ) sehingga : Lw = 3.000 + ½ ( 935,72 ) + ½ ( 935,72 ) = 3.935,72 mm = 3,936 m Volume Wire rope : V w = ¼ x 3,14 x ( 0,006 )² x 3,936 = 0,000111 m³ Berat Wire rope ( W w ) : Ww = ρ x Vw x g = 7850 x 0,000111 x 9,81 = 8,566 N 4.1.3. Berat Pulley yang digunakan Dalam perhitungan kapasitas motor penggerak, berat pulley sementara diabaikan, karena pulley duduk pada poros yang ditopang oleh bantalan ( bearing ). Dari data-data yang diperoleh dari perhitungan-perhitungan tersebut, maka dapat dihitung besarnya kapasitas motor yang akan digunakan, yaitu dengan cara : P = dimana : 2xπxNxT 60 P = Daya/kapasitas motor ( Watt ) Aero-mechanical Conveyor 6 Fakultas Teknik N 2 = putaran pulley 2 ( rpm ) T = Torsi yang terjadi pada pulley 2 ( N.m ) Untuk menghitung putaran ( rpm) pada pulley 2, maka perlu diketahui jumlah hasil ( output ) dari proses yang dilakukan oleh alat ini. Material yang dipilih untuk diproses pada alat ini adalah Pasir Kering, dimana jumlah yang dihasilkan sebesar 22 ton/jam atau 22.000 kg/jam, sedangkan telah diketahui bahwa jumlah material yang dihasilkan dalam satu siklus ( lintasan ) sebesar 0,16 m³ atau 36,8 kg. Dalam satu siklus, panjang lintasan untuk membawa material adalah : = 2 x t + ½ Sd + ½ Sf = 2 x 3.000 + ½ x 935,72 + ½ x 935,72 = 6.936 m Jumlah putaran dalam satu siklus ( lintasan ) sepanjang 6,936 m adalah : = 6.936 935 = 7,412 putaran untuk menghasilkan output material sebesar 366,67 kg/menit , maka : N2 = = 366,67 36,85 x 7,412 73,634 rpm ( dibulatkan menjadi 75 rpm ) Menghitung Torsi yang dialami oleh Feed-Housing dengan menggunakan rumus: Aero-mechanical Conveyor 7 Fakultas Teknik T = F x r dimana : T = Torsi pada Feed-Housing ( Nm ) F F = Gaya pada Feed-Housing ( N ) r Jari-jari feed-Housing ( m ) = = Wm + Wd + Ww = 361 + 8,316 + 8,566 = 377,88 N T = = 377,88 x ½ ( 0,298 ) 56,3 Nm sehingga Daya Motor ( P ) : P = 2 x 3,14 x 75 x 56,3 60 = 441,955 Watt = 0,44 kW 4.1.4. Perhitungan Dimensi Pulley yang digunakan. Pada perencanaan dimensi/ukuran pulley, putaran motor disesuaikan agar diperoleh diameter menggunakan pulley feed-housing yang proporsional dengan Gear Motor dengan perbandingan rasio 1 : 2, sehingga putaran motor ( N 1 ) menjadi 700 rpm . Untuk menghitung dimensi pulley feed-housing, rumus yang digunakan adalah : N1 N2 = D2 D1 Aero-mechanical Conveyor 8 Fakultas Teknik dimana : N 1 = putaran motor dalam ( rpm ) N 2 = putaran feed-housing ( rpm ) D 1 = diameter pulley motor ( mm ) D 2 = diameter pulley feed-housing ( mm ) D2 = = 700 75 x 40 320 mm 4.1.5. Perhitungan Sabuk - V. Perhitungan sabuk-V yang dilakukan meliputi : 1. Panjang Sabuk-V. 2. Kecepatan linier Sabuk-V. 3. Sudut kontak. 