Bagian 5 Integrasi Dalam bagian 5 Integrasi, kita akan mempelajari konsep dasar integrasi, teknik-teknik dasar integrasi, dan integral tertentu. Ada delapan teknik dasar yang akan dipelajari, yaitu metode u-substitusi, integral bagian, integral sin dan cos berpangkat, integral sec dan tan berpangkat, integral fungsi trigonometri, integral fungsi rasional, integral fungsi hiperbolis, dan integral dengan berbagai macam substitusi. Penguasaan teknik integrasi yang sempurna akan membantu Anda dalam mengikuti mata kuliah lain, yaitu Matematika II, Matematika III, Matematika IV, Analisa Struktur, dan Hidrolika. Kompetensi yang diharapkan setelah Anda menyelesaikan bagian 5 Integrasi adalah Anda akan mampu : 1. Menjelaskan kembali prinsip anti turunan 2. Menyelesaikan soal integral tak tentu dengan menggunakan delapan teknik dasar integrasi. 3. Menghitung integral tertentu. 5.1 Konsep Anti Turunan Isaac Newton (1669) mengemukakan permasalahan integrasi dalam De Analysi per Aequetiones Numero Terminorum Infinitas yang dipublikasikan tahun 1711. Leibniz menemukan tahun 1673 dan dipublikasikan 11 November 1675. Seperti telah dikemukan pada bagian sebelummnya, konsep integral dibangun dari permasalahan menghitung luas. Kita pandang suatu masalah: A’(x) = lim h →0 Matematika Teknik 1\Integrasi A( x + h) − A( x) h 70 Secara sederhana, pandang kasus dimana h > 0. Pembilang pada sisi kanan persamaan dibedakan atas dua luasan. Luasan antara a dan (x + h) dikurangi luasan antara a dan x. Jika dimisalkan c adalah titik tengah antara x dan (x + h) maka perbedaan luasan ini dapat diperkirakan dengan luasan segiempat dengan dasar h dan tinggi f(c). Jadi A( x + h) − A( x) f (c).h = h h Hal ini kelihatannya masuk akal, bahwa kesalahan dalam memprkirakan persamaan tersebut akan mendekati nol sebagaimana h→0 . Al’(x) A( x + h) − A( x) h h →0 f (c ) = lim h→0 h = lim Karena c adalah titik tengah antara x dan (x + h), hal tersebut menyatakan bahwa c→0 sebagaiman h→0. Tapi kita mempunyai asumsi f akan menjadi sebuah fungsi yang kontinu, jadi f(c)→f(x) sebagaimana c→x. Oleh karena itu: A1' (x) = lim h →0 f(c) = f(x) h Sebuah fungsi dinamakan anti turunan dari fungsi f dalam selang yang diberikan jika F’(x) = f(x) untuk semua nilai x pada interval tersebut. Contoh 5.1 Carilah antiturunan fungsi x2 Penyelesaian Fungsi-fungsi x3/2 + 1, x3/3 – π, x3/3 – C adalah anti turunan pada interval (-≈, +≈) untuk fungsi f(x) = x2. Contoh-contoh tersebut memperlihatkan bahwa sebuah fungsi dapat mempunyai banyak anti turunan. Dalam kenyataannya, jika F(x) adalah sembarang anti turunan f(x) dan C adalah sembarang konstanta, maka: F(x) + C adalah juga anti turunan fungsi f(x). Dengan kata lain setiap anti turunan f(x) pada suatu interval dinyatakan dalam bentuk seperti di atas dengan C adalah konstanta. Proses untuk mendapatkan anti turunan ini dinamakan antidifferensiasi atau integrasi yang biasanya ditulis sebagai berikut: ∫ f ( x) = F ( x) + C Matematika Teknik 1\Integrasi 71 ∫ adalah lambang integrasi, f(x) dinamakan integran, dan C konstanta Pernyataan di atas dibaca: Integrasi tak tentu f(x) sama dengan F(x) + C. Rumus-rumus Integral Tak Tentu Rumus Differensiasi d [x] = 1 dx d ⎡ x r +1 ⎤ ⎥ = xr ⎢ dx ⎢ r + 1 ⎥ ⎦ ⎣ d [sin( x)] = cos x dx d [− cos( x)] = sin( x) dx d [tan( x)] = sec 2 ( x) dx d [− cot g ( x)] = cos ec 2 ( x) dx d [sec( x)] = sec( x). tan( x) dx d [− cos ec( x)] = cos ec( x). cot g ( x) dx Rumus Integrasi ∫ dx = x + C x r +1 r ∫ x dx = r + 1 + C ∫ cos( x)dx = sin( x) + C ∫ sin( x)dx = sin( x) + C ∫ sec 2 ( x)dx = tan( x) + C ∫ cos ec 2 ( x)dx = − cot g ( x) + C ∫ sec( x). tan( x)dx = sec( x) + C ∫ cos ec( x). cot g ( x)dx = − cos ec( x) + C Integrasi tak tentu mempunyai sifat-sifat: ∫ C. f ( x)dx = C ∫ f ( x).dx ∫ [ f ( x) ± g ( x)]dx = ∫ f ( x).dx ± ∫ g ( x)dx Contoh 5.2 Evaluasi x 3 .dx dan ∫ ∫ .dx Penyelesaian: 1 ∫ x .dx = 4 x ∫ .dx = x + C 3 4 +C Bentuk lain integrasi dapat dinyatakan sebagai berikut. ∫ f (t ).dt = F (t ) + C Matematika Teknik 1\Integrasi 72 Contoh 5.3 Evaluasi 1 ∫x 3 .dx Penyelesaian: 1 ∫ x 3 .dx −3 ∫ x .dx = 1 x −3+1 x −2 +C = +C = − 2 +C − 3 +1 −2 2x Contoh 5.4 Evaluasi ( x 3 + x 2 + 1).dx ∫ Penyelesaian: ∫ (x 3 + 5 x 2 + 1).dx = ∫ x 3 .dx + 5∫ x 2 .dx + ∫ 1.dx ⎛1 ⎞ ⎛ 1 ⎞ = ⎜ x 4 + C ⎟ + ⎜ 5. x 3 + C ⎟ + ( x + C ) ⎝4 ⎠ ⎝ 3 ⎠ 1 4 5 3 = x + x + x+C 4 3 Latihan Soal 5.1 Setelah Anda selesai mempelajari materi di atas, kini saatnya untuk melatih diri mengerjakan soal-soal berikut. Buatlah penyelesaian setiap soal dengan sistematis untuk mendapatkan jawaban akhir yang benar. Selamat berlatih...!!! Evaluasi integrasi di bawah ini. ∫ x .dx 3. ∫ x .dx 5. ∫ (u − 3u + 7).du 1. 6 5/9 3 7. sin 2 x ∫ cos x .dx 1 ∫ x .dx 4. ∫ x . x .dx 6. ∫ sec x(sec x + tan x).dx 2. 7 3 8. ⎛ 1 − 2t 3 ⎞ ∫ ⎜⎜⎝ t 3 ⎟⎟⎠.dt 5.2 Integrasi U-substitusi Integrasi u-substitusi merupakan teknik yang paling mudah dalam menyelesaikan persoalan integral. Kita memilih fungsi permisalan u dari sebuah integran. Jika fungsi u sudah dipilih, selanjutnya semua unsur yang mengandung nilai x kita gantikan dengan nilai u. Langkah-langkah penyelesaian teknik integrasi u-substitusi adalah: a. Pilih fungsi yang diganti, misalkan u = g(x) b. Hitung du/dx = g’(x) c. Buat substitusi u = g(x) dan du = g’(x)dx Matematika Teknik 1\Integrasi 73 d. Evaluasi proses integrasi e. Gantikan u oleh g(x) untuk jawaban akhir dalam x. Contoh 5.5 ∫ (x Evaluasi 2 + 1)50 2 xdx Penyelesaian : ∫ (x ∫ (x 2 + 1)50 2 xdx 2 u = x2 + 1 misal : du = 2x dx ) 50 + 1 2xdx 50 = ∫u = u15 +C 51 = (x 2 .du ) +1 51 51 +C Contoh 5.6 Evaluasi Sin (x + 9 ).dx ∫ Penyelesaian : ∫ Sin (x + 9).dx ∫ Sin (x + 9).dx misalkan : u=x+9 du = dx = = = ∫ Sin(u).du - Cos (u) + C - Cos (x + 9) + C Contoh 5.7 Evaluasi ∫ Cos x .dx x Penyelesaian : ∫ Cos x .dx x misalkan : u = √x 2du = ∫ Cos x .dx x Matematika Teknik 1\Integrasi = ∫ Cos(u).2du = = 2Sin(u) + C 2Sin √x + C 1 dx x 74 Latihan Soal 5.2 Setelah Anda selesai mempelajari materi di atas, kini saatnya untuk melatih diri mengerjakan soal-soal berikut. Buatlah penyelesaian setiap soal dengan sistematis untuk mendapatkan jawaban akhir yang benar. Selamat berlatih...!!! Selesaikan soal integral di bawah ini dengan menggunakan teknik integral usubstitusi. 