BAB V PERSAMAAN DIFERENSIAL TINGKAT TINGGI Standar Kompetensi Setelah mempelajari pokok bahasan ini diharapkan mahasiswa dapat memahami cara menentukan akar-akar persamaan karakteristik dan mengaplikasikan dalam menentukan selesaian umum dan selesaian persamaan diferensial tingkat tinggi Kompetensi Dasar 1. Mahasiswa dapat menentukan selesaian umum persamaan diferensial tingkat tinggi homogen dengan koefisien konstan 2. Mahasiswa dapat menentukan selesaian umum persamaan diferensial tingkat tinggi tidak homogen dengan koefisien konstan menggunakan metode invers fungsi operator, 3. Mahasiswa dapat menentukan selesaian umum persamaan diferensial tingkat tinggi tidak homogen dengan koefisien konstan menggunakan metode 1 sebagai jumlah n pecahan parsial, F ( D) 4. Mahasiswa dapat menentukan selesaian umum persamaan diferensial tingkat tinggi tidak homogen dengan koefisien konstan menggunakan metode variasi paramater, 5. Mahasiswa dapat menentukan selesaian umum persamaan diferensial tingkat tinggi tidak homogen dengan koefisien konstan menggunakan Metode koefisien tak tentu, dan 6. Mahasiswa dapat menentukan selesaian umum persamaan diferensial tingkat tinggi tidak homogen dengan koefisien konstan menggunakan metode integral khusus dimana Q (x) mempunyai bentuk yang sangat spesifik. Bab V dalam buku ini membahas hal-hal pokok tentang (1) bentuk umum persamaan diferensial tingkat tinggi, (2) selesaian umum persamaan diferensial Persamaan Diferensial:Dwi Purnomo114 tingkat tinggi yang meliputi: persamaan diferensial tingkat tinggi homogen dengan koefisien konstanta, persamaan diferensial tingkat tinggi tidak homogen dengan koefisien konstanta, persamaan diferensial tingkat tinggi homogen dengan koefisien variabel, persamaan diferensial tingkat tinggi tidak homogen dengan koefisien variabel. 5.1 Bentuk Umum Persamaan diferensial linear tingkat tinggi disebut pula sebagai persamaan diferensial linear tingkat-n. Secara umum persamaan diferensial tingkat tinggi dinyatakan dalam bentuk: Po dny d n 1 y d n2 y d n 3 y dy P P P ..... Pn 1 Pn y Q ( x ) 1 2 3 n n 1 n2 n3 dx dx dx dx dx Dengan Po 0, P1 , P2 , P3, ...........Pn1 , Pn adalah fungsi atau konstanta. d2y d3y d n1 y dny dy 2 3 n 1 karena Dy , D y, D y ,....., D y , dan Dn y 2 3 n 1 n dx dx dx dx dx maka persamaan Po dny d n 1 y d n 2 y d n 3 y dy P P P ..... Pn1 Pn y Q( x ) 1 2 3 n n 1 n 2 n 3 dx dx dx dx dx dapat dinyatakan dalam bentuk: Po D n y P1 D n 1 y P2 D n 2 y P3 D n 3 y ..... Pn1 Dy Pn y Q( x) ( Po D n P1 D n1 P2 D n 2 P3 D n 3 ..... Pn 1 D Pn ) y Q( x ) F(D) y = Q(x) Persamaan yang berbentuk F ( D) y Q ( x) dengan Q ( x) 0 , maka bentuk umumnya menjadi ( Po D n P1 D n1 P2 D n 2 P3 D n 3 ..... Pn 1 D Pn ) y 0 . Pada kasus Q ( x) 0 maka F ( D) y Q ( x) disebut persamaan diferensial linear homogen tingkat tinggi, sedangkan jika Q ( x) 0 maka F ( D) y Q ( x) disebut persamaan diferensial linear tidak homogen tingkat tinggi. Persamaan Diferensial:Dwi Purnomo115 Contoh 1. d2y dy 2 15 y 0 2 dx dx ( D 2 2d 15) y 0 y ' '2 y '15 y 0 2. 2 dy dy 2x y 2 y e dx dx ( Dy y )( Dy 2 y ) 2 e 2 x ( y ' y )( y '2 y ) 2 e 2 x 3. ( D 2 9) y x cos x y ' '9 y x cos x d2y 2 9 y x cos x dx 4. d2y dy ( x 2) ( x 2) y (3x 4) 2 dx dx 2 ( x 2) 2 y" ( x 2) y ' y (3 x 4) ( x 2) 2 D 2 y ( x 2) Dy y (3 x 4) {( x 2) 2 D 2 ( x 2) D 1} y (3 x 4) 5. x3 2 d3y dy 2 d y 3 x 2x 2 y 0 3 2 dx dx dx x 3 y ' ' '3 x 2 y"2 xy ' 2 y 0 x 3 D 3 y 3x 2 D 2 y 2 xDy 2 y 0 ( x 3 D 3 2 xd 2) y 0 6. x3 d3y dy 2 x 2 y x 2 ln x 3 x 3 dx dx x 3 y ' ' '2 xy '2 y x 2 ln x 3 x x 3 D 3 y 2 xDy 2 y x 2 ln x 3 x ( x 3 D 3 2 xD 2) y x 2 ln x 3x Persamaan Diferensial:Dwi Purnomo116 Persamaan-persamaan pada contoh di atas selanjutnya dapat dikelompokkan ke dalam persamaan homogen dan tidak homogen. Persamaan pada contoh 1 disebut persamaan diferensial linear homogen tingkat dua dengan koefisien konstan, persamaan pada contoh 2 disebut persamaan diferensial linear tidak homogen tingkat tiga dengan koefisien konstan, persamaan pada contoh 3 disebut persamaan diferensial linear tidak homogen tingkat dua dengan koefisien konstan, persamaan pada contoh 4 disebut persamaan diferensial linear tidak homogen tingkat dua dengan koefisien variabel, persamaan pada contoh 5 adalah persamaan diferensial linear homogen tingkat tiga dengan koefisien variabel, sedangkan persamaan pada contoh 6 adalah persamaan diferensial linear tidak homogen tingkat 3 dengan koefisien variabel. 