Chapter 2 - digilib POLBAN

advertisement
 BAB II LANDASAN TEORI
BAB II
LANDASAN TEORI
2.1
Rumah Kaca (Green House)
Green house atau rumah kaca didefinisikan sebagai sebuah rumah atau
bangunan tertutup dan transparan yang dapat ditembus sinar matahari dan
dimanfaatkan untuk menanam tanaman agar tanaman tersebut tumbuh secara
optimal
dan sesuai dengan harapan atau dapat didefinisikan sebagai sebuah
bangunan yang dapat menyediakan kondisi optimal untuk menumbuhkan tanaman
secara konsisten sepanjang tahun. Faktor yang berpengaruh seperti suhu, sinar
matahari, kelembaban, dan udara disediakan, dipertahankan dan didistribusikan
secara merata dalam greenhouse pada level yang optimal, begitu juga dengan
perawatan, termasuk kondisi ruangan di dalam green house yang meliputi faktor
sinar matahari yang cukup, suhu dan kelembaban yang dibutuhkan agar tumbuhan
tersebut dapat tumbuh dengan optimum.
Green house atau rumah kaca merupakan sebuah media yang digunakan
untuk mengendalikan dan menjaga keadaan iklim serta lingkungan di dalam suatu
ruangan. Sehingga besarnya suhu, tingkat kelembaban, dan kadar asam dalam
tanah di dalam rumah kaca tersebut akan berbeda dengan kondisi suhu,
kelembaban, dan tanah diluarnya. Ada beberapa parameter penting yang harus
diperhatikan didalam rumah kaca, diantaranya adalah suhu ruangan, suhu tanah,
kelembaban udara relatif, pengairan (irigasi), pemupukan, kadar intensitas cahaya,
serta pergerakan sirkulasi udara (ventilasi).
Green house yang baik, terutama dalam konstruksinya, bertujuan untuk
membuat kondisi cuaca yang diperlukan dan dikendalikan sedapat mungkin
sehingga tanaman dapat tumbuh sepanjang tahun secara optimal tanpa
dipengaruhi adanya iklim luar. Untuk tujuan tersebut, green house sebaiknya
mempunyai transmisi cahaya yang tinggi, konsumsi panas yang rendah, ventilasi
yang cukup dan efisien, struktur yang kuat, konstruksi, dan biaya operasional
yang murah serta berkualitas tinggi (M. Affan Fajar Falah, 2008).
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
5
BAB II LANDASAN TEORI
Greenhouse untuk daerah beriklim tropis sangat memungkinkan dan
mempunyai banyak keuntungan dalam produksi dan budidaya tanaman. Produksi
dapat dilakukan sepanjang tahun tanpa dipengaruhi perubahan cuaca, dimana
produksi
dalam lahan yang terbuka tidak memungkinkan karena adanya berbagai
faktor yang tidak menunjang dalam budidaya tanaman seperti curah hujan yang
terlalu tinggi, suhu yang ekstrim, angin yang kencang dan berbagai faktor lainnya.
2.2 Faktor Eksternal Pertumbuhan Tanaman
Faktor luar yang mempengaruhi pertumbuhan dan perkembangan
tumbuhan adalah faktor lingkungan, misalnya nutrisi, air, cahaya, suhu, dan
kelembapan.
a) Nutrisi
Nutrisi terdiri atas unsur-unsur atau senyawa-senyawa kimia sebagai
sumber energi dan sumber materi untuk sintesis berbagai komponen sel yang
diperlukan selama pertumbuhan. Nutrisi umumnya diambil dari dalam tanah
dalam bentuk ion dan kation, sebagian lagi diambil dari udara.
Unsur-unsur yang dibutuhkan dalam jumlah yang banyak disebut unsur
makro (C, H, O, N, P, K, S, Ca, Fe, Mg). Adapun unsur-unsur yang dibutuhkan
dalam jumlah sedikit disebut unsur mikro (B, Mn, Mo, Zn, Cu, Cl). Jika salah
satu kebutuhan unsur-unsur tersebut tidak terpenuhi, akan mengakibatkan
kekurangan unsur yang disebut defisiensi.
b) Air
Kekurangan air pada tanah menyebabkan terhambatnya proses osmosis.
Proses osmosis akan terhenti atau berbalik arah yang berakibat keluarnya
materi-materi dari protoplasma sel-sel tumbuhan, sehingga tanaman kering dan
mati.
c) Cahaya
Cahaya mutlak diperlukan dalam proses fotosintesis. Cahaya secara
langsung berpengaruh terhadap pertumbuhan setiap tanaman. Pengaruh cahaya
secara langsung dapat diamati dengan membandingkan tanaman yang tumbuh
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
6
BAB II LANDASAN TEORI
dalam keadaan gelap dan terang. Pada keadaan gelap, pertumbuhan tanaman
mengalami etiolasi yang ditandai dengan pertumbuhan yang abnormal (lebih
panjang), pucat, daun tidak berkembang, dan batang tidak kukuh. Sebaliknya,
dalam
keadaan terang tumbuhan lebih pendek, batang kukuh, daun
berkembang sempurna dan berwarna hijau.
Dalam fotosintesis, cahaya berpengaruh langsung terhadap ketersediaan
makanan. Tumbuhan yang tidak terkena cahaya tidak dapat membentuk
klorofil, sehingga daun menjadi pucat. Panjang penyinaran mempunyai
pengaruh
yang spesifik terhadap pertumbuhan dan perkembangan tumbuhan.
d) Suhu
Suhu berpengaruh terhadap fisiologi tumbuhan, antara lain memengaruhi
kerja enzim. Suhu yang terlalu tinggi atau terlalu rendah akan menghambat
proses pertumbuhan. Fotosintesis pada tumbuhan biasanya terjadi di daun,
batang, atau bagian lain tanaman. Suhu optimum (15°C hingga 30°C)
merupakan suhu yang paling baik untuk pertumbuhan. Suhu minimum (±
10°C) merupakan suhu terendah di mana tumbuhan masih dapat tumbuh. Suhu
maksimum (30°C hingga 38°C) merupakan suhu tertinggi dimana tumbuhan
masih dapat tumbuh.
e) Kelembaban
Kelembapan ada kaitannya dengan laju transpirasi melalui daun karena
transpirasi akan terkait dengan laju pengangkutan air dan unsur hara terlarut.
Bila kondisi lembap dapat dipertahankan maka banyak air yang diserap
tumbuhan dan lebih sedikit yang diuapkan. Kondisi ini mendukung aktivitas
pemanjangan sel sehingga sel-sel lebih cepat mencapai ukuran maksimum dan
tumbuh bertambah besar. Pada kondisi ini, faktor kehilangan air sangat kecil
karena transpirasi yang kurang. Adapun untuk mengatasi kelebihan air,
tumbuhan beradaptasi dengan memiliki permukaan helaian daun yang lebar.
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
7
BAB II LANDASAN TEORI
2.3
Parameter Kontrol Green House
2.3.1
Sirkulasi Udara
Sirkulasi udara sangat dibutuhkan pada rumah kaca. Sirkulasi udara
menjaga temperatur, menghilangkan embun, dan mensuplai karbon dioksida
dapat
dari luar. Sangat dianjurkan untuk memasang fan atau kipas untuk sirkulasi udara
pada rumah kaca. Tanpa fan atau kipas sirkulasi udara, ketika didalam rumah kaca
dipanaskan pada musim dingin atau hujan udara panas akan naik ke bagian atas
rumah kaca dan udara dingin akan turun ke sekitar tanaman dan lantai. Ventilasi
terdapat pada rumah kaca juga berfungsi sebagai tempat bersirkulasinya
yang
udara. Lubang ventilasi pada rumah kaca ini tidak boleh terlalu besar, karena akan
sulit untuk mengatur dan mengontrol keadaan temperatur dan kelembaban di
dalam rumah kaca.
2.3.2
Suhu Dan Kelembaban Udara Relatif
Suhu dan kelembaban udara yang akan dikontrol dalam rumah kaca
bergantung pada jenis tanaman yang akan ditanam dalam rumah kaca, contohnya
unutk beberapa jenis tanaman tropis tidak akan tumbuh baik pada suhu dibawah
20°C atau diatas 35°C. Umumnya, suhu minimum pada rumah kaca adalah 20°C ,
dan pada siang hari suhu ruangan akan bertambah panas. Untuk itu sistem
ventilasi harus bekerja dengan baik saat mencapai suhu panas yang berlebih,
untuk mendinginkan dan menstabilkan kembali suhu didalam rumah kaca. Pada
tebel 2.1 terdapat parameter suhu dan kelembaban optimum untuk beberapa jenis
tanaman tropis.
Tabel 2.1 Suhu dan Kelembaban Optimal Untuk Beberapa Jenis Tanaman
Suhu udara ruangan (°C)
Jenis
Pertumbuhan
Tanaman
Timun
Panen
Penanaman
Siang
Siang*
Malam
Siang
Malam
22-25
27-30
17-18
25-30
18-20
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
13-15
Kelembaban
(%RH)
85-95
8
BAB II LANDASAN TEORI
Semangka,
Melon
Tomat,
Apel,
Paprika,
Kacang
22-25
27-30
17-18
25-30
18-20
13-15
65-75
20-22
25-27
10-13
22-28
15-17
8-10
50-60
17-18
20-26
8-12
70-80
15-16
20-21
8-9
70-80
12-13
16-18
7-8
65-75
Selada,
Seledri,
Bawang
Bayam,
Petreli
Lobak,
Kubis
Kelembaban udara merupakan unsur lain bagi tanaman untuk tumbuh
dengan optimum. Beberapa sumber mengatakan bahwa kelembaban normal pada
rumah kaca, yaitu sekitar 80% RH. Pengaruh suhu terhadap kelembaban sangat
sensitif, suhu udara yang hangat dapat menampung uap air dengan baik. Tiap
kenaikan suhu 10°C, volume uap air maksimum dalam udara hampir dua kali
lipat.
Ketika udara dari suatu suhu tertentu dipenuhi dengan air seperti contoh
saat hujan, kita dapat mengasumsikan tingkat kelembabannya 100% RH (relative
humidity). Relative humidity merupakan kepadatan uap air yang ada diudara
ketika terjadi perubahan suhu pada skala tertentu. Perubahan tersebut dapat
dirumuskan, yaitu :
H
VdL
 100% ……………...……………………………………….(2.1)
VdH
dimana:

H = tingkat kelembaban dalam %RH
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
9
BAB II LANDASAN TEORI

VdL = kepadatan uap air saat suhu minimum (aktual) dalam g/m 3

VdH = kepadatan uap air saat suhu maksimal (saturasi) dalam g/m 3
2.4 Sistem Kontrol (Control System)
Sistem kontrol adalah proses pengaturan ataupun pengendalian terhadap
satu atau beberapa besaran variabel atau parameter sehingga berada pada suatu
harga atau dalam suatu batas harga (range) tertentu. Di dalam dunia industri,
dituntut suatu proses kerja yang aman dan berefisiensi tinggi untuk menghasilkan
produk
dengan kualitas dan kuantitas yang baik serta dengan waktu yang telah
ditentukan, hal ini dilakukan untuk mendapatkan efisiensi yang tinggi pada saat
proses produksi dan untuk mendapatkan hasil yang memiliki nilai mutu yang baik.
2.4.1
Komponen Sistem Kontrol
Sistem kontrol memiliki beberapa istilah yang merupakan komponen dari
sistem kontrol itu sendiri, yaitu :

Variabel Kontrol (Controlled Variable): kuantitas atau kondisi yang
diukur dan dikontrol

Variabel Manipulasi (Manipulated Variable): kuantitas atau kondisi yang
divariasikan oleh pengontrol sehingga mempengaruhi variabel yang
dikontrol. Biasanya variabel yang dikontrol adalah output dari sistem.
Kontrol dapat berarti mengukur controlled variable dari sistem dan
menerapkan manipulated variable pada sistem untuk mengoreksi dan
membatasi deviasi harga terukur (output) dari harga yang diinginkan.

Plant: objek yang akan dikontrol

Proses (Process): operasi dan pengembangan kontinu yang ditandai oleh
perubahan gradual dari variabelnya dengan cara tertentu sehingga sampai
pada suatu hasil atau keadaan tertentu.

Sistem: kombinasi dari berbagai komponen yang beraksi bersama-sama
dan menghasilkan suatu performansi tertentu.