4. Gaya tarik ( tegangan ) pada sabuk. Panjang Sabuk-V ( L mm ). Untuk menghitung panjang sabuk-V dapat digunakan rumus sebagai berikut : L = 2 . C + ½ . π ( D1 + D2 ) + dimana : 1 4.C ( D1 + D2 ) ( ref . Sularso, hal. 170 ) L = panjang keliling sabuk ( mm ) C = jarak sumbu poros ( mm ) D 1 = diameter pulley motor ( mm ) D 2 = diameter pulley feed-housing ( mm ) untuk menghitung jarak sumbu poros, digunakan rumus : C = ( 1,5 sampai 2 ) x D 2 Aero-mechanical Conveyor ( ref . Sularso, hal. 166 ) 9 Fakultas Teknik = 2 x 320 = 640 mm maka selanjutnya dapat dihitung panjang sabuk-V yaitu : L = 2 ( 640 ) + ½ x 3,14 ( 320 + 40 ) + 1 4 x 640 ( 320 - 40 )² = 1280 + 565,2 + 30,65 = 1875,85 mm Tabel 4.1. Panjang sabuk-V standar ( ref. Sularso, hal.168 ) Aero-mechanical Conveyor 10 Fakultas Teknik dari table panjang sabuk-V standar diperoleh ukuran 74 inch dengan L = 1880 mm Kecepatan Sabuk-V ( L mm ). Untuk menghitung kecepatan sabuk-V , maka dapat digunakan rumus sebagai berikut : V= dimana : π x D2 x N2 60 V = kecepatan sabuk dalam m/s D 2 = diameter pulley 2 dalam m N 2 = putaran pulley 2 dalam rpm sehingga : V= = 3,14 x 0,320 x 75 60 1,256 m/s Sudut Kontak - θ . θ Ф Aero-mechanical Conveyor 11 Fakultas Teknik Gambar 4.1. Sudut kontak Sudut kontak – θ , dapat dihitung dengan menggunakan rumus : - untuk pulley kecil ( D 1 ) θ = ( 180° - 2 Ф ) π ( ref . RS. Khurmi, hal. 666 ) 180 - untuk pulley besar ( D 2 ) θ = ( 180° - 2 Ф ) Sin Ф = π ( ref . RS. Khurmi, hal. 666 ) 180 r2 - r1 ( ref . RS. Khurmi, hal. 666 ) C r 1 = jari-jari pulley kecil ( ½ D 1 ) dalam mm dimana : r 2 = jari-jari pulley besar ( ½ D 2 ) dalam mm C = jarak sumbu poros dalam mm sehingga : Sin Ф = ( 160 – 20 ) 640 = 0,2188 Ф = 12,64 ° Untuk pulley kecil : Aero-mechanical Conveyor 3,14 12 Fakultas Teknik θ = { 180° - 2 ( 12,64° ) } 180 = ( 154,72° ) x ( 0,0174 ) = 2,692 rad Untuk pulley kecil : θ = { 180° + 2 ( 12,64° ) } 3,14 180 = ( 205,28° ) x ( 0,0174 ) = 3,5472 rad Gaya Tarik ( tegangan ) pada sabuk. F1 F2 θ Ф Gambar 4.2. Gaya Tarik pada sabuk Untuk menghitung gaya tarik pada sabuk , terlebih dahulu dihitung sebagai berikut : - Daya rencana , P d : P d = P x fc dimana : P d = Daya perencanaan ( Watt ) P = Daya motor ( Watt ) fc = faktor koreksi ( dilihat pada tabel 4.2 ) Aero-mechanical Conveyor 13 Fakultas Teknik P d = 441,96 x 1,4 = 618,7 Watt Tabel 4.2. Faktor Koreksi Aero-mechanical Conveyor 14 Fakultas Teknik - Torsi Rencana : Dari persamaan pada halaman 7 diketahui rumus untuk menghitung daya motor adalah : P = 2xπxNxT ( Watt ) 60 P d x 60 T = 2xπxN 618,7 x 60 T = 2 x 3,14 x 75 = 78,82 Nm diketahui bahwa : T = ( F 1 - F 2 ) x r ..................................... ( ref. RS. Khurmi, hal.664 ) dimana : T = torsi rencana dalam Nm F 1 = tegangan pada sisi tarik dalam N F 2 = tegangan pada sisi kendor dalam N r = jari-jari pulley besar ( ½ D 2 ) dalam mm sehingga : T = ( F1 - F2 ) ( F1 - F2 ) = 0,320 2 ( 78,82 ) x 2 Aero-mechanical Conveyor 15 Fakultas Teknik 0,320 ( F1 - F2 ) = 492,63 ……………………. ( i ) diketahui juga persamaan sebagai