5.2 Selesaian Umum Persamaan Diferensial Tingkat Tinggi Misal y y1 ( x) adalah selesaian persamaan Po dny d n1 y d n 2 y d n3 y dy P P P ..... Pnq Pn y Q( x) 1 2 3 n n 1 n 2 n 3 dx dx dx dx dx Maka y c1 y1 ( x ) juga selesaian persamaan di atas. dimana c1 adalah sebarang konstanta. Misal y y 2 ( x) adalah selesaian persamaan dny d n1 y d n 2 y d n3 y dy Po n P1 n1 P2 n2 P3 n3 ..... Pnq Pn y Q( x) dx dx dx dx dx Maka y c 2 y 2 ( x ) juga selesaian persamaan di atas. dimana c 2 adalah sebarang konstanta. Misal y y1 ( x) y 2 ( x ) adalah selesaian persamaan dny d n1 y d n 2 y d n3 y dy Po n P1 n1 P2 n2 P3 n3 ..... Pnq Pn y Q( x) dx dx dx dx dx Maka y c1 y1 ( x ) c 2 y 2 ( x ) juga selesaian persamaan di atas. Dengan asumsi yang sama, misal y y1 ( x) y 2 ( x) ..... y n 1 ( x ) y n ( x) adalah selesaian persamaan Persamaan Diferensial:Dwi Purnomo117 Po dny d n1 y d n 2 y d n3 y dy P P P ..... Pnq Pn y Q( x) , maka 1 2 3 n n 1 n 2 n 3 dx dx dx dx dx y c1 y1 ( x) c 2 y 2 ( x) ..... c n1 y n 1 ( x ) c n y n ( x) juga selesaian persamaan diferensial tingkat tinggi. . Himpunan selesaian persamaan-persamaan berikut y y1 ( x), y y 2 ( x), y y 3 ( x ) ....., y y n 1 ( x ), dan y y n ( x ) disebut bebas liner jika persamaan c1 y1 c 2 y 2 c3 y 3 ..... c n1 y n 1 c n y n 0 dimana c i adalah konstanta dan terjadi hanya apabila c1 c 2 c3 ....... c n1 c n 0 . Syarat perlu dan cukup bahwa n selesaian merupakan bebas linear yaitu jika diterminan matrik ordo (nxn) yang masing-masing sukunya adalah selesaian dimaksud sampai turunan ke (n 1) 0 . Dengan kata lain y c1 y1 ( x) c 2 y 2 ( x) ..... c n1 y n 1 ( x ) c n y n ( x) adalah primitif. Jika R(x ) suatu selesaian khusus maka selesaian khususnya persamaan diferensial linear tingkat tinggi dinyatakan dengan: y c1 y1 ( x ) c 2 y 2 ( x) ..... c n 1 y n 1 ( x) c n y n ( x) R( x) Untuk lebih memudahkan cara menentukan selesaian persamaan diferensial linear tinggi, maka dalam menentukan selesaian tersebut dikelompok menjadi: 1) persamaan diferensial homogen tingkat tinggi dengan koefisien konstan 2) persamaan diferensial tidak homogen tingkat tinggi dengan koefisien konstan 3) persamaan diferensial homogen tingkat tinggi dengan koefisien variabel 4) persamaan diferensial tidak homogen tingkat tinggi dengan koefisien variabel. 1) Persamaan Diferensial Homogen dengan Koefisien Konstan Sebagaimana telah disebutkan pada awal Bab V, bahwa persamaan diferensial linear homogen tingkat tinggi dengan koefisien konstan dinyatakan dalam bentuk umum: dny d n 1 y d n 2 y d n 3 y dy Po n P1 n 1 P2 n 2 P3 n 3 ..... Pn q Pn y 0 dx dx dx dx dx Persamaan Diferensial:Dwi Purnomo118 Atau Po D n y P1 D n 1 y P2 D n 2 y P3 D n3 y ..... Pn1 D n 1 y Pn y 0 atau ( Po D n P1 D n1 P2 D n 2 P3 D n 3 ..... Pn 1 D Pn ) y 0 Atau F(D) y = 0 dengan Po 0, P1 , P2 , P3, ...........Pn1 , Pn adalah konstan. dan F(D) disebut fungsi operator diferensial. Selanjutnya jika F (D) dapat difaktorkan, maka F (D) dapat dinyatakan dalam bentuk ( D m1 )( D m2 )( D m3 )......(D mn ) 0 . Sebaliknya jika F (D) tidak dapat difaktorkan maka tetap ditulis sebagai F ( D) 0 . Bentuk ( D m1 )( D m2 )( D m3 )......(D mn ) 0 dinamakan persamaan karakteristik dengan m m1 , m 2 , m3 ,..., mn disebut akar-akar persaman karakteristik. Perlu diingat bahwa tidak penting menulis persamaan karakteristik, karena akarakarnya dapat dibaca secara langsung dari fungsi operator diferensial. Persamaan karakteristik f (m) 0 setelah ditentukan akar-akarnya, untuk menentukan selesaian umum persaamaan Po dny d n 1 y d n 2 y d n 3 y dy P P P ..... Pn q Pn y 0 1 2 3 n n 1 n 2 n 3 dx dx dx dx dx ditentukan dengan y ci e mi x dimana mi akar persamaan karakteristik yang telah diketahui. Karena m1 , m 2 , m3 ,....., mn adalah akar-akar persamaan karakteristik, maka jenis akar-akarnya adalah bilangan nyata (real) dan tidak nyata (imajiner). Untuk lebih jelasnya diberikan penjelasan sebagai berikut: A. Andaikan m1 m 2 m3 .... m n 1 m n bilangan real ( R) , maka primitif persamaan diferensialnya y c1e m1x c 2 e m2 x c3 e m3 x ..... c n1e mn 1 x c n e mn x sehingga melibatkan n selesaian yang bebas linear dan n konstanta sebarang. Persamaan Diferensial:Dwi Purnomo119 y c1e m1x c 2 e m2 x c3 e m3 x ..... c n1e mn 1 x c n e mn x adalah Jika selesaian maka y c1e m1 x , y c 2 e m2 x , y c3 e m3 x ,....., y c n 1e mn 1 x , y c n e mn x juga selesaian dari persamaan. Perhatikan beberapa contoh berikut ini: 1. Tentukan selesaian persamaan diferensial d2y dy 5 6y 0 2 dx dx Jawab Persamaan di atas dapat dinyatakan dalam bentuk D 2 5D 6 y 0 Sehingga persamaan karakteristik D 2 5D 6 0 ( D 2)( D 3) 0 akar-akarnya m1 2 dan m m2 3 , keduanya berberda. Primitif persamaan di atas adalah y c1e 2 x c 2 e 3 x Karena y c1e 2 x c 2 e 3 x adalah selesaian Maka y c1e 2 x dan y c 2 e 3 x juga selesaian 2. Tentukan selesaian persamaan diferensial 2 d2y dy 11 21y 0 2 dx dx Jawab Persamaan di atas dapat dinyatakan dalam bentuk 2 D 2 11D 21 y 0 Sehingga persamaan karakteristik 2 D 2 11D 21 0 (2 D 3)( D 7) 0 akar-akarnya persamaan karakteristik m1 3 dan m2 7 , keduanya 2 Persamaan Diferensial:Dwi Purnomo120 berberda. Primitif persamaan di atas adalah y c1e 3 3 x 2 c 2 e 7 x x Karena y c1e 2 c 2 e 7 x adalah selesaian 3 x Maka y c1e 2 dan y c 2 e 7 x juga selesaian persamaan. 