1. ∫ 1 x sin x .dx ∫ (2 x + 7)( x + 7 x + 5) 3. ∫ x 1 + 2 x .dx 2 2. 4/5 3x 2. ∫ 6. ∫ (1 − 3x) .dx 4x 2 + 5 4. ∫ x 2 1 + x .dx .dx 2 1 2 .dx 5.3 Integrasi Bagian Teknik integrasi bagian umumnya dilakukan jika kita menjumpai integran terdiri dari dua fungsi yang berbeda. Untuk integran yang terdiri dari dua buah fungsi, ada bagian integran yang dimisalkan sebagai fungsi u=g(x) dan unsur yang lain dimisalkan sebagai dv. Rumus umum untuk menyelesaikan soal integrasi bagian adalah: ∫ u.dv = u.v − ∫ v.du Dalam hal ini kita harus hati-hati menentukan mana fungsi permisalan u dan mana bagian yang merupakan dv. Contoh 5.8 Evaluasi ∫ e .Cos(x).dx x Penyelesaian: ∫ e .Cos(x).dx misal u = ex ∫ e .Cos(x).dx = ∫ u.dv x x dv = Cos (x) dx du = ex dx v = Sin (x) ∫ = u.v − v.du = e .Sin( x ) − ∫ Sin( x).e x .dx x misal u = dv = Sin (x).dx [ du = ex dx v = -Cos (x) = e x . sin x − e x . − cos x − ∫ − Cos( x).e x .dx Matematika Teknik 1\Integrasi ] 75 ∫ e .Cos(x).dx x = 0,5ex.Sin (x) + 0,5ex.Cos (x) + C Contoh 5.9 Evaluasi ∫ x.e x .dx Penyelesaian: ∫ x.e x .dx misal: u = x du = dx x dv = e .dx ∫ x.e x .dx v = ex = ∫ u.dv = u.v − ∫ v.du = x.e x − ∫ e x .dx = x.e x − e x + C Berdasarkan dua contoh di atas, dapat dibuat kesimpulan, bahwa penyelesaian soal integral dengan menggunakan teknik integrasi bagian akan menjumpai 3 (tiga) kemungkinan jawaban, yaitu: 1. Jika integral hasil ( v.du ) lebih sederhana dari integral soal ( u.dv ), ∫ ∫ maka permisalan fungsi u dan dv sudah betul. Penyelesaian dapat diteruskan untuk mendapatkan jawaban akhir. ∫ ∫ ∫ ∫ 2. Jika integral hasil ( v.du ) setara dengan integral soal ( u.dv ), maka permisalan fungsi u dan dv sudah betul. Penyelesaian dapat diteruskan untuk mendapatkan jawaban akhir. Pada langkah selanjutnya akan ada hasil integrasi yang digabungkan dengan soal. 3. Jika integral hasil ( v.du ) lebih rumit dari integral soal ( u.dv ), maka permisalan fungsi u dan dv salah. Gantilah permisalan fungsi u dan dv untuk mendapatkan penyelesaian yang benar. Untuk bentuk soal seperti contoh 5.9 dengan xn, dapat digunakan rumus reduksi: ∫x n e x .dx = x n e x − n ∫ x n −1e x .dx Latihan Soal 5.3 Setelah Anda selesai mempelajari materi di atas, kini saatnya untuk melatih diri mengerjakan soal-soal berikut. Buatlah penyelesaian setiap soal dengan sistematis untuk mendapatkan jawaban akhir yang benar. Selamat berlatih...!!! Evaluasi integral berikut dengan menggunakan teknik integral bagian. 1. xe − x .dx 2. x 2 e −2 x .dx ∫ 3. ∫ x ln x.dx Matematika Teknik 1\Integrasi ∫ 4. ∫ x sin x.dx 76 ∫ x sin 4 x.dx 7. ∫ x sin x.dx ∫ ln(2 x + 3).dx 8. ∫ sin(ln x).dx 5. 6. 