Gangguan (Disturbances): sinyal yang mempengaruhi sistem sehingga
mempengaruhi harga output dari harga yang diinginkan.
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
10
BAB II LANDASAN TEORI
2.4.2
Jenis-Jenis Sistem Kontrol
Suatu sistem kontrol otomatis dalam suatu proses kerja berfungsi
mengendalikan proses tanpa adanya campur tangan manusia (otomatis). Ada dua
kontrol pada sistem kendali/kontrol otomatis yaitu :
sistem
A. Sistem Kontrol Loop Terbuka (Open-Loop Control System)
Sistem kontrol loop terbuka merupakan suatu sistem kontrol yang
memiliki
nilai keluarannya tidak berpengaruh terhadap aksi pengontrolan. Dengan
demikian pada sistem kontrol ini, nilai keluaran tidak di umpan-balikkan ke
parameter pengendalian. Pada sistem ini tidak dilakukan perbandingan antara
sinyal output dan input. Performansi dan akurasi dari aksi kontrol sistem ini
tergantung dari kalibrasi sistem. Jika terdapat gangguan maka sistem tidak
dapat mengantisipasinya sehingga harus dikalibrasi ulang. Sebagai contoh, sistem
kontrol yang berbasiskan setting waktu adalah sistem kontrol open-loop.
input
output
Controller
Plant
Gambar 2.1. Diagram Blok Sistem Pengendalian Loop Terbuka
B. Sistem Kontrol Loop Tertutup (Closed-Loop Control System)
Suatu sistem kontrol yang tanggapan sinyal keluarannya memiliki
pengaruh langsung terhadap aksi pengendalian yang dilakukan. Sinyal error yang
merupakan selisih dari sinyal masukan dan sinyal umpan balik (feedback), lalu
diumpankan pada komponen pengendalian (controller) untuk memperkecil
kesalahan sehingga nilai keluaran sistem semakin mendekati harga yang
diinginkan.
Sistem kontrol umpan balik (feedback) atau close-loop merupakan sistem
yang menggunakan hubungan antara output dan input yang diinginkan dengan
cara membandingkannya. Hasil perbandingan ini merupakan deviasi yang
digunakan sebagai alat kontrol. Actuating error signal yang merupakan perbedaan
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
11
BAB II LANDASAN TEORI
antara input dan feedback (dapat berupa output itu sendiri atau fungsi dari output
seperti turunan atau integralnya), akan diumpankan ke pengontrol. Pengontrol
akan mengurangi error dan membawa sistem pada keadaan yang diinginkan
(output
sesuai dengan input yang diinginkan). Jadi output akan mempengaruhi
aksi kontrol. Pada sistem kontrol ini, keberadaan gangguan yang menyebabkan
output menyimpang dari input yang diinginkan dapat diantisipasi. Sistem akan
dikembalikan ke keadaan set pointnya oleh pengontrol.
Dibawah ini adalah blok diagram dari sistem kontrol umpan balik yang
banyak
digunakan di industri. Pengontrol otomatik akan mendeteksi sinyal error
(deviasi antara output dan setpoint), error sinyal ini berupa low level power
sehingga perlu dikuatkan dengan amplifier. Kontroler memroses sinyal error dan
menghasilkan sinyal aktuasi yang merupakan aksi kontrol sebagai tanggapan dari
error tadi. Aksi kontrol menggerakkan aktuator dan diterapkan pada plant
sehingga dihasilkan output. Elemen feedback yang biasanya berupa sensor akan
melihat atau mengukur hasil output dan mengkonversikannya ke variabel yang
sesuai dengan input referensi. Kedua variabel ini dibandingkan
dan
menghasilkan sinyal error. Iterasi ini akan berlangsung terus sampai
didapatkan kondisi bahwa error menjadi minimum. Atau dengan kata lain, output
sudah sesuai dengan input referensi yang diinginkan.
input
+
-
Controller
Actuator
Plant
output
Feedback
Gambar 2.2. Diagram Blok Sistem Kontrol Tertutup
2.4.3
Aksi Kontrol Dasar
Aksi kontrol dikenal juga dengan sinyal kontrol yang beraksi
berdasarkan error. Aksi kontrol ini berusaha mereduksi error agar sedekat
mungkin dengan sinyal referensi yang diberikan. Beberapa aksi kendali dasar yang
banyak digunakan di industri adalah sebagai berikut:
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
12
BAB II LANDASAN TEORI
a)
Kontrol Aksi Kendali ON-OFF (Two-Position Control)
Pada sistem kontrol dua posisi hanya mempunyai dua posisi yang tetap
yaitu kondisi ON dan kondisi OFF. Kontrol on-off ini banyak digunakan di
industri
karena murah dan sederhana. Sinyal kontrol akan tetap pada satu
keadaan dan akan berubah ke keadaan lainnya bergantung pada nilai error
positif atau negatif.
Karena sistem kerja yang digunakan adalah on-off saja, hasil output dari
sistem pengendalian ini akan menyebabkan proses variabel tidak akan pernah
konstan.
Besar kecilnya fluktuasi process variabel ditentukan oleh titik dimana
kontroller dalam keadaaan on dan off. Pengendalian dengan aksi kontrol ini
juga menggunakan feedback.
Kontroler dua posisi pada umumnya dijumpai pada komponen elektrik
(relay) dan komponen pneumatik (katup dan silinder). Ilustrasi dari kontroler
on-off adalah sebagai berikut:
Gambar 2.3 Ilustrasi Sistem Kendali On-Off
Dari gambar dapat diamati bahwa jika output lebih besar dari set point,
aktuator akan off. Output akan turun dengan sendirinya sehingga menyentuh set
point lagi. Pada saat itu, sinyal kontrol akan kembali on (aktuator on) dan
mengembalikan output kepada set pointnya. Demikian seterusnya sinyal kontrol
dan aktuator akan on-off terus menerus. Kelemahan dari kontroler on-off ini
adalah jika output berosilasi di sekitar set point (keadaan yang memang
diinginkan) akan menyebabkan aktuator bekerja keras untuk on-off dengan
frekuensi yang tinggi. Hal ini akan menyebabkan kontroler akan cepat aus dan
memakan energi yang banyak (boros).
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
13
BAB II LANDASAN TEORI
Untuk sedikit mengatasi hal ini maka dibuat suatu band pada set point
sehingga mengurangi frekuensi on-off dari kontroler. Ilustrasinya adalah
sebagai berikut:
Gambar 2.4 Respon Sistem Kendali On-Off
Sinyal kontrol akan off ketika output menyentuh batas atas dan baru on
kembali ketika menyentuh batas bawah. Band dari set point ini disebut juga
diferensial gap. Dengan keadaan seperti ini serta mengatur besarnya diferensial
gap maka frekuensi on-off dapat dikurangi tetapi harus dibayar dengan
penurunan akurasi terhadap set point.
b)
Kontrol Aksi Proporsional (Proportional Control Action)
Aksi kontrol proporsional memiliki karakteristik dimana besar output unit
control PV selalu sebanding dengan besarnya input.
Gambar 2.5 Aksi Kendali Proporsional