3. Tentukan selesaian persaamaan d4y d3y d2y dy 4 2 6 0 4 3 dx dx dx dx Jawab Persamaan di atas dapat dinyatakan dalam bentuk D 4D D 6D y 0 , sehingga persamaan karakteristiknya adalah: D D 4 D D 6 0 4 3 3 2 2 D( D 1)( D 2)( D 3) 0 Akhirnya diperoleh akar-akar persamaan karaktristiknya m1 0, m2 1, m3 2 dan m 4 3 . Karena m1 m 2 m3 m4 dan bilangan real ( R) Sehingga selesaian persamaan D 4 4 D 3 D 2 6 D y 0 adalah y c1e 0 x c 2 e1x c3 e 2 x c 4 e 3 x . y c1 c 2 e x c3 e 2 x c 4 e 3 x . x Karena y c1 c 2 e c3 e 2x c 4 e 3 x . Maka y c1 , y c 2 e x , y c3 e 2 x , y c 4 e 3 x . juga selesaian. 4. Tentukan selesaian persamaan d3y d2y dy 2 2 0 3 dx dx dx Jawab Persamaan di atas dapat dinyatakan dalam bentuk D 3 D 2 2 D y 0 , sehingga persamaan karakteristiknya adalah: Persamaan Diferensial:Dwi Purnomo121 D D2 D 2 0 D( D 1)( D 2) 0 Akhirnya diperoleh akar-akar persamaan karaktristiknya m1 0,m 2 1, m3 2 Karena m1 m 2 m3 dan bilangan real ( R) Sehingga selesaian persamaan D 3 D 2 2 D y 0 adalah y c1e 0 x c2 e 1x c3e 2 x . y c1 c2 e x c3e 2 x . Karena y c1 c 2 e x c3 e 2 x . Maka y c1 , y c 2 e x , y c3 e 2 x . juga selesaian. B. Andaikan m1 m 2 m3 .... mn 1 mn m bilangan real ( R) , maka primitif persamaan diferensialnya y (c1 c 2 x c3 x 2 ..... c n 1 x n 2 c n x n 1 )e mx dalam hal ini selesaian persamaan melibatkan konstanta sebarang dan m kali hubungan diantaranya. Karena y (c1 c 2 x c3 x 2 ..... c n 1 x n 2 c n x n 1 )e mx y c1e mx c 2 xe mx c3 x 2 e mx ..... c n1 x n 2 e mx c n x n1e mx Maka y c1e mx , y c 2 xe mx , y c3 x 2 e mx ,.....y c n1 x n 2 e mx , y c n x n1e mx Juga selesaian persamaan yang akar-akar persamaan karakteristiknya memenuhi m1 m 2 m3 .... mn 1 mn m bilangan real ( R) Persamaan Diferensial:Dwi Purnomo122 Perhatikan contoh berikut ini 1. Tentukan selesaian persamaan d2y dy 4 4y 0 2 dx dx Jawab Persamaan di atas dinyatakan dalam bentuk ( D 2 4 D 4) y 0 ( D 2)( D 2) 0 Sehingga persamaan karakteristiknya adalah: ( D 2)(D 2) 0 sehingga akar persamaan karakteristiknya m1 m 2 2 Diperoleh akar-akar persamaan karakteristik m1 m 2 Sehingga selesaian persamaan di atas adalah y (c1 c 2 x )e 2 x Karena y (c1 c 2 x )e 2 x y c1e 2 x c 2 xe 2 x Maka y c1e 2 x dan y c 2 xe 2 x juga selesaian 2. Tentukan selesaian persamaan d2y dy 6 9y 0 2 dx dx Jawab Persamaan di atas dinyatakan dalam bentuk D 2 6D 9 y 0 D 3D 3 y 0 Sehingga persamaan karakteristik D 3)( D 3 0 Diperoleh akar-akar persamaan karakteristik m1 m 2 3 Persamaan Diferensial:Dwi Purnomo123 Akibatnya primitif persamaan di atas adalah y (c1 c 2 x)e 3 x Karena y (c1 c 2 x)e 3 x selesaian maka y c1e 3 x dan y c 2 xe 3 x juga selesaian persamaan. 3. Tentukan selesaian persamaan 9 d2y dy 24 16 y 0 2 dx dx Jawab Persamaan di atas dinyatakan dalam bentuk 9 D 2 y 24 Dy 16 y 0 9 D 2 y 24 Dy 16 y 0 Sehingga persamaan karakteristik 9 D 2 24 D 16 0 (3D 4)(3D 4) 0 Diperoleh akar-akar persamaan karakteristik m1 m 2 4 3 Akibatnya primitif persamaan di atas adalah y (c1 c 2 x)e 4 x 3 Karena y (c1 c 2 x)e 4 x 3 selesaian maka y c1e 4 x 3 dan y c 2 xe 4 x 3 juga selesaian persamaan. 4. Tentukan selesaian persamaan d5y d4y d3y d2y 6 12 8 0 dx 5 dx 4 dx 3 dx 2 Jawab Bentuk lain persamaan di atas adalah D 5 y 6 D 4 12 D 3 8 D 2 y 0 D 2 D 3 y 6 D 2 y 12 Dy 8 y 0 Persamaan Diferensial:Dwi Purnomo124 D 2 D 3 6 D 2 12 D 8 y 0 Sehingga persamaan karakteristik persamaan di atas adalah D 2 D 3 6 D 2 12 D 8 0 D 2 ( D 2)( D 2)( D 2) 0 D 2 ( D 2) 3 0 Dan diperoleh akar-akar persamaan karakteristiknya m1 m 2 0 dan m3 m4 m5 2 Sehingga selesaian umum persamaan diferensial di atas adalah y c1 c 2 x e 0 x (c3 c 4 x c 5 x 2 )e 2 x y c1 c 2 x (c3 c 4 x c5 x 2 )e 2 x Karena y c1 c 2 x (c3 c 4 x c5 x 2 )e 2 x selesaian persamaan, maka: y c1 , y c 2 x, y c3 e 2 x , y c 4 xe 2 x , dan y c5 x 2 e 2 x juga selesaian persamaan. C. Andaikan terjadi kombinasi hubungan antar akar persamaan karakteristik dalam bentuk 1 dan 2 di atas yaitu: m1 m 2 m3 m4 .... m n1 mn maka primitifnya y c1e mx (c 2 c3 x c 4 x 2 )e mx ... e mn 1 x c n e mx Perhatikan contoh berikut 1 Tentukan selesaian persamaan d4y d3y d2y dy 9 11 4y 0 dx dx 4 dx 3 dx 2 Jawab Persamaan di atas dapat dinyatakan dalam bentuk d4y d3y d2y dy 9 11 4 y 0 4 3 2 dx dx dx dx Persamaan Diferensial:Dwi Purnomo125 D 4 y D 3 y 9D 2 y 11Dy 4 y 0 ( D 4 D 3 9D 2 11D 4) y 0 Sehingga persamaan karakteristiknya adalah D 4 D 3 9D 2 11D 4 0 D 4 D 3 9 D 2 11D 4 0 ( D 1)(D 1)(D 1)(D 4) 0 Akar persamaan karakteristik m1 m 2 m3 1 dan m4 4 Sehingga selesaian umum persamaan di atas adalah y c1 c 2 x c3 x 2 e x c 4 e 4 x Karena y c1 c 2 x c3 x 2 e x c 4 e 4 x selesaian persamaan, maka y c1e 2 x , y c 2 xe 2 x , y c3 x 2 e x , dan y c 4 e 4 x juga selesaian persamaan diferensial yang diketahui 2. Tentukan selesaian persamaan d4y d3y d2y dy 6 3 12 2 8 0 4 dx dx dx dx Jawab Persamaan di atas dapat dinyatakan dalam bentuk d4y d3y d2y dy 6 12 8 0 4 3 2 