berikut : 2,3 log dimana : F1 F2 = µ x θ Cosec α ………… ( ref. RS. Khurmi, hal.682 ) α = 20° µ = 0,3 ( dari tabel koefisien gesek ) sehingga : 2,3 log log F1 F2 F1 F2 F1 F2 F1 = ( 0,3 ) x ( 3,5472 ) x Cosec 20° = 1,497 = 31,372 = 31,32 F 2 ……………………. ( ii ) Substitusi persamaan ( ii ) ke persamaan ( i ) , maka diperoleh : ( F1 - F2 ) 31,32 F 2 F1 - = 492,63 F2 = 492,63 F2 = 15,24 N = 31,32 F 2 = 31,32 x 15,24 = 477,32 N Aero-mechanical Conveyor 16 Fakultas Teknik 4.1.6. Perhitungan Pada Poros / Shaft. Gambar dan perhitungan beban pada poros F1 Bantalan F2 W Feed Housing Pulley Gambar 4.3. Poros Data-data yang dibutuhkan dalam perhitungan adalah : Gaya tarik sabuk pada sisi kencang , F 1 = 477,32 N Gaya tarik sabuk pada sisi kendur , F 2 = 15,24 N Berat feed housing , W f = 8,32 kg = 81,61 N F AY F DY A B F BY C D F CY Gambar 4.4. Diagram gaya-gaya pada poros. F DY = F 1 + F 2 + Wf Aero-mechanical Conveyor 17 Fakultas Teknik = 477,32 + 15,24 + 81,61 = F AY = = 574,17 N Berat dari feed housing 81,61 N Asumsi arah gaya : - arah gaya kebawah ( tanda panah kebawah ) negatif - arah gaya keatas ( tanda panah keatas ) positif dari dimensi panjang poros diambil dua buah titik tumpu yaitu di bantalan kiri ( B ) dan bantalan paling kanan ( C ) F DY F AY A B F BY C D F CY Σ My = 0 ( tumpuan di B ) ( 81,61 x 38 ) + ( F CY x 67 ) - ( 574,17 x 117 ) = 0 3101,18 + 67 F CY - 67.177,89 = 0 F CY = 64.076,71 67 Aero-mechanical Conveyor 18 Fakultas Teknik = 956,37 N Σ Fy = 0 - 81,61 - 574,17 + F BY + 956,37 = 0 F BY = - 300,59 N 81,61 300,59 A B ( arah panah terbalik ) 574,17 C D 956,37 Gambar 4.5. Diagram gaya pada poros. Tegangan Lentur dan Momen Lentur. - pada 0 ≤ X ≤ 38 mm Q = - 81,61 N M = 81,61 x 38 = 3100,8 Nmm - pada 38 mm ≤ X ≤ 105 mm Q = - 81,61 - 300,59 = - 382,2 N M = ( 81,61 x 105 ) + ( 300,59 x 38 ) = 19.991,47 Nmm - pada 105 mm ≤ X ≤ 155 mm Q = - 81,61 - 300,59 - 956,37 = - 1338,57 N M = ( 81,61 x 155 ) + ( 300,59 x 117 ) + ( 956,37 x 50 ) = 81,61 300,59 Aero-mechanical Conveyor 0 574,17 19 Fakultas Teknik A B C D 956,37 19.991,47 Nmm 3100,8 Nmm 0 Aero-mechanical Conveyor 20 Fakultas Teknik Gambar 4.6. Diagram Momen Lentur. maka : ML di A = 0 ML di C = 19.991,47 Nmm = 1999,147 Ncm T = 78,82 Nm ( Torsi rencana ) = 7882 Ncm menentukan diameter poros minimum dengan tegangan puntir maksimum menggunakan “ teori lingkaran Mohr “, bahwa tegangan puntir maksimum adalah : d = √ dimana : 3 32 x n π x Sy √ ML² + T² ………..