2 5.4 Integrasi Sin dan Cos Berpangkat Teknik integrasi sin dan cos berpangkat digunakan untuk menyelesaian persoalan integrasi fungsi sinus dan cosinus berpangkat banyak yang mempunyai bentuk sin n x.dx , cos n x.dx , dan sin m x. cos n x.dx . Dalam hal ∫ ∫ ∫ membuat penyelesaian, kita kadang-kadang memerlukan bantuan persamaan identitas trigonometri. 1 (1 − cos(2 x)) 2 sin 2 ( x) = cos 2 ( x) = 1 (1 + cos(2 x)) 2 Contoh 5.10 Evaluasi ∫ Sin x.dx Penyelesaian: ∫ Sin x.dx 4 4 [ ] 2 = ∫ Sin 2 x .dx 2 ⎤ ⎡1 = ∫ ⎢ (1 − Cos ( x))⎥ .dx ⎦ ⎣2 1 = ∫ 1 − 2Cos (2 x) + Cos 2 (2 x) .dx 4 1 1 1 ⎛ ⎞ = ∫ ⎜1 − 2Cos (2 x) + + Cos (4 x) ⎟.dx 2 2 4 ⎝ ⎠ 1 3 1 = x − Sin(2 x) + Sin(4 x) + C 32 8 4 ( ) Untuk fungsi sinus dan cosinus yang berpangkat lebih banyak, penyelesaian tidak menjadi sederhana lagi. Untuk memudahkan dalam mencari jawaban, kita menggunakan formula reduksi. ∫ sin n ∫ cos n 1 n −1 sin n − 2 x.dx x.dx = − sin n −1 x. cos x + n ∫ n 1 n −1 cos n − 2 x.dx x.dx = cos n −1 x. sin x + ∫ n n Untuk persoalan integral yang dinyatakan dalam bentuk ∫ sin m x. cos n x.dx , prosedur penyelesaian sangat bergantung kepada nilai m dan nilai n. Tabel di bawah ini memperlihatkan kepada Anda tentang langkah-langkah penyelesaian. Matematika Teknik 1\Integrasi 77 Kondisi Langkah penyelesaian Jika n ganjil Jika m ganjil Jika n dan m genap • Pisahkan faktor cos x • Gunakan persamaan identitas yang sesuai • Buatlah permisalan u = sin x • Pisahkan faktor sin x • Gunakan persamaan identitas yang sesuai • Buatlah permisalan u = cos x • Gunakan persamaan identitas yang sesuai untuk mengurangi pangkat sin dan cos. • Sederhanakan persoalan dengan menggunakan formula reduksi Persamaan identitas cos 2 x = 1 − sin 2 x sin 2 x = 1 − cos 2 x (1 − cos(2 x) ) x = 12 (1 + cos(2 x) ) sin 2 x = cos 2 1 2 Contoh 5.11 Evaluasi sin 4 x cos 5 x.dx ∫ Penyelesaian: ∫ sin 4 ∫ sin 4 x cos 5 x.dx n bernilai 5 (ganjil), jadi penyelesaian menggunakan alternatif satu. x cos 5 x.dx = ∫ sin 4 x(1 − sin 2 x) 2 cos x.dx = ∫ u 4 (1 − u 2 ) 2 .du = ∫ (u 4 − 2u 6 + u 8 ).du 1 2 1 = u5 − u7 + u9 + C 5 7 9 1 2 1 = sin 5 x − sin 7 x + sin 9 x + C 5 7 9 Latihan Soal 5.4 Setelah Anda selesai mempelajari materi di atas, kini saatnya untuk melatih diri mengerjakan soal-soal berikut. Buatlah penyelesaian setiap soal dengan sistematis untuk mendapatkan jawaban akhir yang benar. Selamat berlatih...!!! Evaluasi integral berikut dengan menggunakan teknik integral sin dan cos berpangkat. 1. cos 5 x sin x.dx 2. cos 2 3 x.dx ∫ 3. ∫ cos x sin x.dx 5. ∫ sin ax cos ax.dx 2 Matematika Teknik 1\Integrasi 2 ∫ 4. ∫ sin x cos x.dx 6. ∫ sin x cos 2 x.dx 4 3 78 5.5 Integrasi Tan dan Sec Berpangkat Teknik integrasi tan dan sec berpangkat digunakan untuk menyelesaian persoalan integrasi fungsi tangen dan secant berpangkat banyak yang mempunyai bentuk tan n x.dx , sec n x.dx , dan tan m x. sec n x.dx . Dalam ∫ ∫ ∫ membuat penyelesaian, kita kadang-kadang memerlukan bantuan persamaan identitas trigonometri