dx dx dx dx D 4 y 6 D 3 y 12D 2 y 8Dy 0 ( D 4 6D 3 12D 2 8D) y 0 Sehingga persamaan karakteristiknya adalah D 4 6D 3 12D 2 8D 0 D( D 3 6 D 2 12D 8) 0 D( D 2)(D 2)(D 2) 0 Akar persamaan karakteristik m1 0, dan m 2 m3 m4 2 Persamaan Diferensial:Dwi Purnomo126 Sehingga selesaian umum persamaan di atas adalah c c x c x e c c x c x e y c1e 0 x c 2 c3 x c 4 x 2 e 2 x y c1 2 2 Karena y c1 3 2x 4 2 2 3 2x 4 selesaian persamaan, maka y c1 , y c 2 e 2 x , y c 3 xe 2 x , dan y c 4 x 2 e 2 x juga selesaian persamaan diferensial yang diketahui. D. Jika akar-akar persamaan karakteristik tidak real (imajiner) dan misal akarakarnya dinyatakan dalam bentuk m1.2 a bi maka diperoleh y c1e ( a bi ) x c 2 e ( a bi ) x y e ax (c1e bix c 2 e bix ) Karena e x 1 x e bix 1 (bix) 1 (bix ) bix (bix) 2 (bix ) 3 (bix ) 4 (bix) 5 (bix) 6 ... 2! 3! 4! 5! 6! (b 2 x 2 ) ..... dan 2! e 1 (bix) 1 (bix ) x2 x3 x4 x5 x6 x7 ... , maka: 2! 3! 4! 5! 6! 7! (bix) 2 (bix ) 3 (bix ) 4 (bix) 5 (bix) 6 ... 2! 3! 4! 5! 6! (b 2 x 2 ) ..... 2! sehingga y e ax (c1e bix c 2 e bix ) y e ax (c1 cos bx c 2 sin bx) Perhatikan contoh berikut: Persamaan Diferensial:Dwi Purnomo127 1. Tentukan selesaian persamaan d2y dy 2 5y 0 2 dx dx Jawab Persamaan diferensial di atas mempunyai persamaan karakteristik D 2 2D 5 0 Sehingga akar-akarnya adalah m1.2 2 4i 2 Atau m1..2 1 2i Dengan kata lain m1. 1 2i atau m1. 1 2i Sehingga selesaian persamaan di atas adalah: y e x (c1 cos 2 x c 2 sin 2 x ) 2. Tentukan selesaian umum persammaan D 2 1)( D 2 D 1 D 3 y 0 Jawab Persamaan diferensial di atas mempunyai persamaan karakteristik D 2 1)( D 2 D 1 D 3 0 Dan diperoleh akar-akarnya m12 0 i , m34 1 i 3 , m5 3 2 Selesaian umum persamaan 0x y e (c1 cos x c 2 sin x) e E 1 x 2 (c3 cos x 3 x 3 c 4 sin ) c5 e 3 x 2 2 Akar-akar persamaan karakteristika gabungan real dan tidak real, maka selesaian umumnya menggunakan perpaduan bentuk 1, 2, 3, dan 4 di atas. Perhatikan contoh-contoh berikut: 1. Tentukan selesaian umum perasamaan diferensial Persamaan Diferensial:Dwi Purnomo128 (D 4 4D 2 ) y 0 Jawab Persamaan diferensial di atas mempunyai persamaan karakteristik (D 4 4D 2 ) y 0 ( D 4 4D 2 ) 0 D 2 ( D 2 4) 0 akar-akarnya adalah m1 m 2 0 , dan m3.4 0 2i Sehingga diperoleh selesaian umum ( D 4 4 D 2 ) y 0 adalah y (c1 c 2 x )e 0 x e 0 x (c3 cos 2 x c 4 sin 2 x) 2. Tentukan selesaian persamaan D 2 ( D 2)(D 2 16) y 0 Jawab Persamaan diferensial di atas mempunyai persamaan karakteristik D 2 ( D 2)( D 2 16) 0` Sehingga akar-akar persamaan karakteristik m1 2, m3 2, m3.4 0 4i Dan primitifnya adalah y (c1 c 2 x )e 2 x e 0 x (c3 cos 4 x c 4 sin 4 x ) 2) Persamaan Diferensial Tidak Homogen dengan Koefisien Konstan Bentuk umum persamaan diferensial linear tidak homogen dengan koefisien konstan adalah Po dny d n 1 y d n 2 y d n 3 y dy P P P ..... Pn1 Pn y Q( x ) 1 2 3 n n 1 n 2 n 3 dx dx dx dx dx Dengan Po 0, P1 , P2 , P3, ...........Pn1 , Pn adalah konstanta dan Q ( x) 0 d2y d3y d n1 y dny dy 2 3 n 1 karena Dy , D y, D y ,....., D y , dan Dn y 2 3 n 1 n dx dx dx dx dx maka persamaan Persamaan Diferensial:Dwi Purnomo129 Po dny d n 1 y d n 2 y d n 3 y dy P P P ..... Pn1 Pn y Q( x ) 1 2 3 n n 1 n 2 n 3 dx dx dx dx dx dapat dinyatakan dalam bentuk: Po D n y P1 D n 1 y P2 D n 2 y P3 D n 3 y ..... Pn1 Dy Pn y Q( x) ( Po D n P1 D n1 P2 D n 2 P3 D n 3 ..... Pn 1 D Pn ) y Q( x ) F ( D ) y Q( x) Persamaan yang berbentuk F ( D ) y Q( x) dengan Q ( x) 0 , maka bentuk umumnya menjadi Po dny d n 1 y d n 2 y d n 3 y dy P P P ..... Pn1 Pn y Q( x ) 1 2 3 n n 1 n 2 n 3 dx dx dx dx dx ( Po D n P1 D n 1 P2 D n 2 P3 D n 3 ..... Pn 1 D Pn ) y Q( x ) Contoh 1. d2y dy 3 2 y 10e 4 x 2 dx dx 2. D 2 4 D 4 D 3 y 5e 2 x d2y dy 3. 2 cos 3 x 2 dx dx Selesaian persamaan diferensial linear tidak homogen dengan koefisien konstan dinyatakan dalam bentuk: Y y (c ) y ( p ) y(c) disebut fungsi komplemen dan merupakan selesaian dari F ( D) y 0 , y(p) disebut selesaian khusus (particular solution). Dengan demikian untuk menentukan selesaian Po dny d n 1 y d n 2 y d n 3 y dy P P P ..... Pn 1 Pn y Q ( x) 1 2 3 n n 1 n 2 n 3 dx dx dx dx dx Dengan Po 0, P1 , P2 , P3 ,......., Pn 1 , Pn adalah konstana dan Q ( x) 0 Untuk menentukan y ( p ) , dapat dilakukan beberapa cara yaitu: a) menggunakan metode invers fungsi operator, b) metode 1 sebagai jumlah n pecahan parsial, F ( D) Persamaan Diferensial:Dwi Purnomo130 c) metode variasi paramater, d) metode koefisien tak tentu, dan e) metode integral khusus dimana Q ( x) 0 mempunyai bentuk yang sangat spesifik. Metode Invers Fungsi Operator Misal F ( D ) y Q ( x) adalah persamaan diferensial linear tidak homogen dengan koefisien konstan, maka selesaiannya Y y (c ) y ( p ) setelah ditentukan y (c ) selanjutnya F ( D) y Q ( x) y Q( x ) F (D) Misal F ( D ) ( D m1 )( D m2 )( D m3 )....( D mn1 )( D mn ) maka y Q( x ) ( D m1 )( D m2 )( D m3 )...