…. ( ref. Joseph E. Shigley ) d = diameter minimum di titik tumpu C ( tumpuan dengan beban terbesar ) dalam mm Sy = kekuatan mengalah/mulur dalam N/cm² n = faktor keamanan Aero-mechanical Conveyor 21 Fakultas Teknik Dalam menghitung pemilihan bahan poros, maka diambil data dari tabel sifat-sifat mekanis yang khas dari Baja Tahan Karat yang ditempa, yaitu : Nomor UNS : S41600 Pengerjaan : Annealed dan ditarik pada 1400 °F Kekuatan mengalah/mulur (Sy) : 37.715 N/cm² Kekuatan tarik ( SUT ) : 61.356 N/cm² Faktor keamanan ( n ) : 1,8 maka : d = = = √ 3 √ 32 x 1,8 ( 3,14 ) x ( 37.715 ) ( 0,000486 ) x √ √ ( 1999,147 )² + ( 7882 )² 66.122.512,73 1,58 cm = 15,8 mm diameter rancangan poros dipilih sebesar = 20 mm Tabel 4.3. Sifat-sifat mekanis Baja Tahan Karat Aero-mechanical Conveyor 22 Fakultas Teknik ref : Joseph Shigley 4.1.7. Perhitungan Pada Bantalan ( bearing ). Mesin dipasang dengan sejumlah N bantalan, masing-masing memiliki keandalan R , maka keandalan dari kelompok bantalan : R N = ( R )N Design Optimum dari AFBMA : Keandalan bantalan > 90 % N = 2 bearing R = 97 % = 0,97 ( asumsi yang sering dipilih oleh pabrikasi ) maka : R N = ( 0,97 )² = 0,9409 4.1.7.1. Menghitung Gaya ( F ) Maksimum Pembebanan Untuk Bantalan. Dari perhitungan gaya-gaya pembebanan maksimum terhadap poros didapat : F di B = 300,59 N F di C = 956,37 N Dari kedua hasil perhitungan pembebanan terhadap poros, maka diambil untuk gaya F = 956,37 N, yang adalah pembebanan maksimum ( di titik C ). Dalam pemakaian beban harus dikalikan dengan faktor pemakaian beban. Adapun harga nilai-nilai faktor tersebut dapat dilihat pada tabel berikut : Aero-mechanical Conveyor 23 Fakultas Teknik Tabel 4.4. Faktor pemakaian beban Jenis Pemakaian Roda gigi presisi Roda gigi perdagangan Pemakaian dengan segel bantalan yang jelek Mesin tanpa tumbukan Faktor Beban 1 - 1,1 1,1 - 1,3 1,2 1 - 1,2 Mesin dengan tumbukan ringan 1,2 - 1,5 Mesin dengan tumbukan sedang 1,5 - 3 ref : Joseph Shigley Jenis dari alat ini adalah termasuk klasifikasi ” Mesin dengan tumbukan ringan ” maka : F R = F x 1,3 = 956,37 x 1,3 = 1243,28 N 4.1.7.2. Distribusi Kegagalan Bantalan. Teori yang sering dipakai oleh pabrikan dapat dilihat pada tabel 4.4 di bawah ini : Tabel 4.5. Teori distribusi kegagalan bantalan Aero-mechanical Conveyor 24 Fakultas Teknik ref : Joseph Shigley dari tabel di atas dipilih salah satu teori yang akan digunakan dalam menghitung keandalan dari suatu bantalan, yaitu teori ” MISCHKE ” : CR = F LD nD 1 LR nR 6,84 1/a 1 ln ( 1/R ) 1/1,17 a Nilai ketentuan : L R = 3000 jam nR = 500 jam Aero-mechanical Conveyor 25 Fakultas Teknik Bilangan : L R x n R = 106 dimana : R = keandalan ( dalam % ) untuk menentukan umur bantalan mesin, dapat dipakai tabel di bawah ini : Tabel 4.6. Saran umur bantalan untuk berbagai kelas mesin (ref : Joseph Shigley) Dari tabel dipilih jenis pemakaian adalah ” Mesin untuk pelayanan selama 24 jam, terus menerus ” dengan umur bantalan 60.000 jam L D = 60.000 jam nD = 75 a = 2 R = 0,97 rpm ( untuk bantalan peluru ) maka : ( 60.000 ) . ( 75 ) Aero-mechanical Conveyor ½ 1 26 Fakultas Teknik C R = 1243,28 ( 6,84 ) . 