tan 2 ( x) = sec 2 ( x) − 1 . Untuk fungsi tangen dan secant yang berpangkat lebih banyak, penyelesaian tidak menjadi sederhana lagi. Untuk memudahkan dalam mencari jawaban, kita menggunakan formula reduksi. sec n − 2 x. tan x n − 2 n−2 ∫ sec x.dx = n − 1 + n − 1 ∫ sec x.dx n n ∫ tan x.dx = tan n −1 x − ∫ tan n − 2 x.dx n −1 Contoh 5.12 Evaluasi sec 3 x.dx ∫ Penyelesaian: ∫ sec ∫ sec 3 x.dx n bernilai 3 3 x.dx = sec x tan x 1 + ∫ sec x.dx 2 2 1 1 = sec x tan x + ln sec x + tan x + C 2 2 Contoh 5.13 Evaluasi ∫ tan 5 x.dx Penyelesaian: 5 ∫ tan x.dx tan 4 x − ∫ tan 3 x.dx 4 tan 4 x ⎡ tan 2 x ⎤ = −⎢ − ∫ tan x.dx ⎥ 4 ⎣ 2 ⎦ 4 2 tan x tan x = − + ln sec x + C 4 2 = Untuk persoalan integral yang dinyatakan dalam bentuk ∫ tan m x. sec n x.dx , prosedur penyelesaian sangat bergantung kepada nilai m dan nilai n. Tabel di Matematika Teknik 1\Integrasi 79 bawah ini memperlihatkan penyelesaian. Kondisi kepada Anda tentang Persamaan identitas Langkah penyelesaian Jika n genap Jika m ganjil Jika m genap dan n ganjil langkah-langkah • Pisahkan faktor sec2 x • Gunakan persamaan identitas yang sesuai • Buatlah permisalan u = tan x • Pisahkan faktor sec x tan x • Gunakan persamaan identitas yang sesuai • Buatlah permisalan u = sec x • Gunakan persamaan identitas yang sesuai untuk mengurangi pangkat sec x • Sederhanakan persoalan dengan menggunakan formula reduksi sec 2 x = tan 2 x + 1 tan 2 x = sec 2 x − 1 tan 2 x = sec 2 x − 1 Contoh 5.14 Evaluasi ∫ tan 2 ( x). sec 4 ( x).dx Penyelesaian : ∫ tan 2 ( x). sec 4 ( x).dx = ∫ tan 2 ( x). sec 2 ( x). sec 2 ( x).dx = ∫ tan 2 ( x).(tan 2 ( x) + 1)sec 2 ( x).dx misalkan : u = tan (x) du = sec2 (x) dx = ∫ u 2 (u 2 + 1).du 1 1 = u5 + u3 + C 5 3 1 1 = Tan 5 ( x) + Tan 3 ( x) + C 5 3 Latihan Soal 5.5 Setelah Anda selesai mempelajari materi di atas, kini saatnya untuk melatih diri mengerjakan soal-soal berikut. Buatlah penyelesaian setiap soal dengan sistematis untuk mendapatkan jawaban akhir yang benar. Selamat berlatih...!!! Evaluasi integral berikut dengan menggunakan teknik integral tangen dan secant berpangkat. 1. sec 2 (3 x + 1).dx 2. tan 2 x sec 2 x.dx ∫ 2. ∫ tan 5 4 x sec x.dx Matematika Teknik 1\Integrasi ∫ 4. ∫ sec 5 x tan 3 x.dx 80 5. ∫ tan 5 x sec x.dx 6. ∫ tan 4 sec x.dx 5.6 Integrasi Substitusi Trigonometri Pada bagian ini kita akan memperlihatkan bagaimana mengevaluasi integral yang integrannya dinyatakan dalam bentuk: (a 2 − x2 ) (a 2 + x2 ) (x − a2 2 ) dengan membuat substitusi dari fungsi trigonometri. Tabel di bawah ini akan membantu Anda dalam mempelajari bagian ini. Ungkapan Integral (a (a (x 2 2 2 − x2 ) + x2 ) − a2 ) Substitusi Pembatasan θ Identitas Trigonometri x = a Sin θ -π/2 < θ < π/2 a2 – a2 Sin2θ = a2Cos2θ x = a Tan θ -π/2 < θ < π/2 a2 + a2 Tan2θ = a2Sec2θ x = a Sec θ 0 < θ < π/2 if x > a π < θ < 3π/2 if x <-a a2 Sec2θ - a2 = a2Tan2θ Contoh 5.15 Evaluasi integrasi ∫x dx (4 − x 2 ) 2 Penyelesaian: ∫x ∫x dx 2 (4 − x 2 ) dx 2 (4 − x ) 2 x = 2 Sin