(D mn ) misal u v 1 Q( x) -------------- (persamaan diferensial linear) ( D mn ) 1 u ----------- (persamaan diferensial linear) ( D mn 1 ) .................................. z 1 t ( D m1 ) --------- (persamaan diferensial linear) yang selesaiannya telah dijelaskan pada bab III Misal u 1 Q( x) ( D mn ) D mn u Q (x ) Jika m1 m2 m3 ..... mn 1 mn bilangan real n maka y ( P ) e m1 x e ( m 2 m1 ) x e ( m3 m 2 ) x ..... Q ( x )e mn x dx Persamaan Diferensial:Dwi Purnomo131 Jika m1 m2 m3 .... mn 1 mn bilangan real n maka y ( P) e m x ..... Q( x )e mx dx 1 Perhatikan beberapa contoh berikut ini 1. Tentukan selesaian persamaan diferensial d2y dy 3 2 y 10e 4 x 2 dx dx Jawab Persamaan diferensial di atas mempunyai persamaan karakteristik D 2 3D 2 0 ( D 1)( D 2) 0 Sehingga akar-akarnya nyata yaitu m1 1, m 2 2 Dan fungsi komplemennya y (c) c1e x c 2 e 2 x Selesaian khususnya y ( p) 1 Q( x) F (D) y( p) 1 10e 4 x ( D 1)( D 2) y ( p) e x e ( 21) x 10e 4 x e 2 x dx 2 y ( p ) e x e x 10e 2 x dx.dx y ( p ) e x e x 5e 2 x dx y ( p ) 5e x e 3 x dx 1 y ( p ) 5e x e 3 x 3 y ( p) 5 4x e 3 Persamaan Diferensial:Dwi Purnomo132 Sehingga selesaian persamaan d2y dy 3 2 y 10e 4 x adalah 2 dx dx Y y (c ) y ( p ) Y c1e x c 2 e 2 x 5e 4 x 3 2. Tentukan selesaian umum persamaan diferensial d3y d2y dy 3 3 y x2 x 1 3 2 dx dx dx Jawab Persamaan diferensial di atas mempunyai persamaan karakteristik D 3 3D 2 3D 1 0 ( D 1)( D 1)( D 1) 0 Sehingga akar-akarnya nyata yaitu m1 m 2. m3 1 Dan fungsi komplemennya y (c) (c1 c 2 x c 3 x 2 )e x Selesaian khususnya y ( p) 1 Q( x) F (D) y( p) 1 ( x 2 x 1) ( D 1)( D 1)( D 1) y ( p ) e x Q ( x)e x dx 3 y ( p ) e x ( x 2 x 1) d e x dx 2 y ( p ) e x ( e x ( x 2 x 1) e x (2 x 1) 2e x )dx y ( p ) e x e x ( x 2 x 1 e x (2 x 1) 2e x )dx y ( p ) e e x 3x 4 dx y ( p ) e x 3 x 4d (e ) dx 2 2 y ( p ) e x e x x 2 x 1 2 x 1 2 dx x x x 2 2 2 2 x Persamaan Diferensial:Dwi Purnomo133 y ( p ) e x e x ( x 2 3 x 4) e x ( 2 x 3)dx y ( p ) e x e x ( x 2 3 x 4) e x ( 2 x 3 e x 2dx) y ( p ) e x e x ( x 2 3 x 4) e x ( 2 x 3) 2e x )dx y ( p ) e x e x ( x 2 3x 4 2 x 3 2)dx y ( p ) e x e x ( x 2 5 x 9) dx y ( p ) e x ( x 2 5 x 9) d ( e x ) y ( p ) e x e x ( x 2 5 x 9) e x (2 x 5 dx e e y ( p ) e x e x ( x 2 5 x 9 e x ( 2 x 5) e x 2dx y( p) e x y( p) e x x ( x 2 5 x 9 2 x 5 2) dx x ( x 2 7 x 16 y ( p ) x 2 7 x 16 Sehingga selesaian persamaan d3y d2y dy 3 3 y x 2 x 1 adalah 3 2 dx dx dx Y y (c ) y ( p ) y (c) (c1 c 2 x c3 x 2 )e x x 2 7 x 16 3. Tentukan selesaian persamaan diferensial d3y d2y dy 4 2 4 e2x 3 dx dx dx Jawab Persamaan diferensial di atas mempunyai persamaan karakteristik D 3 4D 2 4D 0 D ( D 2 4 D 4) 0 D( D 2)( D 2) 0 Sehingga akar-akarnya nyata yaitu m1 0, m2.3 2 Persamaan Diferensial:Dwi Purnomo134 Dan fungsi komplemennya y (c) c1 (c 2 c3 x )e 2 x Selesaian khususnya y ( p) 1 Q( x) F (D) y( p) 1 e2x D( D 2)( D 2) y( p) 1 e2x 2 2( D 2) y( p) 1 x 2 2x e 2 2! y( p) x 2e2x 4 Sehingga selesaian persamaan d3y d2y dy 4 4 e 2 x adalah 3 2 dx dx dx Y y (c ) y ( p ) Y c1 (c 2 c3 x)e 2x x 2e2x 4 Metode Penjumlahan n Pecahan Parsial. y 1 Q ( x) ( D m1 )( D m2 )( D m3 )...( D mn ) dinyatakan dalam bentuk penjumlahan n pecahan parsial yaitu A1 A3 An1 An A2 y ... D mn1 D mn D m1 D m2 D m3 Q( x) A3 An1 An A1 A2 Q( x) Q( x) Q( x) ... Q( x) y D m1 D m2 D m3 D mn 1 D mn Q( x) dan masing-masing merupakan persamaan diferensial linear tingkat 1 yang selesaiannya sudah dibahas pada bab III. yaitu dinyatakan dalam bentuk Persamaan Diferensial:Dwi Purnomo135 y A1e m1 x Q ( x)e m1 x dx A2 e m2 x Q( x)e m2 x dx A3 e m3 x Q( x)e m3 x dx ... An e mn x Q( x)e mn x dx 1. Tentukan selesaian persamaan d2y dy 4 3y 2 2 dx dx Jawab Persamaan diferensial di atas mempunyai persamaan karakteristik D 2 4D 3 0 Sehingga akar-akarnya adalah m1 1 atau m2 3 Fungsi komplemennya adalah y (c) c1e x c 2 e 3 x Selesaian khususnya ditentukan dengan menggunakan metode penjumlahan n pecahan parsial. y ( p) 1 Q( x) D 4D 3 y ( p) 1 .2 ( D 1)( D 3) 2 B A y ( p) 2 D 1 D 3 A( D 3) B( D 1) y ( p) 2 D 2 4D 3 1 1 Diperoleh A , B 2 2 Sehingga 1 / 2 1/ 2 y ( p) 2 D 1 D 3 1 1 y ( p) e x 2e x dx e 3 x 2e 3 x dx 2 2 1 1 2 y ( p) e x 2e x e 3 x e 3 x 2 2 3 Persamaan Diferensial:Dwi Purnomo136 y ( p) 1 y ( p) 2 3 1 3 Sehingga selesaian persamaan d2y dy 4 3 y 2 adalah 2 dx dx Y y (c ) y ( p ) Y c1e x c 2 e 3 x 1 3 2. Tentukan selesaian persamaan d2y dy 3 2 y e3x 2 dx dx Jawab Persamaan diferensial di atas mempunyai persamaan karakteristik D 2 3D 2 0 Sehingga akar-akarnya adalah m1 1 atau m2 2 Fungsi komplemennya adalah y (c) c1e x c 2 e 2 x Selesaian khususnya ditentukan dengan menggunakan metode penjumlahan n pecahan parsial. y ( p) 1 Q( x) D 3D 2 y ( p) 1 .e 3 x ( D 1)( D 2) 2 B 2x A y ( p) e D 1 D 2 A( D 2) B( D 1) 3 x y ( p) e D 2 3D 2 Diperoleh A 1, B 1 Sehingga 1 3x 1 y ( p) e D 1 D 3 Persamaan Diferensial:Dwi Purnomo137 y ( p) e x e 3 x e x dx e 2 x e 3 x e 2 x dx 1 y ( p ) e x e 2 x e 2 x e x 2 1 y ( p) e 3 x e 3 x 2 y ( p) 1 3x e 2 Sehingga selesaian persamaan d2y dy 3 2 y e 3 x adalah 2 dx dx Y y (c ) y ( p ) 1 Y c1e x c 2 e 2 x e 2 x 2 3. Tentukan selesaian persamaan d2y dy 5 4 y (3 2 x ) 2 dx dx Jawab Persamaan diferensial di atas mempunyai persamaan karakteristik D 2 5D 4 0 Sehingga akar-akarnya adalah m1 1 atau m 2 4 Fungsi komplemennya adalah y (c) c1e x c 2 e 4 x Selesaian khususnya ditentukan dengan menggunakan metode penjumlahan n pecahan parsial. y ( p) 1 Q( x) D 5D 4 y ( p) 1 .