Gain control proporsional dapat berupa bilangan bulat, bilangan
pecahan, positif atau juga negatif. Dengan syarat besarnya tetap, linier di
semua daerah kerja dan tidak bergantung pada fungsi waktu. Pengertian gain
disini dapat berbentuk bilangan pecahan bahkan negatif, sehingga nilai output
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
14
BAB II LANDASAN TEORI
dapat lebih kecil dari input bahkan negatif. Oleh karena itu, istilah gain jarang
dipakai dan yang lazim dipakai adalah istilah proporsional band.
c)
Kontrol Aksi Integral (Integral Control Action)
Berfungsi untuk menghilangkan offset sebagai hasil dari reset yang dapat
menghasilkan output walaupun tidak terdapat input, sehingga dibutuhkan suatu
pengendali yang dapat menghasilkan output lebih besar atau lebih kecil pada saat
error
= 0.
d)
Kontrol Aksi Derivative (Derivative Control Action)
Memiliki karakteristik cenderung untuk mendahului atau bisa disebut anti
pasif controlling. Oleh karena itu aksi kontrol ini sering diterapkan pada sistem
yang memiliki inersia tinggi yang bersifat lagging.
e)
Kontrol Aksi Proporsional + Integral
Pada pengontrolan proporsional dapat menimbulkan offset pada keluaran
pengendali. Untuk proses-proses dimana offset tidak dapat ditolerir maka perlu
ditambahkan
aksi
pengontrolan
integral.
Aksi
kontrol
integral
dapat menghilangkan perbedaan pengukuran dan titik acuan yang dapat
mengakibatkan keluaran pengendali berubah sampai dengan perubahan
tersebut berharga nol.
f)
Kontrol Proportional Integral Derivative (Proportional Integral Derivative
Control)
Sistem pengontrolan derivatif merupakan pengontrolan dengan proses
umpan balik yang berlawanan dengan cara pengendalian integral. Penambahan
aksi derivatif pada pengendalian PID bertujuan untuk meningkatkan kestabilan
pengontrolan dan mempercepat tanggapan dari sistem, peningkatan kestabilan
sistem kontrol diperoleh dari penurunan overshoot. Aksi kontrol gabungan
seperti ini menghasilkan performansi serta keuntungan gabungan dari aksi
kontrol sebelumnya. PID mempunyai karakteristik reset control dan rate
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
15
BAB II LANDASAN TEORI
control yaitu meningkatkan respon dan stabilitas sistem serta mengeliminasi
steady state error.
2.5
Mikrokontroler adalah suatu sistem mikroprosesor yang lengkap dan
Mikrokontroller
dikemas dalam bentuk sebuah IC (single chip). IC mikrokontroler memiliki
perangkat penunjang seperti yang terdapat dalam mikrokomputer yaitu unit pusat
pengolahan data (Central Processing Unit), unit memori (ROM dan RAM) dan
unit I/O. Selain itu terdapat juga fasilitas -fasilitas seperti timer, counter, dan
kontrol interupsi (Interrupt Control).
Menurut sumber lain mikrokontroler
adalah sebuah IC
yang
dapat
diprogram berulang kali, baik ditulis atau dihapus (Agus Bejo, 2007). Biasanya
digunakan untuk pengontrolan otomatis dan manual pada perangkat elektronika.
Beberapa tahun terakhir, mikrokontroler sangat banyak digunakan
terutama
dalam pengontrolan
robot. Seiring perkembangan
elektronika,
mikrokontroler dibuat semakin kompak dengan bahasa pemrograman yang juga
ikut berubah. Salah satunya adalah mikrokontroler AVR (Alf and Vegard’s Risc
processor).
AVR termasuk kedalam jenis mikrokontroler RISC (Reduced Instruction
Set Computing) 8 bit. Berbeda dengan mikrokontroler keluarga MCS-51 yang
berteknologi CISC (Complex Instruction Set Computing). Pada mikrokontroler
dengan teknologi RISC semua instruksi dikemas dalam kode 16 bit (16 bits
words) dan sebagian besar instruksi dieksekusi dalam 1 clock, sedangkan pada
teknologi CISC seperti yang diterapkan pada mikrokontroler MCS-51, untuk
menjalankan sebuah instruksi dibutuhkan waktu sebanyak 12 siklus clock.
AVR atau sebuah kependekan dari Alf and Vegard‟s Risc Processor
merupakan chip mikrokontroler yang diproduksi oleh Atmel, yang secara umum
dapat dikelompokkan ke dalam 4 kelas, yaitu :
 ATtiny
 ATMega
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
16
BAB II LANDASAN TEORI
 AT90Sxx
 AT86RFxx
Perbedaan yang terdapat pada masing-masing kelas adalah kapasitas
memori, peripheral, dan fungsinya. Dalam hal arsitektur maupun instruksinya,
hampir tidak ada perbedaan sama sekali.
2.5.1
Mikrokontroler AVR ATMega 16
ATmega 16 merupakan salah satu jenis mikrokontroler dari keluarga
AVR. ATmega 16 mempunyai fitur yang lengkap, mulai dari kapasitas memori
program dan memori data yang cukup besar, interupsi, timer/counter, PWM,
USART, TWI, analog komparator, EEPROM internal dan juga ADC internal.
Dengan fitur yang cukup lengkap ini memungkinkan kita untuk menggunakan
ATmega 16 karena lebih mudah dan efisien. Bahkan kita dapat merancang suatu
sistem untuk kepentingan komersil mulai dari sistem yang sederhana sampai
dengan sistem yang relatif kompleks hanya dengan menggunkan sebuah IC saja.
Berikut ini adalah fitur-fitur yang dimiliki mikrokontroler ATmega16:
1.
Saluran I/O sebanyak 32 buah, yaitu Port A, Port B, Port C, dan Port D.
2.
ADC 10 bit sebanyak 8 saluran (channel).
3.
Tiga buah timer/counter dengan kemampuan pembandingan.
4.
CPU yang terdiri atas 32 register multiguna.
5.
Watchdog timer dengan osilator internal.
6.
SRAM sebesar 1 Kbyte.
7.
Memory Flash sebesar 16 Kbyte dengan kemampuan Read While Write.
8.
Unit interupsi internal dan eksternal.
9.
Port antarmuka SPI (Serial Peripheral Interface).
10. EEPROM sebesar 512 byte yang dapat diprogram saat operasi.
11. Antarmuka komparator analog.
12. Port USART (Universal Syncrhronous and Asyncrhronous Serial Receiver
and Transmitter) untuk komunikasi serial.
13. Serial TWI atau I2C
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
17
BAB II LANDASAN TEORI
Berikut adalah Gambar diagram blok untuk ATmega16:
Gambar 2.6 Diagram blok ATmega16
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
18
BAB II LANDASAN TEORI
ATmega16 memiliki 40 pin yang masing- masing pin-nya memiliki fungsi
yang berbeda-beda baik sebagai port ataupun sebagai fungsi yang lain, fungsi dari
masing-masing pin dapat dilihat di Tabel 2.1.
Tabel 2.2 Deskripsi Pin ATmega 16
PIN
Pin 1-8
KETERANGAN
Port B, merupakan Port I/O 8-bit dua arah (bi-directional) dengan
resistor pull-up internal. Selain sebagai Port I/O 8-bit Port B juga
dapat difungsikan secara individu sebagai berikut :