θ misalkan : =∫ =∫ 2cosθ .dθ (2Sin(θ ) )2 (4 − 4Sin 2 dx = 2 Cos θ dθ (θ ) ) 2Cos (θ )dθ (2Sin(θ ) )2 (2Cos (θ ) ) = ∫ Csc 2 θ.dθ (4 − x ) + C 2 = 4x Contoh 5.16 Evaluasi integral ∫ (x dx 2 + a2 ) Penyelesaian: Matematika Teknik 1\Integrasi 81 ∫ (x ∫ (x dx 2 +a 2 ) dx 2 + a2 ) x = a Tan θ …. dx = a Sec2 θ dθ misalkan : =∫ =∫ aSec 2 (θ ).dθ (aTan(θ ) )2 + a 2 aSec 2θ .dθ ( ) a 2 Tan 2 (θ ) + 1 = ∫ Sec(θ ).dθ = ln | Sec(θ) + Tan (θ) | + C’ = ln | (x + a ) + x | + C 2 Latihan Soal 5.6 Setelah Anda selesai mempelajari materi di atas, kini saatnya untuk melatih diri mengerjakan soal-soal berikut. Buatlah penyelesaian setiap soal dengan sistematis untuk mendapatkan jawaban akhir yang benar. Selamat berlatih...!!! Evaluasi integral di bawah ini dengan menggunakan teknik integrasi substitusi trigonometri. 1. ∫ 3. ∫x 5. ∫x 4 − x 2 dx dx 2 16 − x 2 dx 2 16 − x 2 2. ∫ 4. ∫x 6. ∫x x2 9 − 3x 2 dx dx 2 x 2 + 25 dx 2 x 2 + 25 5.7 Integrasi Fungsi Rasional Ada dua macam bentuk persamaan rasional yang harus diperhatikan dalam menyelesaikan persoalan integrasi, yaitu persamaan fungsi rasional dengan faktor linier dan persamaan fungsi rasional dengan faktor kuadrat. Faktor Linier, bentuk : (ax + b)m Untuk fungsi rasional yang faktor-faktornya linier, maka pecahan dari faktor tersebut ditulis dalam bentuk: Am A1 A2 A3 + + + ...... + 2 3 (ax + b ) (ax + b) (ax + b) (ax + b) m Matematika Teknik 1\Integrasi 82 Contoh 5.17 Evaluasi ∫x 2 dx +x−2 Penyelesaian: ∫x 2 dx +x−2 Integran dapat juga ditulis dalam bentuk berikut : 1 1 A B + = = x + x − 2 ( x + 2)( x − 1) ( x − 1) ( x + 2) 2 Bilangan A dan B yang kita cari : 1 = (x + 2)A + (x – 1)B ………….. A = 1/3 dan B = -1/3 Sehingga soal dapat ditulis menjadi : ∫x 2 dx +x−2 = B A ∫ x − 1 dx + ∫ x + 2 dx 1 dx 1 dx − 3 ∫ x −1 3 ∫ x + 2 1 x −1 = ln +C 3 x+2 = Contoh 5.18 Evaluasi 2x + 4 dx 3 − 2x 2 ∫x Penyelesaian: 2x + 4 dx 3 − 2x 2 ∫x Integran dapat ditulis menjadi: 2x + 4 2x + 4 A B C = 2 = + 2+ 3 2 x − 2x x−2 x ( x − 2) x x 2x + 4 = Ax(x – 2) + B(x -2) + Cx2 2x + 4 = (A + C)x2 + (-2A + B)x – 2C …… A = -2 B = -2 C = 2 Sehingga soal dapat ditulis menjadi : 2x + 4 dx 3 − 2x 2 ∫x Matematika Teknik 1\Integrasi dx dx dx − ∫ 2 + 2∫ x−2 x x 2 = 2 ln | x | + + 2 ln | x − 2 | + C x = −2 ∫ 83 = 2 x−2 + 2 ln +C x x Faktor kuadrat, bentuk : (ax2 + bx + c)m Untuk fungsi rasional yang faktor-faktornya kuadrat, maka pecahan dari faktor tersebut ditulis dalam bentuk: A1x + B1 (ax 2 + bx + c + A 2 x + B2 ) (ax 1 2 + bx + c ) 2 + A m x + Bm A 3 x + B3 + ....... + m 2 3 (ax + bx + c) ax 2 + bx + c ( ) Contoh 5.19 Selesaikan x2 + x − 2 ∫ 3x 3 − x 2 + 3x − 1 dx Penyelesaian : x2 + x − 2 ∫ 3x 3 − x 2 + 3x − 1 dx Integran dapat ditulis dalam bentuk : x2 + x − 2 x2 + x − 2 A Bx + C = + 2 = 3 2 2 3x − x + 3x − 1 (3x − 1)( x + 1) 3x − 1 x + 1 x2 + x -2 = A(x2 +1) + (Bx + C)(3x – 1) = (A + 3B)x2 + (-B + 3C)x + (A – C) diperoleh A = -7/5 B = 4/5 C = 3/5 Sehingga soal dapat ditulis menjadi: 4 x+3 x2 + x − 