(3 2 x) ( D 1)( D 4) 2 B A y ( p) (3 2 x) D 1 D 4 A( D 4) B( D 1) y ( p) (3 2 x ) D 2 5D 4 Persamaan Diferensial:Dwi Purnomo138 1 1 Diperoleh A , B 3 3 Sehingga 1/ 3 1/ 3 y ( p) (3 2 x) D 1 D 4 1 1 y ( p) e x (3 2 x )e x dx e 4 x (3 2 x)e 4 x dx 3 3 1 1 1 1 3 y ( p) e x 3e x 2 xe x 2e x e 4 x e 4 x xe 4 x e 4 x 3 3 2 8 4 y ( p) 11 1 x 8 2 Sehingga selesaian persamaan d2y dy 5 4 y (3 2 x ) adalah 2 dx dx Y y (c ) y ( p ) Y c1e x c 2 e 4 x 1 11 x 2 8 Metode Variasi Parameter Selesaiannya Y y (c ) y ( p ) Fungsi komplemen y (c ) c1 y1 ( x ) c2 y 2 ( x ) c3 y3 ( x ) ... cn 1 yn 1 ( x ) cn yn ( x ) Diperoleh hubungan dasar y ( p ) L1 ( x ) y1 ( x) L2 ( x) y2 ( x ) L3 ( x ) y3 ( x ) ... Ln1 ( x) y n1 ( x ) Ln ( x ) y n ( x) dengan mengganti C dengan fungsi x yang tidak diketahui, yaitu L . Metode ini terdiri dari cara untuk menentukan L sedemikian sehingga y ( p ) L1 ( x ) y1 ( x) L2 ( x) y2 ( x ) L3 ( x ) y3 ( x ) ... Ln1 ( x) y n1 ( x ) Ln ( x ) y n ( x) menjadi y (c ) c1 y1 ( x ) c2 y 2 ( x ) c3 y3 ( x ) ... cn1 y n1 ( x ) cn yn ( x ) Persamaan Diferensial:Dwi Purnomo139 Perhatikan beberapa contoh di bawah ini: Tentukan selesaian persamaan 1. ( D 2 2 D ) y e x sin x Jawab Persamaan diferensial di atas mempunyai persamaan karakteristik D 2 2 D 0 atau D ( D 2) 0 dengan akar-akar nyata dan berbeda yaitu m1 0, m2 2 sehingga fungsi kompelennya adalah y (c) c1 c 2 e 2 x . Untuk menentukan y(p) selanjutnya dibentuk hubungan y ( p) L1 L2 e 2 x dengan menurunkan Dy 2 L2 e 2 x ( L1' L'2 e 2 x ) dan misal L1' L'2 e 2 x 0 .......(1) Karena Dy 2 L2 e 2 x , D 2 y 4 L2 e 2 x 2 L'2 e 2 x dengan memilih 2 L'2 e 2 x Q ( x) e x sin x .......(2) Dari (2) diperoleh Jadi L'2 1 x 1 e sin x dan L2 e x (sin x cos x) 2 4 1 1 Dari (1) karena L1' L'2 e 2 x maka L1' e x sin x e x e x sin x 2 2 1 Didapat L1 e x (sin x cos x) 4 Selesaian persamaan ( D 2 2 D ) y e x sin x adalah Y y (c) y ( p ) 1 1 1 1 = c1 c 2 e 2 x e x sin x e x cos x e x sin x e x cos x e 2 x 4 4 4 4 1 = c1 c 2 e 2 x e x sin x 2 2. Tentukan selesaman persamaan ( D 3 D ) y csc x Jawab Persamaan Diferensial:Dwi Purnomo140 Persamaan diferensial di atas mempunyai persamaan karakteristik ( D 3 D ) y csc x adalah ( D 3 D) 0 atau D( D 2 1) 0 dengan akarakar nyata dan tidak nyata yaitu 0 dan i sehingga fungsi kompelennya adalah y (c) c1 c 2 cos x c3 sin x . Selanjutnya dibentuk hubungan y ( p) L1 L2 cos x L3 sin x dengan menurunkan diperoleh Dy L2 sin x L3 cos x ( L1' L'2 cos x L'3 sin x) dan dengan memisalkan L1' L'2 cos x L'3 sin x 0 .......(1) Karena Dy L2 sin x L3 cos x dan D 2 y L2 cos x L3 sin x ( L'2 sin x L'3 cos x ) dengan memisalkan L'2 sin x L'3 cos x 0 ......(2) maka D 3 y ( L2 sin x L3 cos x) ( L'2 cos x L'3 sin x) Dengan memisalkan L'2 cos x L'3 sin x Q( x) csc x .......(3) Dari (1) dan (3) Diperoleh L1' L'2 cos x L'3 sin x L1' ( L'2 cos x L'3 sin x ) 0 atau L1' csc x dan L1 ln csc x cot x dari (2) dan (3) diperoleh L'3 1 dan L'2 cot x sehingga L3 x dan L2 ln sin x Selesaian persamaan di atas adalah Y y (c) y ( p ) = c1 c 2 cos x c 3 sin x ln csc x cot x cos x ln sin x x sin x 3. Tentukan selesaian persamaan ( D 2 6 x 9) y e 3 x x x Jawab Persamaan Diferensial:Dwi Purnomo141 Persamaan karakteristiknya adalah D 2 6 D 9 0 atau ( D 3)( D 3) 0 dengan akar-akar nyata dan sama yaitu m1 m 2 3 , sehingga fungsi komplemen y (c) c1 c 2 x e 3 x Selanjutnya dibentuk hubungan y ( p) ( L1 L2 x)e 3 x dengan menurunkan diperoleh Dy (3L1 L2 )e 3 x 3L2 xe 3 x ( L1' e 3 x L'2 xe 3 x ) Dengan memisalkan L1' e 3 x L'2 xe 3 x 0 ......(1) Maka D 2 y (9 L1 6 L2 )e 3 x 9 L2 xe 3 x (3L1' L'2 x )e 3 x 3L'2 xe 3 x Dengan memisalkan (3L1' L'2 x)e 3 x 3L'2 xe 3 x e 3 x x 2 Dari (1) dan (2) diperoleh L1' x 1 dan L'2 x 2 sehingga L1 ln x dan L2 x 1 Selesaian persamaan di atas adalah Y y (c) y ( p ) = c1 c 2 x e 3 x + ( ln x x 1 x )e 3 x = c1 c 2 x e 3 x e 3 x ln x e 3 x Metode Koefisien tak Tentu Yang dimaksud dengan metode koefisien tak tentu adalah membuat hubungan dasar y Ar1 ( x) Br2 ( x ) Cr3 ( x ) .... Grn ( x) Dimana r1 ( x ), r2 ( x ), r3 ( x), ...rn ( x ) adalah suku-suku Q dan fungsi-fungsi ini muncul dari suku-suku Q dengan menurunkannya dan A, B, C, ....G adalah konstanta. Misal persamaannya f ( D ) y x 3 maka y Ax 3 Bx 2 Cx D Misal persamaannya f ( D ) y e x e 3 x maka y Ae x Be 3 x Misal persamaannya f ( D ) y sin ax maka y A sin ax B cos ax Misal