PB7 : SCK (SPI Bus Serial Clock)

PB6 : MISO (SPI Bus Master Input /Slave Output)

PB5 : MOSI (SPI Bus Master Output /slave)

PB4 : SS (SPI Slave Select Input)

PB3 : AIN1 (Analog Comparator Negatif input)
OC0 (Output Compare Timer /Counter 0)

PB2 : AIN0 (Analog Comparator Positif input)
INT2 (External Interrupt 2 input)

PB1 : T1 (Timer/Counter 1 External Counter Input)

PB0 : T0 (Timer/Counter 0 External Counter Input)
XCK (USART External Clock Input/Output)
9
RESET, merupakan pin reset yang akan bekerja bila diberi pulsa
rendah (aktif low) selama minimal 1,5 us.
10
VCC, Catu daya digital
11
GND, Ground untuk catu daya digital
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
19
BAB II LANDASAN TEORI
12
XTAL2, Merupakan output dari penguat osilator pembalik.
13 XTAL1, Merupakan input ke penguat osilator pembalik dan input
ke internal clock.
Port D, merupakan Port I/O 8-bit dua arah (bi-directional) dengan
resistor pull-up internal. Selain sebagai Port I/O 8-bit Port D juga
dapat difungsikan secara individu sebagai berikut :
14-21

PD7 : OC2 (Output Compare Timer /Counter 2)

PD6 : ICPI (Timer/Counter 1 Input Capture)

PD5 : OC1A (Output Compare A Timer /Counter 1)

PD4 : OC1B (Output Compare B Timer /Counter 1)

PD3 : INT1 (External Interrupt 1 Input)

PD2 : INT0 (External Interrupt 0 Input)

PD1 : TXD (USART transmit)

PD0 : RXD (USART receiver)
Port C, merupakan Port I/O 8-bit dua arah (bi-directional) dengan
22-29
30
resistor pull-up internal. Selain sebagai Port I/O 8-bit 4 bit Port C
juga dapat difungsikan secara individu sebagai berikut :

PC7 : TOSC2 (Timer Oscilator 2)

PC6 : TOSC2 (Timer Oscilator 1)

PC1 : SDA (Serial Data /Output, I2C)