2 7 dx 5 5 dx = dx − + 2 ∫ 3x 3 − x 2 + 3x − 1 ∫ ∫ 5 3x − 1 x +1 3 2 7 = − ln | 3x − 1 | + ln x 2 + 1 + Tan −1 ( x ) + C 5 5 15 ( ) Catatan: Fungsi rasional dengan pangkat penyebut lebih besar dari pangkat pembilang dinamakan fungsi rasional yang tidak umum (inproper rational functions). Integrasi dapat dilakukan dengan cara membagi penyebut dengan pembilang terlebih dahulu baru dilakukan proses pengintegralan. Latihan Soal 5.7 Setelah Anda selesai mempelajari materi di atas, kini saatnya untuk melatih diri mengerjakan soal-soal berikut. Buatlah penyelesaian setiap soal dengan sistematis untuk mendapatkan jawaban akhir yang benar. Selamat berlatih...!!! Matematika Teknik 1\Integrasi 84 Evaluasi integral di bawah ini dengan menggunakan teknik integrasi fungsi rasional. 5x − 4 dx 2 − 4x 2x 2 − 2x − 1 4. ∫ dx x3 − x2 3x − 1 6. ∫ dx ( x − 2)( x + 5) dx + 3x − 4 11x + 17 3. ∫ 2 dx 2x + 7 x − 4 dx 5. ∫ ( x − 1)( x + 2)( x − 3) 1. ∫x 2. 2 ∫x 5.8 Integrasi Dengan Bermacam-macam Substitusi Integrasi dengan bermacam-macam substitusi tidak terlalu relevan dengan materi terdahulu. Hal itu disebabkan teknik integrasi yang dilakukan bersifat coba-coba dan tidak ada cara khusus. Setiap persoalan dipandang secara terpisah. Dengan kata lain tidak ada aturan penyelesaian yang baku. Integral yang menyangkut nilai x berpangkat rasional dapat disederhana kan dengan mengganti u = x(1/n) Contoh 5.20 Evaluasi ∫1+ x 3 x dx Penyelesaian : ∫1+ x 3 x misalkan u = x1/6 dx x = u6 dx = 6u5 Sehingga soal dapat diubah menjadi : ∫1+ 3 (u ) = ∫ 1 + (u ) 6 1/ 2 x x dx 6 1/ 3 6u 5du u8 ∫ 1 + u 2 du 6 6 = x 7 / 6 − x 5 / 6 + 2 x1 / 2 − 6 x1 / 6 + 6Tan −1 ( x1 / 6 ) + C 5 7 = 6 Contoh 5.21 Evaluasi ∫ 1 + e x dx Penyelesaian: ∫ 1 + e x dx Matematika Teknik 1\Integrasi dimisalkan u = 1 + e x ......e x = u 2 − 1.....x = ln(u 2 − 1) 85 dx 2u 2u = 2 du ..........dx = 2 du u − 1 u −1 Sehingga soal menjadi: ∫ ⎛ 2u ⎞ = ∫ u⎜ 2 ⎟du ⎝ u −1⎠ ⎛ 2u 2 ⎞ ⎟⎟du = ∫ ⎜⎜ 2 ⎝ u −1⎠ 1 + e x dx 2 ⎞ ⎛ = ∫⎜2 + 2 ⎟du u −1⎠ ⎝ 1 ⎞ ⎛ 1 = 2u + ∫ ⎜ − ⎟du ⎝ u −1 u + 1⎠ = 2u + ln u − 1 − ln u + 1 + C ⎡ 1 + e x − 1⎤ = 2 1 + e x + ln ⎢ ⎥+C x ⎣⎢ 1 + e + 1⎦⎥ Latihan Soal 5.8 Setelah Anda selesai mempelajari materi di atas, kini saatnya untuk melatih diri mengerjakan soal-soal berikut. Buatlah penyelesaian setiap soal dengan sistematis untuk mendapatkan jawaban akhir yang benar. Selamat berlatih...!!! Evaluasi integral di bawah ini. 1. ∫x 3. ∫ 3+ 5. x − 2 .dx 1 ∫ x 2. .dx 1 x +3 x x ∫ x + 9 .dx ∫ x .dx x +1 dx 6. ∫ x − x3/ 5 4. .dx 5.9 Integrasi Fungsi Hiperbolis Teknik integrasi fungsi hiperbolis digunakan untuk menyelesaikan persoalan integral dimana integrannya dinyatakan oleh fungsi hiperbolis. Rumus-rumus dasar yang digunakan untuk mengevaluasi persoalan integral adalah: 1. 2. 3. 4. ∫ Sinh (u).du ∫ Cosh (u).du ∫ Tanh (u).du ∫ Cosh (u).du Matematika Teknik 1\Integrasi = Cosh (u) + C = Sinh (u) + C = ln | Cosh (u) | + C = ln | Sinh (u) | + C 86 ∫ Sech (u ).du = ∫ Csch (u ).du = ∫ Sech(u).Tanh (u ).du ∫ Csch (u).Cotgh (u ).du 5. 