persamaannya f ( D ) y sec x maka metode ini tidak dapat digunakan untuk menentukan selesaiannya. Persamaan Diferensial:Dwi Purnomo142 Selanjutnya substitusikan y kedalam f ( D ) y maka koefiesien A, B, C ,... diperoleh dari menyelesaikan identintas. Perhatikan contoh berikut: 1. Tentukan selesaian persamaan ( D 2 2 D ) y e x sin x Jawab Selesaian persamaan Y y ( c) y ( p ) Fungsi komplemennya y ( c) c1 c 2 e x karena persamaan karakteristiknya adalah ( D 2 2 D ) 0 atau D ( D 2) 0 y(p) = Ae x sin x Be x cos x dengan menurunkan diperoleh Dy ( A B)e x sin x ( A B)e x cos x D 2 y 2 Be x sin x 2 Ae x cos x sehingga ( D 2 2 D ) y e x sin x (2 Ae x sin x 2 Be x cos x) e x sin x Diperoleh -2A=1 dan -2B=0 sehingga selesaian persamaan 2. Tentukan selesaian persamaan d2y dy 4 5 y sin x 2 dx dx Jawab Persamaan diferensial di atas mempunyai persamaan karakteristik ( D 2 4 D 5) 0 Sehingga diperoleh m1.2 4 16 20 2 m1.2 4 2i 2 m1.2 2 i Persamaan Diferensial:Dwi Purnomo143 Fungsi komplemen y (c) c1 cos x c 2 sin x e 2 x Selanjutnya ditentukan integral khususnya y ( p) 1 sin x D 4D 5 2 y( p) 1 sin x 1 4D 5 y( p) 1 sin x 4D 4 y( p) 1 1 D 1 sin x 4 D 1 D 1 y ( p) 1 D 1 sin x 4 D2 1 y( p) 1 ( D 1) sin x 4 1 1 1 y ( p ) ( D 1) sin x 8 1 y ( p ) (cos x sin x ) 8 Selesaian persamaan d2y dy 4 5 y sin x 2 dx dx Y y (c) y ( p ) 1 1 Y (c1 cos x c 2 sin x)e 2 x cos x sin x 8 8 3. Tentukan selesaian persamaan d 2 y dy y x2 2x 1 2 dx dx Jawab Persamaan diferensial di atas mempunyai persamaan karakteristik D2 D 1 0 Sehingga diperoleh Persamaan Diferensial:Dwi Purnomo144 m1.2 1 1 4 2 m1.2 1 i 3 2 2 x 3 x 3 Fungsi komplemen y (c) c1 cos c 2 sin 2 2 Selanjutnya ditentukan integral khususnya y ( p) 1 ( x 2 2 x 1) D D 1 2 y ( p ) (1 D )( x 2 2 x 1) y ( p ) ( x 2 2 x 1) (2 x 2) y ( p ) ( x 2 3) Selesaian persamaan d 2 y dy y x2 2x 1 2 dx dx Y y (c) y ( p ) x 3 x 3 x2 3 Y c1 cos c 2 sin 2 2 Metode Integral Khusus Q(x) Berbentuk Sangat Spesifik. Integral khusus persamaan diferensial f ( D ) y Q( x) dengan koefisien konstan dinyatakan dengan y 1 Q( x) . F ( D) Untuk bentuk-bentuk tertentu Q(x) dapat dipandang sebagai bentuk khusus, 1. Jika Q ( x) e ax maka y 1 1 ax Q( x) e , F ( a) 0 F (D) F (a ) 2. Jika Q ( x) sin( ax b) atau Q( x) cos(ax b) maka y 1 1 sin( ax b) sin( ax b), F (a 2 ) 0 2 2 F (D ) F (a ) maka y 1 1 cos(ax b) cos(ax b), F (a 2 ) 0 2 2 F (D ) F (a ) Persamaan Diferensial:Dwi Purnomo145 3. Jika Q ( x) x n maka y 1 x n (ao a1 D a 2 D 2 ... a n D n ) x n , a o 0 F ( D) Diperoleh dengan mengembangkan 1 dengan pangkat naik D dan F ( D) menghilangkan semua suku di atas D n karena D n x m 0 Q ( x ) e ax V ( x ) D n x m 0 4. Jika y maka 1 1 e axV e ax V F ( D) F ( D a) 1 1 F ' ( D) xV x V V F ( D) F ( D) F ( D) 2 5. Jika Q ( x) xV ( x) maka y Perhatikan contoh-contoh berikut ini. 1. Tentukan selesaian persamaan ( D 3 2 D 2 5D 6) y (e 3 x 3) 2 Jawab Persamaan diferensial di atas mempunyai persamaan karakteristik ( D 3 2 D 2 5 D 6) 0 ( D 1)( D 3)( D 2) 0 Fungsi komplemennya adala6h y (c) c1e x c 2 e 3 x c3 e 2 x Integral khususnya adalah y ( p) y ( p) 1 3 2 D 2D 5D 6 (e 2 x 3) 2 1 ( x 4 x 6e 2 x 9 ( D 1)( D 3)( D 2) e 4 x 6e 2 x 9 y ( p) ( D 1( D 3)( D 2) y ( p) 1 6 9 e 4x e2x e0x ( D 1)( D 3)( D 2) ( D 1)( D 3)( D 2) ( D 1)( D 3)( D 2) Persamaan Diferensial:Dwi Purnomo146 y ( p) 1 4x 6 9 e e 2x 3(1)6 1(1)4 (1)(3)(2) y ( p) e 4 x 6e 2 x 3 18 4 2 Selesaian persamaan ( D 3 2 D 2 5D 6) y (e 3 x 3) 2 adalah Y y (c) y ( p ) Y c1e x c 2 e 3 x c3 e 2 x 2. e 4 x 6e 2 x 3 18 4 2 Tentukan selesaian persamaan D 2 4 y sin 3x Jawab Persamaan diferensial di atas mempunyai persamaan karakteristik ( D 2 4) 0 Sehingga diperoleh m1.2 0 10 16 2 m1.2 0 2i Fungsi komplemen y (c) c1 cos 2 x c 2 sin 2 x e 0 x Selanjutnya ditentukan integral khususnya y ( p) 1 sin 3x D 4 2 y( p) 1 sin 3 x (3) 2 4 1 y ( p ) sin 3x 5 Selesaian persamaan d2y dy 4 5 y sin x 2 dx dx Y y (c) y ( p ) Persamaan Diferensial:Dwi Purnomo147 1 Y (c1 cos 2 x c 2 sin 2 x ) sin 3 x 5 3. Tentukan selesaian persamaan D 4 10 D 2 9 y sin( 2 x 3) Jawab Persamaan diferensial di atas mempunyai persamaan karakteristik D 4 10 D 2 9 0 ( D 2 1)( D 2 9) 0 Diperoleh akar-akarnya tidak nyata dan berbeda yatu m1.2 i dan m3.4 3i Persamaan komplemennya adalah y (c) c1 cos x c 2 sin x c3 cos 3x c 4 sin 3x Integral khususnya y ( p) 1 cos(2 x 3) ( D 1)( D 2 3) y ( p) 1 cos(2 x 3) (3)(5) 2 y ( p) 1 cos(2 x 3) 15 Selesaian persamaan D 4 10 D 2 9 y sin( 2 x 3) adalah Y y (c) y ( p ) Y c1 cos x c 2 sin x c 3 cos 3x c 4 sin 3x 1 cos 2 x 3 15 Persamaan Diferensial Homogen dengan Koefisien Variabel Bentuk umum persamaan diferensial linear homogen dengan koefisien variabel adalah Po dny d n1 y d n 2 y d n3 y dy P P P ..... Pnq Pn y Q( x ) 1 2 3 n n 1 n 2 n 3 dx dx dx dx dx Dimana Po 0, P1 , P2 , P3 ,......., Pn 1 , Pn adalah fungsi dan Q ( x) 0 Persamaan Diferensial:Dwi Purnomo148 Contoh 1. x D 3 3 3x 2 D 2 2 xD 2 y 0 atau dapat ditulis dalam bentuk d3y d2y dy x 3 3 3 x 2 2 2 x 2y 0 dx dx dx 2. 