PC0 : SCL (Serial Clock, I2C)
AVCC, merupakan catu daya yang digunakan untuk masukan
analaog ADC yang terhubung ke Port A.
31
GND, Ground untuk catu daya analog.
32
AREF, merupakan tegangan referensi analog untuk ADC.
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
20
BAB II LANDASAN TEORI
Port A, merupakan Port I/O 8-bit dua arah (bi-directional) dengan
33-40
resistor pull-up internal. Selain sebagai Port I/O 8-bit Port A juga
dapat berfungsi sebagai masukan 8 channel ADC 10-bit.
Berikut adalah Gambar dari konfigurasi masing-masing pin pada
Mikrokontroler ATmega16 :
Gambar 2.7 Konfigurasi Pin ATmega16 dalam Kemasan DIP-40
2.6
Konsep Analog To Digital Converter (ADC)
ADC adalah singkatan dari Analog To Digital Converter yang berfungsi
untuk mengubah input analog menjadi kode–kode digital. ADC banyak digunakan
sebagai pengatur proses industri, komunikasi digital dan rangkaian pengukuran
atau pengujian. Umumnya ADC digunakan sebagai perantara antara sensor yang
kebanyakan menghasilkan output berupa sinyal analog dengan sistem komputer
yang menggunakan sistem digital dalam hal ini mikrokontroler.
Dalam sistem ini dengan memanfaatkan ADC internal yang terdapat di
dalam ATmega 16 maka perangkat ADC eksternal tidak diperlukan.
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
21
BAB II LANDASAN TEORI
ADC (Analog to Digital
Converter) pada ATmega16 dibangun dari
successive approximation ADC yang mempunyai resolusi 10 bit. Didalam
ATmega16 terdapat 8 jalur masukan untuk ADC yang dapat diaktifkan semuanya.
tersebut dapat dikonfigurasi secara single ended input atau differential input.
ADC
Selain itu, ADC ATmega16 mempunyai keakurasian pembacaan mencapai +/- 2
LSB, maksimum kecepatan pengambilan sampel yaitu 15kSPS (15000 sampel per
detik), rentang kecepatan konversi satu jalur masukan ADC yaitu 13 – 260us dan
range tegangan masukan adalah 0V sampai VCC (5V).
Pada ADC modus single ended input nilai desimal hasil dari konversi
analog ke digital didapat dari persamaan berikut :
Keterangan : Vref
= Tegangan referensi (5V)
Vin
= Tegangan masukan
ADC
= Nilai desimal hasil konversi ADC
Sedangkan resolusi 1 LSB dari ADC dapat dihitung dengan persamaan
berikut :
Dimana n adalah n-bit resolusi ADC yang dgunakan, dalam sistem ini
ADC yang digunakan adalah ADC 10 bit (internal ADC mikrokontroler).
2.7
Bahasa Basic Menggunakan BASCOM
BASCOM AVR merupakan perangkat lunak untuk memprogram
hardware yang diimplementasikan pada mikrokontroller jenis AVR
2.7.1
Karakter dalam BASCOM
Dalam program BASCOM, karakter dasarnya terdiri atas karakter alphabet
(A-Z dan a-z), karakter numeric (0-9), dan karakter spesial. Adapun karakter yang
dimaksud ditunjukan pada tabel 2.3 berikut :
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
22
BAB II LANDASAN TEORI
Tabel 2.3 Karakter Spesial
2.7.2
Karakter
Nama
‘
*
+
,
.
/
:
“
;
<
=
Blank
Apostrophe
Asterisk (symbol perkalian)
Plus sign
Comma
Minus sign
Period (desimal point)
Slash (division symbol) will be handled as\
Colon
Double quotation mark
Semicolon
Less than
Equal sign ( assignment symbol or relational
operator)
>
\
Greater than
Backspace (integer or word division symbol)
Tipe Data
Setiap variabel dalam BASCOM memilki tipe data yang menunjukan daya
tampungnya. Hal ini berhubungan dengan penggunaan memori mikrokontroler.
Berikut adalah tipe data pada BASCOM berikut keterangannya.
Tabel 2.4 Tipe Data BASCOM
Tipe Data
Ukuran (byte)
Range
Bit
1/8
-
byte
1
0-255
Integer
2
-32,768 - +32,767
Word
2
0-65535
Long
4
-214783648 - +214783647
Single
4
1.5 x 10^–45 to 3.4 x 10^38
String
Hingga 254 byte
-
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
23
BAB II LANDASAN TEORI
2.7.3
Variabel
Varibel
adalah
sebuah
pemrograman
berfungsi
sebagai
tempat
penyimpanan data atau penampungan data sementara, misalnya menampung hasil
perhitungan,
menampung data hasil pembacaan register, dan lainnya. Variabel
merupakan pointer yang menunjukan pada
mikrokontroler.
alamat memori
fisik dan
Dalam BASCOM, ada beberapa aturan dalam penamaan sebuah variabel,
Nama
variabel maksimum terdiri atas 32 karakter.
a. Karakter biasa berupa angka atau huruf.
b. Nama variabel harus dimulai dengan huruf.
c. Variabel tidak boleh menggunakan kata-kata yang digunakan oleh
BASCOM sebagai perintah, pernyataan, internal register, dan nama
operator (AND, OR, DIM, dan lain-lain).
Sebelum digunakan, maka maka variabel harus dideklarasikan terlebih
dahulu. Dalam BASCOM, ada beberapa cara untuk mendeklarasikan sebuah
variabel. Cara pertama adalah menggunakan pernyataan „DIM‟ diikuti nama tipe
datanya.
2.7.4
Operasi-Operasi Dalam BASCOM
Pada bagian ini akan dibahas tentang cara menggabungkan, memodifikasi,
membandingkan, atau mendapatkan informasi tentang sebuah pernyataan dengan
menggunakan operator-operator yang tersedia di BASCOM dan bagaimana
sebuah pernyataan terbentuk dan dihasilkan dari operator-operator berikut :
a. Operator Aritmatika
Operator digunakan dalam perhitungan. Operator aritmatika meliputi +
(tambah), - (kurang), / (bagi), * (kali).
b. Operator Relasi
Operator berfungsi membandingkan nilai sebuah angka. Hasilnya dapat
digunakan untuk membuat keputusan sesuai dengan program yang kita
buat. Operator relasi dapat dilihat di Tabel 2.5.
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
24
BAB II LANDASAN TEORI
Tabel 2.5 Operator Relasi
Operator
Relasi
Pernyataan
=
Sama dengan
X=Y
<>
Tidak sama dengan
X <> Y
<
Lebih kecil dari
X<Y
>
Lebih besar dari
X>Y
<=
Lebih kecil atau sama dengan
X <= Y
>=
Lebih besar atau sama dengan
X >= Y
c. Operator Logika
Operator
ini
digunakan
untuk
menguji
sebuah
kondisi
atau
memanipulasi bit dan operasi bolean. Dalam BASCOM, ada empat
operator logika, yaitu AND, OR, NOT, dan XOR.
d. Operator Fungsi
Operator fungsi digunakan untuk melengkapi operator yang sederhana.
2.8
Sensor dan Transduser
Sensor adalah sebuah alat (device) yang digunakan untuk merubah suatu
besaran fisis tertentu menjadi besaran energi listrik sehingga dapat dianalisa
dengan rangkaian listrik tertentu. Sensor merupakan bagian dari transducer yang
berfungsi untuk merasakan dan menangkap atau “sensing” adanya perubahan
energi eksternal (berupa besaran-besaran fisis yang diukur) yang akan masuk ke
bagian input dari transducer, sehingga perubahan kapasitas energy yang ditangkap
segera dikirim kepada bagian konverter dari transducer untuk dirubah menjadi
energi listrik.
2.8.1 Sensor Kelembaban Udara HMZ-435CHS1
Sensor kelembaban HMZ-435CHS1 merupakan modul sensor suhu dan
kelembaban relative (Relative Humidity or RH) yang berbasis sensor HCZ dari
Ghitron Technologies. Modul ini dilengkapi dengan sirkuit terintegrasi yang akan
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
25
BAB II LANDASAN TEORI
memberikan keluaran berupa tegangan DC yang linear untuk kelembaban 10-95%
RH. Modul ini digunakan sebagai alat pengindra (sensing) suhu dan kelembaban
dalam berbagai aplikasi pengendali maupun pemantau (monitoring) suhu dan
kelembaban
relatif ruangan.
Gambar 2.8 Sensor Kelembaban HMZ-435CHS1
Spesifikasi dari sensor HMZ-435CHS1 ini adalah sebagai berikut:
1. Berbasis sensor suhu dan kelembaban relatif Ghitron HCZ.
2. Mengukur suhu dari 0°C hingga 60°C, dan kelembaban relatif dari
10%RH hingga 95%RH.
3. Memiliki akurasi pengukuran suhu hingga 0.2°C pada suhu 25°C dan
akurasi pengukuran kelembaban relatif hingga ±5%RH pada 25°C,
60%RH.
4. Membutuhkan catu daya +5V DC dengan konsumsi daya yang rendah
yaitu 2-5 mA.
2.8.2 Sensor Suhu LM35 DZ
Sensor suhu merupakan sensor yang berfungsi untuk mengubah besaran
fisis yang berupa suhu menjadi besaran elektris berupa tegangan DC. Salah satu
contohnya sensor suhu LM35. Sensor ini memiliki parameter bahwa setiap
kenaikan 1ºC tegangan keluarannya naik sebesar 10mV dengan batas maksimal
keluaran sensor adalah 1,5 V pada suhu 150°C. Misalnya pada perancangan
menggunakan sensor suhu LM35 kita tentukan keluaran adc mencapai full scale
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
26
BAB II LANDASAN TEORI
pada saat suhu 100°C, sehingga saat suhu 100°C tegangan keluaran transduser
(10mV/°C x 100°C) = 1V.
Gambar 2.9 Sensor Suhu LM35 DZ.
Berikut ini adalah spesifikasi dari sensor suhu LM35 DZ:

Memiliki sensitivitas suhu, dengan faktor skala linier antara tegangan dan
suhu 10 mVolt/ºC, sehingga dapat dikalibrasi langsung dalam celcius.

Memiliki ketepatan atau akurasi kalibrasi yaitu 0,5ºC pada suhu 25 ºC.

Memiliki jangkauan maksimal operasi suhu antara -55 ºC sampai +150 ºC.

Bekerja pada tegangan 4 sampai 30 volt.

Memiliki arus supply yang rendah yaitu kurang dari 60 µA.

Memiliki pemanasan sendiri yang rendah (low-heating) yaitu kurang dari
0,1 ºC pada udara diam.

Memiliki ketidaklinieran hanya sekitar ± ¼ ºC.
2.8.3 Sensor Cahaya LDR (Light Dependent Resistor)
Sensor cahaya adalah sensor yang digunakan untuk merubah besaran
cahaya menjadi besaran listrik. Prinsip kerja sensor ini yaitu mengubah energi
foton menjadi elektron. Salah satu sensor cahaya yang paling sering digunakan
yaitu
LDR
(Light
Dependent
Resistor)
dengan
memanfaatkan
bahan
semikonduktor yang karakteristik listriknya berubah-ubah sesuai dengan cahaya
yang diterima. Bahan yang digunakan adalah Kadmium Sulfida (CdS) dan
Kadmium Selenida (CdSe).
LDR bekerja berdasarkan jumlah intensitas cahaya yang diterima pada
permukaannya. LDR sama prinsip kerjanya seperti resistor namun nilainya dapat
berubah-ubah mengikuti cahaya yang diterima. Jika jumlah cahaya yang diterima
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
27
BAB II LANDASAN TEORI
banyak, maka nilai hambatannya akan mengecil, dan begitu pula sebaliknya jika
cahaya yang didapat sedikit, maka nilai hambatannya akan menjadi besar.
Gambar 2.10 Sensor Cahaya LDR
2.9
RTC (Real Time Clock) DS 1307
Real Time Clock merupakan suatu chip (IC) yang memiliki fungsi sebagai
penyimpan waktu, tanggal, bulan dan tahun yang sangat presisi. RTC umumnya
memiliki catu daya terpisah dari catu daya computer/kontroler (umumnya berupa
baterai litium) sehingga dapat tetap berfungsi ketika catu daya kontroler terputus.
Salah satu IC serial RTC yang sering digunakan yaitu RTC DS1307 dari
Dallas Semiconductor. IC ini memiliki interface serial two-wire, data dan alamat
ditransfer berurutan secara serial melalui dua kabel dan bidirectional bus. IC ini
dapat menyimpan informasi berupa detik, menit, jam, hari, tanggal, bulan, dan
informasi tahun. Akhir dari tanggal bulan secara otomatis disesuaikan selama
sebulan paling sedikit 31 hari, termasuk koreksi untuk tahun kabisat. Penunjukkan
waktu dapat beroperasi dalam format 12 jam atau 24 jam dengan AM/PM
indikator. DS1307 mempunyai suatu pendeteksi gangguan daya dan secara
otomatis menyuplai tegangan dari baterai apabila VCC lebih kecil dari VBattery.
Gambar 2.11 Real Time Clock DS1307
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
28
BAB II LANDASAN TEORI
2.10
Relay
Gambar 2.12 Relay
Relay merupakan suatu rangkaian switching magnetik yang akan
beroperasi apabila mendapat catu dari rangkaian pemicu ( Trigger ). Relay akan
bekerja pada saat tegangan dan arus nominalnya dapat terpenuhi oleh output
rangkaian drivernya. Pada konstruksi dalam suatu relay terdiri dari lilitan kawat
(coil) yang dililitkan pada inti besi lunak, jika lilitan kawat mendapatkan arus,
maka inti besi lunak akan menghasilkan medan magnet dan akan menarik kontak
saklar. Kontak saklar akan mengalami gaya tarik magnet sehingga berpindah
posisi ke kutub lain atau terlepas dari kutub asalnya. Keadaan ini akan bertahan
selama arus mengalir pada kumparan relay, dan relay akan kembali ke posisi
semula yaitu normally-off, bila tidak ada lagi arus yag mengalir pada lilitan
kawatnya. Penggunaan posisi awal relay tergantung dari sistem rangkaian yang
akan digunakan. Konfigurasi pin relay dapat dilihat pada gambar 2.13
Berikut ini terdapat beberapa jenis relay berdasarkan posisi awal ataupun
kerja dari relay tersebut dibedakan menjadi :
1. Normally Open (NO) ; saklar akan menutup apabila lilitan kawat (coil)
dialiri arus.
2. Normaly Close (NC) ; saklar akan membuka apabila lilitan kawat (coil)
dialiri arus.
3. Change Over (CO) ; relay ini mempunyai saklar tunggal yang
normalnya tertutup yang mana bila kumparan 1 dialiri arus maka saklar
akan terhubung ke terminal A, sebaliknya bila kumparan 2 dialiri arus
maka saklar akan terhubung ke terminal B.
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
29
BAB II LANDASAN TEORI
Normally Open
(NO)
Normally
Close (NC)
Coil Relay
Common
Gambar 2.13 Konfigurasi Pin Relay
2.11
LCD ( Liquid Crystal Display )
Liquid Crystal Display (LCD) merupakan salah satu alat untuk
menampilkan data atau informasi yang memiliki berbagai macam ukuran.
Meskipun LCD memiliki berbagai macam ukuran tetapi penggunaanya standar.
