BAB I PENDAHULUAN 1.1 Latar Belakang Data tahan hidup atau data survival adalah lama waktu sampai suatu peristiwa terjadi. Istilah data survival sendiri banyak digunakan dalam bidang ilmu kesehatan, epidemiologi, demografi dan aktuaria. Kendala yang sering muncul dalam analisis data survival adalah adanya pengamatan yang tidak lengkap, yang secara umum dapat dikelompokkan menjadi data tersensor (censored) dan data terpotong (truncated). Ketidaklengkapan data yang diperoleh dapat disebabkan oleh beberapa faktor, beberapa faktor tersebut misalnya keterbatasan informasi, keterbatasan sumber daya, terjadi hal yang tidak terduga. Salah satu bentuk dari data survival adalah data tersensor. Masalah dari data tersensor dapat dibagi menjadi beberapa tipe penyensoran, salah satunya adalah interval tersensor. Sensor interval dapat terjadi ketika mengamati nilai yang memerlukan tindak lanjut. Data tersensor kiri, tersensor kanan, serta data lengkap adalah kasus khusus dari sensor interval. Data tersensor kiri memiliki nilai interval bawah nol, data tersensor kanan memiliki nilai interval atas tak hingga, dan data lengkap memiliki nilai interval atas sama dengan interval bawah. Salah satu yang dapat diketahui dari tersensor interval adalah jarak (range), yaitu sebuah interval, yang berada pada saat terjadinya peristiwa event. Contoh yang paling sering ditemukan data dengan observasi tersensor interval adalah pada ilmu kedokteran atau studi kesehatan yang memerlukan penanganan lanjut secara periodik, beberapa uji klinis atau studi cohort misalnya seperti studi cohort untuk AIDS dan studi tindak lanjut penyakit kanker. Dalam beberapa situasi, data tersensor interval dapat terlihat. Misalnya, seseorang mungkin kehilangan satu atau lebih waktu pengamatan yang telah dijadwalkan sebelumnya untuk mengamati kemungkinan perubahan status penyakit secara klinis dalam suatu pengamatan mengenai suatu penyakit dan kemudian 1 2 kembali dengan status yang sudah berubah. Seseorang yang mengunjungi pusat klinik pada waktu yang tepat akan lebih baik dibandingkan dengan waktu pengamatan yang telah ditetapkan sebelumnya tetapi bukan pada saat terjadinya kejadian yang menjadi perhatian. Pengamat menginginkan semua subyek yang masuk dalam pengamatannya pada waktu yang telah ditentukan atau dijadwalkan sebelumnya adalah saat yang tepat, tetapi ini menjadi suatu kendala karena adanya keterbatasan. Pada situasi seperti ini data yang diperoleh adalah data tersensor interval. Dalam membandingkan dua fungsi survival untuk data tersensor kanan atau lengkap dilakukan uji nonparametrik yaitu uji log-rank. Sedangkan uji log-rank kurang tepat untuk diaplikasikan pada data tersensor interval. Finkelstein dan Wolfe tahun 1985 mengajukan model semiparametrik untuk analisis regresi untuk data uji hidup tersensor interval yang mendiskusikan contoh dari studi pada pasien kanker payudara. Pasien dibagi menjadi dua kelompok menurut perlakuan terhadap pasien kanker tersebut. Kelompok pertama mendapat perlakuan dengan radioterapi dan kelompok lainnya mendapat perlakuan radioterapi dan kemoterapi. Dua kelompok pasien diperiksa setiap 4-6 bulan. Dalam studi ini yang menjadi kejadian (event) adalah waktu sampai terlihatnya retraksi payudara (breast retraction) dan dibandingkan pada masing-masing perlakuan. Beberapa pasien melewatkan beberapa jadwal pemeriksaan berturut-turut dan kembali lagi kemudian dengan status klinis yang sudah berubah. Observasi terhadap beberapa pasien ini termasuk observasi tersensor interval. Model proporsional hazard adalah model yang paling dapat diterima secara luas untuk analisis survival, karena hasil dari estimasinya berguna dan mudah dipahami oleh peneliti kesehatan. Dari permasalahan di atas akan digunakan pengembangan dari metode dengan menggunakan model hazard proporsional untuk data uji hidup tersensor interval dalam membandingkan beberapa fungsi survival. 