6. 7. 8. 9. ∫ 10. ∫ 11. ∫ 12. ∫ 2 Tanh (u) + C 2 - Cotgh (u) + C du u2 + a2 du u −a du 2 = -Sech (u) + C = - Csch(u) + C = Sinh-1 ⎜ a ⎟ + C = 2 = a2 − u2 du = u2 − a2 ⎛u⎞ ⎝ ⎠ ⎛u⎞ u>a>0 Cosh −1 ⎜ ⎟ + C ⎝a⎠ 1 ⎛u⎞ Tanh −1 ⎜ ⎟ + C u 2 < a2 a ⎝a⎠ 1 ⎛u⎞ − Cotgh −1 ⎜ ⎟ + C u2 > a2 a ⎝a⎠ Contoh 5.22 Evaluasi tanh x.dx ∫ Penyelesaian: ∫ tanh x.dx = sinh x ∫ cosh x .dx Dimisalkan u = cosh x…du = sinh x dx sinh x ∫ cosh x .dx = ln cosh x + C Latihan Soal 5.9 Setelah Anda selesai mempelajari materi di atas, kini saatnya untuk melatih diri mengerjakan soal-soal berikut. Buatlah penyelesaian setiap soal dengan sistematis untuk mendapatkan jawaban akhir yang benar. Selamat berlatih...!!! Evaluasi integral di bawah ini. ∫ cosh(2 x − 3).dx 2. ∫ sinh x cosh x.dx 1. 6 Matematika Teknik 1\Integrasi 87 5.10 Integral Tertentu Fungsi Kontinu Dengan Nilai Tidak Negatif sb. y (xk , f(xk)) y = f(x) sb. x Jika fungsi f(x) adalah kontinu pada selang [a , b] dan jika f(x) > 0 untuk semua nilai x pada [a , b] maka luas (Area) di bawah kurva y = f(x) dan di atas selang [a , b] didefinisikan : A = lim max .Δx k → 0 n ∑ f (x k =1 k ).Δx k Definisi di atas jika ditulis: lim max .Δx k → 0 n b k =1 a ∑ f (x k ).Δx k = ∫ f (x ).dx Pernyataan pada sisi kanan dari persamaan dinamakan integral tertentu fungsi f(x) dari a ke b. Bilangan a dan b disebut batas atas dan batas bawah integral. Contoh 5.23 4 Hitunglah integral ∫ ( x − 1)dx 2 Penyelesaian : 4 4 4 2 2 2 ∫ (x − 1)dx = ∫ x.dx − ∫ dx = 6 − 2 = 4 sb. y f(x) = x - 1 sb. x Matematika Teknik 1\Integrasi 88 Fungsi Kontinu Dengan Nilai Positif dan Negatif x3 a x1 x4 x2 x… xn b sb. x Jika fungsi f(x) adalah kontinu pada selang [a , b] dan dapat diasumsikan keduanya bernilai positif dan negatif, maka luas sebenarnya (net signet area) A antara y = f(x) dan selang [a , b] didefinisikan : lim max .Δx k → 0 b n ∑ f (x k =1 k ).Δx k = ∫ f ( x ).dx a Luas sebenarnya antara y = f(x) dan [a , b] dapat bernilai positif, negatif atau kosong. Contoh 5.24 Hitunglah integral pada contoh 5.23 dengan syarat batas bawah dan atas masing-masing x = 0 dan x = 2 Penyelesaian : Perhatikan gambar pada Contoh 5.23 2 2 2 0 0 0 ∫ (x − 1)dx = ∫ x.dx − ∫ dx = 2 − 2 = 0 Sifat-sifat Integral Tertentu a a. ∫ f (x ).dx = 0 a b. c. b a a b ∫ f (x ).dx = −∫ f (x ).dx b a a b ∫ C.f (x ).dx = C.∫ f (x ).dx b d. a ∫ [f (x ) ± g(x )].dx = − ∫ f (x ).dx ± ∫ g(x ).dx a e. b b a b c b a a c ∫ f (x ).dx = ∫ f (x ).dx + ∫ f (x ).dx Matematika Teknik 1\Integrasi 89 Latihan Soal 5.10 Setelah Anda selesai mempelajari materi di atas, kini saatnya untuk melatih diri mengerjakan soal-soal berikut. Buatlah penyelesaian setiap soal dengan sistematis untuk mendapatkan jawaban akhir yang benar. Selamat berlatih...!!! Hitunglah integral di bawah ini dan buatlah sketsa gambarnya. 4 1. ∫ x dx 1 2 2. ∫ 2 xdx 1 0 3. ∫x 2 sin x dx 2 π 4. ∫ cos x.dx 0 Matematika Teknik 1\Integrasi 90