2 y dy x 2 y 0 2 dx dx x 22 d atau dapat ditulis dalam bentuk ( x 2) 2 D 2 ( x 2) 1 y 0 Persamaan Diferensial Tidak Homogen dengan Koefisien Variabel Bentuk umum persamaan diferensial linear tidak homogen dengan koefisien variabel dinyatakan dengan Po dny d n1 y d n 2 y d n3 y dy P P P ..... Pnq Pn y Q( x ) 1 2 3 n n 1 n 2 n 3 dx dx dx dx dx Dimana Po 0, P1 , P2 , P3 ,......., Pn 1 , Pn adalah fungsi dan Q ( x) 0 Contoh 1. 2 y dy x 2 y (3 x 4) 2 dx dx x 22 d d3y d2y dy 2. x 3 3 3x 2 2 2 x 2y 1 x dx dx dx Cara yang digunakan untuk menentukan selesaian umum persamaan diferensial homogen dan tidak homogen dengan koefisien konstan dan variabel adalah dengan metode substitusi yaitu e z x z ln x . Cara ini disebut metode persamaan Cauchy dan e z (ax b) z ln ax b . Cara ini disebut metode persamaan Legendre. Persamaan Diferensial:Dwi Purnomo149 Karena e z x maka dz 1 dx x dan karena e z (ax b) maka 1 . ax b Persamaan linear Cauchy dinyatakan dalam bentuk n 1 n 2 n 3 dny y y y dy n 1 d n 2 d n 3 d Po x P1 x P2 x P3 x ..... Pn1 x Pn y 0 n n 1 n 2 n 3 dx dx dx dx dx n Dengan Po , P1 , P2 , P3, ...........Pn1 , Pn adalah konstanta sebarang. Persamaan linear Legendre dinyatakan dalam bentuk n 1 dny y d n 2 y dy n 1 d P ( ax b ) P ( ax b ) ... Pn1 (ax b) x Pn y 0 1 2 n n 1 n 2 dx dx dx dx Dengan Po , P1 , P2 , P3, ...........Pn1 , Pn adalah konstanta sebarang yang merupakan Po (ax b) n keadaan khusus persamaan linear Cauchy yaitu untuk a 1 dan b 0 yang dapat diubah ke persamaan linear dengan koefisien konstan dan variabel bebasnya disesuaikan. Selanjutnya menurut dalil rantai pada kalkulus diferensial diperoleh dy dy dz dx dz dx sehingga dy dy dz dy 1 dy 1. Dy , sehingga xDy dx dz dx dz x dz 2. D 2 y d dy d 1 dy d 1 dy 1 d dy dx dx dx x dz dx x dz x dx dz 2 2 d 2 y dy 1 dy d y 1 d y dy 2 2 2 2 2 2 sehingga x D y 2 dz dz x dz dz x dz dz 2 2 2 2 3. D 3 y d d 2y d 12 d 2y dy d 12 d 2y dy 12 d d 2y dy dx dx dx x dz dz dx x dz dz x dx dz dz 3 d3y d2y d2y 1 d y 3 3 3 3 3 2 2 y sehingga x D y 3 3 2 2 y dz dz x dz dz dan seterusnya. Dengan cara yang sama diperoleh: Persamaan Diferensial:Dwi Purnomo150 d y dy dy (ax b) Dy a , (ax b) 2 D 2 y a 2 2 , dan seterusnya , dx dz dx Berdasarkan substitusi di atas, akhirnya persamaan semua dapat diselesaikan dengan terlebih dahulu menentukan persamaan karakteristik dan akar-akarnya sebagaimana yang telah dijelaskan pada bagian awal bab V. 1. Tentukan selesaian persamaan diferensial x 2 D 2 3xD 4 y 0 Jawab Persamaan diferensial di atas diubah menjadi: d 2 y dy dy 2 3 4 y 0 dz dz dz d 2 y dy dy 2 3 2 y 0 dz dz dz d 2 y dy 2 2 y 0 dz dz Persamaan diferensial di atas mempunyai persamaan karakteristik 2 2 0 dan akar-akarnya 1 dan -2 (tidak sama) Sehingga selesaiannya adalah y c1e z c 2 e 2 z Karena z ln x selesaian y c1e ln x persamaan c2 e diferensial x 2 D 2 3xD 2 y 0 maka adalah 2 ln x y c1 x c 2 x 2 2. Tentukan selesaian persamaan diferensial x D 3 3 2 xD 2 y x 2 ln x 3 x Jawab Persamaan diferensial di atas diubah menjadi: d3y d2y dy dy 3 3 2 2 2 2 y x 2 ln x 3x dx dz dz dz Persamaan Diferensial:Dwi Purnomo151 d3y d2y dy 2 3 2 4 2 y x 2 ln x 3 x dx dz dz 2 d d d 1 2 2 2 y ze 2 z 3z dz dz dz Persamaan diferensial di atas mempunyai persamaan karakteristik 12 2 2 0 Sehingga fungsi dan akar-akarnya real dan tidak real komplementernya y c1e z e z c 2 cos z c3 sin z selesaiannya adalah y (c) c1e z c 2 e 2 z dan integral selesaian khususnya adalah y ( p) 1 ze 2 z 3 z d 3d 4d 2 3 y( p) 2 1 3 2 d 3d 4d 2 ze 2 z 3 z y( p) e 2 z 1 1 3 z 3 (d 2) 3(d 2) 4(d 2) 2 (d 1)(d 2d 2) y( p) e 2 z 1 1 z 3 z (d 1)(1) d 3d 4d 2 2 3 2 1 1 y ( p ) e 2 z d z 3e z e z e z dz e 2 z z 1 3ze z 2 2 Sehinggan selesaian persamaan diferensial maka selesaian persamaan diferensial x 3 D 3 2 xD 2 y x 2 ln x 3 x adalah 1 y c1e z e z c 2 cos z c 3 sin z e 2 z z 1 3 ze z ` 2 y c1 x x c 2 cos ln x c3 sin ln x 1 2 x ln x 2 3x ln x 2 5.3 Soal-soal Tentukan selesaian umum persamaan diferensial berikut ini! 1. y ' ' ' y ' '2 y 0 2. ( D 4 6 D 3 12 D 2 8 D) y 0 Persamaan Diferensial:Dwi Purnomo152 3. ( D 4 D 2 ) y 0 4. ( D 4 6 D 3 13D 2 12 D 4) y 0 5. ( D 6 9 D 4 24 D 2 16) y 0 6. ( D 8 D 6 ) y 0 7. ( y ' ' '64 y ) 2 0 8. y 9. y ' ' ' y ' '4 y '4 y 0 (5) 15 y ( 4) 85 y ' ' '225 y ' '274 y '120 0 10. ( D 4 16) y 0 11. ( D 2 2 D 5) 5 y 0 12. ( D 4 5 D 2 36) y 0 ( 5) ( 4) 13. y 5 y 7 y ' ' ' y ' '8 y '4 y 0 14. y ' ' '3 y ' '3 y ' y 0 15. ( y ' '4 y '4 y )( y '3 y ) 0 2 16. D 4 D 3 y 1 17. D 2 D 2 y 2 1 x x 2 18. D 2 3D 2 y sin e x 19. D 2 1y sin 2 x 1 1 cos 2 x 2 20. D 2 1y 1 e x 2 3 21. x y ' ' ' xy ' y 3 x 22. 4 xy ' '( x 2) y '2 y 0 23. 1 x 2 y' '2 xy'2 y 2 24. 2 x 1 y ' '2( 2 x 1) y '12 y 6 x 2 25. x 12 D 2 x 1D 1y ln x 1 2 ( x 1) Persamaan Diferensial:Dwi Purnomo153 Persamaan Diferensial:Dwi Purnomo154