LCD terdiri 16 pin yang berisikan jalur data, jalur control, power dan Back Light.
Gambar 2.14 Display LCD 20 x 4
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
30
BAB II LANDASAN TEORI
LCD merupakan piranti yang berupa plat tipis yang terdiri dari kumpulan
pixel warna atau monokrom yang disimpan didepan reflector. Pada umumnya
LCD memiliki 16 pin yang terbagi atas jalur data, kontrol, power, dan backlight
terlihat pada konfigurasi pin dari LCD (lihat gambar 2.15)
seperti
LCD 20 * 4
VSS
VDD
VEE
RS
R/W
E
DB0
1
2
3
4
5
6
7
DB1 DB2 DB3 DB4 DB5 DB6 DB7 A(+) A(-)
8
9
10
11
12
13
14
15
16
Gambar 2.15 Konfigurasi Pin LCD 20 * 4
Untuk deskripsi masing-masing pin pada LCD dapat dilihat pada Tabel 2.6
berikut ini :
Tabel 2.6 Deskripsi Pin LCD 20 x 4
No. Pin
Simbol Level
Fungsi
1
VSS
GND
Ground
2
VCC
+5V
Tegangan Supply LCD
3
VEE
4
RS
H/L
Register Select, H = Baca, L = instruksi
5
R/W
H/L
Read/Write, H = baca, L = tulis
6
E
Pulsa L-H-L
Enable Signal
7
DB0
H/L
Data Bit 0
8
DB1
H/L
Data Bit 1
9
DB2
H/L
Data Bit 2
10
DB3
H/L
Data Bit 3
11
DB4
H/L
Data Bit 4
Pengaturan kontras LCD
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
31
BAB II LANDASAN TEORI
12
DB5
H/L
Data Bit 5
13
DB6
H/L
Data Bit 6
14
DB7
H/L
Data Bit 7
15
A(+)
+5V
Led Backlight(+)
16
A(-)
0V
Led Backlight(-)
2.12
Keypad
Keypad sesungguhnya terdiri dari sejumlah saklar, yang terhubung sebagai
baris dan kolom. Agar mikrokontroller dapat melakukan scan keypad, maka port
mengeluarkan salah satu bit dari 4 bit yang terhubung pada kolom dengan logika
low “0” dan selanjutnya membaca 4 bit pada baris untuk menguji jika ada tombol
yang ditekan pada kolom tersebut. Sebagai konsekuensi, selama tidak ada tombol
yang ditekan, maka mikrokontroller akan melihat sebagai logika high “1” pada
setiap pin yang terhubung ke baris.
Gambar 2.16 Keypad 4x4
Proses pengecekkan dari tombol yang dirangkai secara maktriks adalah
dengan teknik scanning, yaitu proses pengecekkan yang dilakukan dengan cara
memberikan umpan-data pada satu bagian dan mengecek feedback (umpan-balik)
pada bagian yang lain. Dalam hal ini, pemberian umpan-data dilakukan pada
bagian baris dan pengecekkan umpan-balik pada bagian kolom. Pada saat
pemberian umpan-data pada satu baris, maka baris yang lain harus dalam kondisi
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
32
BAB II LANDASAN TEORI
inversi-nya. Tombol yang ditekan dapat diketahui dengan melihat asal data dan di
kolom mana data tersebut terdeteksi:
0
1
1
1
1
0
1
1
Gambar 2.17 Scanning Keypad
Pada contoh di atas, tombol yang ditekan adalah tombol “2”. Seperti terlihat
bahwa Baris 1 bernilai nol, sedangkan Baris 2, Baris 3, dan Baris 4 adalah satu.
Kemudian dengan mengetahui bahwa asal data dari Baris 2, dan umpan-baliknya
terdeteksi pada Kolom 2, maka dapat disimpulkan bahwa tombol yang ditekan
adalah tombol “2”.
2.13
Pompa Pembuat Uap Air ( Humidifier )
Pompa ini berfungsi untuk menyemprotkan butiran air sehingga menjadi
uap air di udara yang mampu menjaga kestabilan dari tingkat kelembaban udara
sekitar. Pompa ini digerakkan oleh pompa AC yang akan menghisap air yang
terdapat pada bak penampungan dan kemudian akan disalurkan melalui pipa PVC
dan pada ujungnya ditempatkan suatu alat yang mampu memampatkan dan
memancarkan air dalam bentuk butiran-butiran kecil seperti embun, alat ini
disebut spuyer. Sedangkan untuk pompa penyiraman otomatis menggunakan
pompa akuarium yang memiliki daya hisap kecil, karena hanya digunakan untuk
proses penyiraman yang tidak membutuhkan tekanan dalam penyemprotannya.
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
33
BAB II LANDASAN TEORI
(A)
(B)
Gambar 2.18 Pompa Air Akuarium (A) , Pompa Air 220VAC (B)
Pompa Pembuat uap air pada sistem rumah kaca ini difungsikan untuk
membuat kadar uap air di udara tetap terjaga apabila tingkat kelembaban di udara
terlalu kering, air yang disemprotkan ke udara akan berubah menjadi uap air
ketika suhu di ruangan mulai naik.
2.14
Kipas Fan
Kipas merupakan alat yang dapat menghembuskan udara, sehingga
menghasilkan angin. Kipas digerakkan dengan motor listrik sederhana, yang
apabila diberi tegangan akan menginduksi lilitan kemudian bergerak karena
adanya fluks medan magnet.
Gambar 2.19 Kipas 12 VDC
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
34
BAB II LANDASAN TEORI
Kipas ventilasi pada sistem rumah kaca digunakan untuk mengeringkan
kadar uap air di udara apabila tingkat kelembaban di udara terlalu basah. Selain
itu, kipas tersebut juga berguna untuk sirkulasi udara dari luar ke dalam.
Sistem Kendali Pada Miniatur Rumah Kaca
Berbasis Mikrokontroler ATmega16
35
Download