106 ln ( 1/0,97 ) 1/1,17 ( 2 ) C R = 4483,63 N 4.1.7.3. Pemilihan Bantalan Peluru. Sesuai hasil perhitungan keandalan bantalan dimana C R = 4483,63 N, tabel dari AFBMA di bawah ini dapat digunakan untuk pemilihan bantalan : Tabel 4.7. Pemilihan Bantalan Peluru Lebar Bantalan (mm) Jari-jari lengkung (mm) Diameter Dalam (mm) Diameter Luar (mm) 10 30 9 10 35 11 12 32 10 0.6 12 37 12 15 35 11 15 42 17 Diameter bahu (mm) Nilai beban (kN) DS dh 0.6 12.5 27 3.58 0.6 12.5 31 6.23 14.5 28 5.21 1.0 16 32 7.48 0.6 17.5 31 5.67 13 1.0 19 37 8.72 40 12 0.6 19.5 34 7.34 17 47 14 1.0 21 41 10.37 20 47 14 1.0 25 41 9.43 20 52 15 1.0 25 45 12.24 (ref. Sularso) Dari tabel di atas dipilih 5,21 kN , karena yang paling mendekati dengan harga C R = 4483,63 N ( 4,484 kN ) sehingga diperoleh : Diameter dalam = 12 mm Diameter luar = 32 mm Lebar bantalan = 10 mm Aero-mechanical Conveyor 27 Fakultas Teknik 12 mm 32 mm Gambar 4.7. Bantalan Peluru. 4.1.8. Perhitungan Pada Feed-Housing. Dalam perhitungan pada feed-housing diketahui data-data sebagai berikut : Diameter ( d f ) = 298 mm Putaran ( N f ) = 75 rpm Berat ( m f ) = 8,32 kg Gaya penumbukan : F = mf x ω dimana : F = gaya Penumbukan ( N ) m f = berat dari feed-housing ( kg ) ω = percepatan angular ( m/s2 ) Kecepatan dari feed-housing , ν f ( m/s ) : νf = = π x df x Nf 60 3,14 x ( 0,298 ) x 75 60 Aero-mechanical Conveyor 28 Fakultas Teknik = 1,1697 ( m/s ) Waktu yang dibutuhkan dalam satu kali putaran : S t = νf dimana : t = waktu ( second ) S = S = jarak ( lintasan ) satu kali putaran ( m ) π x df = 3,14 x 0,298 = 0,936 m maka : t = 0,936 1,1697 = 0,8 detik sehingga percepatan angular , ω ( m/s² ) menjadi : ω = = νf t 1,1697 0,8 = 1,46 m/s² dari hasil perhitungan diatas, maka gaya pada feed-housing dapat dihitung : F = mf x ω = 8,32 x 1,46 = 12,16 N daya yang diperlukan pada feed-housing adalah : Aero-mechanical Conveyor 29 Fakultas Teknik Pf = F x ν f = 12,16 x 1,1697 = 14,23 Watt Daya tersebut merupakan daya rata-rata yang diperlukan dalam membawa material pada waktu alat dioperasikan. 4.1.9. Perhitungan Pada Sambungan Las Pada sambungan las hanya dilakukan perhitungan untuk mendapatkan panjang lasan pada salah satu lasan saja, sedangkan untuk lasan yang lain dianggap sama. Adapun data-data yang digunakan dalam perhitungan adalah : Lebar pelat : b p = 40 (mm) Tebal pelat : tp = Tegangan Tarik maksimum yang diijinkan (dari tabel) : 4 (mm) f t = 350 (kg/cm) Tegangan Geser yang diijinkan diambil 75% dari tegangan tarik, sehingga f s = 262,5 ( kg/cm ) Beban maksimum yang dapat ditahan oleh pelat adalah P l ( kg ), sehingga digunakan rumus : Pl = bp x tp x ft = 4 x 0,4 x 350 = 560 ( kg ) Dari hasil diatas maka dapat dihitung panjang lasan, s ( mm ) yaitu menggunakan rumus : Pl = √ 2 x s x tp x ft s = Aero-mechanical Conveyor Pl √ 2 x tp x ft 30 Fakultas Teknik = 560 √ 2 x 0,4 x 350 = 2,82 ( cm ) = 28,2 ( mm ) untuk ujung lasan pada awal dan akhir ditambah dengan 1,25 (mm) Kekuatan geser pada lasan dapat dihitung dengan menggunakan