3 1.2 Tujuan dan Manfaat Penulisan Penyusunan skripsi ini adalah untuk memenuhi salah satu syarat untuk mencapai derajat sarjana S1 Program Studi Statistika, Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada. Berdasarkan latar belakang yang telah diuraikan, penulis merumuskan beberapa tujuan penulisan, antara lain: 1. Memberi gambaran tentang data tersensor interval 2. Menentukan fungsi likelihood dibawah asumsi model hazard proporsional untuk data tersensor interval 3. Mengaplikasikan model hazard proporsional untuk data uji hidup yang tersensor interval 4. Mencari nilai NPMLE (Nonparametric Maximum Likelihood Estimation) dengan metode Turnbull 5. Menurunkan uji skor untuk data tersensor interval 6. Membandingkan fungsi survival Manfaat penulisan skripsi ini adalah sebagai berikut: 1. Memberikan gambaran tentang data tahan hidup khususnya data tersensor interval 2. Memberikan penjelasan mengenai model hazard proporsional yang digunakan untuk data uji hidup tersensor interval 3. Memberikan gambaran tentang langkah menurunkan uji skor untuk dapat digunakan sebagai perbandingan dua fungsi survival. 1.3 Perumusan dan Batasan Masalah Berdasarkan latar belakang masalah dan kajian-kajian pendukung lainnya, maka penulis membatasi hanya pada metodologi untuk data yang tersensor interval dengan mekanisme penyensoran adalah independen antara waktu respon dan kovariat,dan keindependenan pada tiap interval waktu. 4 1.4 Tinjauan Pustaka Karya tulis ini akan menyajikan bagaimana aplikasi dari model hazard proporsional dapat diterapkan pada data tersensor interval. Pada tahun 1978 Prentice dan Gloeckler mengajukan “grouped data model” untuk diaplikasikan pada data yang memiliki observasi tersensor interval. Dibawah asumsi dari hazard proporsional dapat dituliskan fungsi likelihood dari data yang tersensor interval dan kemudian akan dicari turunan pertama dan kedua dari fungsi log likelihood. Dibawah hipotesis nol , akan dilakukan kombinasi dua sampel pada masing-masing perlakuan untuk mendapatkan estimasi dari fungsi survival dengan menggunakan pendekatan algoritma EM pada “self-consistent estimate” (Turnbull, 1976). Metode pada penulisan ini yaitu dengan mengaplikasikan metode yang diajukan oleh Finkelstein (1986), menganggap ketepatan penggunaan model hazard proporsional pada data tersensor interval dengan menurunkan atau menggunakan metode skor (score) dalam inferensinya untuk dapat digunakan membandingkan dua fungsi survival . Metode skor ini juga tidak lepas dari uji log-rank pada data tersensor kanan atau data lengkap, karena penurunan skor statistik ini dapat ditulis seperti dengan bentuk statistik uji log-rank. 1.5 Metodologi Penelitian Metode penulisan dalam karya tulis ini adalah berdasarkan studi literatur yang didapat dari perpustakaan, jurnal-jurnal dan buku-buku yang berhubungan dengan tema dari skripsi ini. Sumber lainnya juga diperoleh melalui situs-situs pendukung yang tersedia di internet. Pengerjaan karya tulis ini juga ditunjang dengan software R 3.0.0. 5 1.6 Sistematika Penulisan Sistematika penulisan skripsi ini terdiri dari lima bab, isi masing-masing bab diuraikan sebagai berikut : BAB I Pendahuluan Bab ini membahas tentang latar belakang, tujuan dan manfaat penulisan, perumusan dan batasan masalah, tinjauan pustaka, metode penelitian, sistematika penulisan. BAB II Dasar Teori Bab ini membahas tentang teori penunjang yang akan digunakan dalam pembahasan, diantaranya matriks, turunan, analisis tahan hidup (survival), data ketahanan hidup, algoritma EM (Expectation-Maximization), metode nonparametrik Kaplan-Meier dan uji log-rank, regresi cox. BAB III Model Hazard Proporsional untuk Data Uji Hidup Tersensor Interval Bab ini membahas tentang hazard proporsional untuk data berkelompok (grouped data), data tersensor interval, MLE (Maximum Likelihood Estimation), estimasi NPMLE (Nonparametric Maximum Likelihood Estimation), fungsi skor dan variansi fungsi skor, uji skor untuk 0. BAB IV Aplikasi Model Hazard Proporsional untuk Data Breast Cosmesis Bab ini membahas tentang aplikasi dari model hazard proporsional untuk data uji hidup tersensor interval diantaranya adalah mengenai deskripsi data, estimasi NPMLE (Nonparametric Maximum Likelihood Estimation), skor statistik dan variansi skor statistik, uji hipotesis untuk BAB V Penutup Bab ini berisi kesimpulan dan saran. DAFTAR PUSTAKA LAMPIRAN 0.