rumus : Ps = √ 2 x s x tp x fb = √ 2 x (2,82) x (0,4) x (262,5) = 418,75 (kg) 4.1.10. Perhitungan Pada Rangka Pendukung. Untuk pembahasan pada rangka tidak dilakukan secara terperinci, namun hanya dilakukan pada salah satu rangka saja yaitu rangka pendukung alat Aero-mechanical Conveyor. Diketahui bahwa rangka pendukung alat menggunakan besi profil (siku) L dengan ukuran 40 x 40 x 4 (mm), serta berat beban yang dipikul diasumsikan sebesar 30 (kg). Perhitungan dilakukan dengan menganggap bahwa kedua ujung rangka batang dijepit dan beban merata. F Aero-mechanical Conveyor 31 Fakultas Teknik A B FA FB Gambar 4.8. Batang dengan kedua ujung dijepit Untuk menghitung besarnya gaya ( F A & F B ) dimana kedua tumpuan dijepit dan beban merata, maka : FA = FB F = FA + FB F = 2 F A atau 2 F B FA = FB = ½ F Beban F yang diterima oleh batang adalah : F = mxg = 30 x 9,81 = 294,3 ( N ) sehingga : F A = F B = ½ x ( 294,3 ) = 147,15 ( N ) Untuk menghitung momen lentur ( M L ) yang terjadi pada batang, dugunakan rumus : ML = dimana : F x L 12 M L = Momen lentur ( Nm ) F = Gaya ( N ) L = Panjang batang ( m ) maka : ML = - Aero-mechanical Conveyor (147,5) x (0,4) 12 32 Fakultas Teknik = - 4,9 ( Nm ) Untuk menghitung Momen Inersia terhadap sumbu netral digunakan rumus : I = dimana : b h³ 12 I = Momen Inersia ( m4 ) b = Lebar siku ( m ) h = tinggi siku ( m ) a1 40 (mm) • y y1 a 2• ¯y 4 (mm) Siku L 40 x 40 x 4 a 1 = (0,4) x (3,6) = 1,44 (cm²) y 1 = (0,4) x ½ (3,6) = 2,2 (cm²) a 2 = (0,4) x 4 = 1,6 (cm²) y 2 = (0,4) x ½ (0,4) = 0,2 (cm²) y¯ = a1 + y1 + a2 + y2 a1 + a2 Aero-mechanical Conveyor 33 Fakultas Teknik = = Ix = = Iy = = ( 1,44 x 2,2 ) + ( 1,6 x 0,2 ) 1,44 + 1,6 1,147 (cm) ≈ 1,15 (cm) b h³ 12 x y² x a 0,4 x (3,6)³ 12 x (1,15)² x 1,14 + 0,4 x (3,6)³ 12 x (0,95) x 1,6 b h³ 12 3,6 x (0,4)³ 12 x 0,4 x (4)³ 12 = 0,0192 + 2,1333 = 2,1525 ( cm4 ) = 2,15 x 10-8 ( m4 ) Karena Iy < dari Ix, maka harga I diambil sama dengan Iy = 2,15 x 10-8 (m4) Untuk menghitung tegangan lentur digunakan rumus : TL = dimana : Mx y 12 T L = Tegangan lentur ( N/m² ) M = Momen lentur ( Nm ) y = Jarak dari sumbu netral ke elemen terjauh ( m ) I = Momen Inersia ( m4 ) Aero-mechanical Conveyor 34 Fakultas Teknik TL = 4,9 x ( 11,5 x 10-3 ) 2,15 x 10-8 = 5241114 ( N/m² ) = 5,2 x 10-6 ( N/m² ) Untuk menghitung tegangan maksimum pada sumbu netral : τ = Qx S b x I dimana : Q = Gaya pada tumpuan ( N ) τ = Tegangan geser maksimum ( N/m² ) S = Momen statis ( m3 ) b = Lebar siku ( m ) I = Momen Inersia ( m4 ) Momen statis dihitung menggunakan rumus : S = Σ ( yi x Ai ) = ( y1 x A1 ) + ( y2 x A2 ) = ( 3,75 x 10-3 ) x ( 7,5 x 10-3 ) x ( 4 x 10-3 ) + ( 9,5 x 10-3 ) x ( 4 x 10-3 ) x ( 40 x 10-3 ) = ( 2,325 x 10-7 ) + ( 1,25 x 10-6 ) sehingga : τ = 147,15 x ( 1,75 x 10-6 ) ( 40 x 10-3 ) x ( 2,15 x 10-8 ) = 299085,366 ( N/m² ) = 2,99 x 105 ( N/m² ) Aero-mechanical Conveyor 35