PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI PROPOSAL TUGAS AKHIR PENENTUAN JENIS GOLONGAN DARAH MANUSIA BERBASIS MIKROKONTROLER AT-Mega 8535 Oleh: STURMIUS THEOFANUS LERING NIM : 065114026 PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS SANATA DHARMA YOGYAKARTA 2013 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI FINAL PROJECT PROPOSAL DETERMINATION OF HUMAN BLOOD GROUP BASED ON MICROCONTROLLER AT-Mega 8535 STURMIUS THEOFANUS LERING NIM : 065114026 ELECTRICAL ENGINEERING STUDY PROGRAM SCIENCE AND TECHNOLOGY FACULTY SANATA DHARMA UNIVERSITY YOGYAKARTA 2013 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI HALAMAN PERSEMBAHAN DAN MOTTO HIDUP “Kadang dari hal negatif kita dapat belajar banyak hal tentang kehidupan” vi PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI INTISARI Pemeriksaan darah mutlak dilakukan karena darah berperan penting dalam tubuh manusia. Jika dari hasil pemeriksaan diketahui adanya penurunan jumlah hemoglobin dari yang semestinya, maka transfusi darah perlu dilakukan. Transfusi hanya bisa dilakukan bila golongan darah antara penerima dan pendonor sejenis. Golongan darah manusia dibagi empat yaitu A, B, O, dan AB. Perancangan alat pendekteksi golongan darah manusia menggunakan metode ABO. Darah diteteskan pada kaca preparat lalu dicampur dengan cairan anti reagen, kemudian sensor yang terdiri dari LED infra merah sebagai pemancar cahaya dan fototransistor sebagai penerima cahaya akan membaca tingkat penggumpalan (aglutinasi) darah sehingga menghasilkan tegangan DC. Tegangan dari sensor akan dikuatkan oleh Op-Amp lalu dikirimkan ke mikrokontroler AT-Mega8535 untuk diproses sehingga dapat ditamplkan pada penampil LCD 16x2. Alat yang dibuat sudah berhasil membaca sampel darah yang diujikan dan dapat ditampilkan dengan baik dan benar pada penampil LCD 16x2. Kata kunci : Golongan darah, anti reagen, sensor, Op-Amp, mikrokontroler, LCD 16x2. viii PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI ABSTRACT Blood tests to be conducted because of the blood plays an important role in the human body. If the examination results are known a decrease in the amount of hemoglobin than necessary, then the blood transfusion needs to be done. Transfusion can only be done if the blood groups between donor and recipient alike. Divided by four human blood groups A, B, O, and AB. Design tool detections human blood group ABO method. Blood dripped on glass preparations are then mixed with a liquid anti reagent, then the sensor consists of an infra red LED as a light emitter and a phototransistor as the light receiver will read the level of clumping (agglutination) of blood to produce a DC voltage. Voltage of the sensor will be strengthened by the Op-Amp and then sent to the microcontroller AT-Mega8535 to be processed so that it can displayed on 16x2 LCD viewer. Tool created have managed to read blood samples were tested, and can be displayed properly on 16x2 LCD viewer. Keywords: Blood type, anti-reagent, sensors, Op-Amp, microcontroller, LCD 16x2. ix PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI KATA PENGHANTAR Puji syukur penulis panjatkan kepada Tuhan Yesus Kristus dan Mama Bunda Maria atas segala kasih, anugerah, dan berkat-Nya, sehingga penulis dapat menyelesaikan penulisan tugas akhir ini dengan baik. Penulis menyadari bahwa dalam penulisan tugas akhir ini, penulis mendapatkan banyak bantuan dan dorongan dari beberapa pihak. Oleh karena itu, pada kesempatan kali ini dengan segala kerendahan hati dan penuh hormat, penulis ingin mengucapkan terima kasih sebesar-besarnya kepada : 1. Ibu Paulina Heruningsih Prima Rosa, S.Si., M.Sc. selaku Dekan Fakultas Teknik Universitas Sanata Dharma Yogyakarta. 2. Bapak Petrus Setyo Prabowo, S.T.,M.T. selaku Ketua Jurusan Teknik Elektro Universitas Sanata Dharma Yogyakarta. 3. Ibu Ir. Th. Prima Ari Setiyani, M.T. dan Bapak Petrus Setyo Prabowo, S.T.,M.T. selaku dosen pembimbing akademik angkatan 2006 yang telah memberikan kesempatan dan semangat untuk selalu rajin kuliah dan menyelesaikan tugas akhir. 4. Bapak Martanto, S.T.,M.T. selaku pembimbing atas segala pemikiran, waktu dan tenaganya dalam membimbing dan mengarahkan penulis dari awal hingga akhir penulisan tugas akhir. 5. Bapak Damar Wijaya, S.T.,M.T. dan Bapak Petrus Setyo Prabowo, S.T.,M.T. selaku penguji dalam membimbing dan mengarahkan penulis untuk menyelesaikan penulisan karya tugas akhir. 6. Seluruh dosen di Fakultas Teknik Elektro yang tidak dapat disebutkan satu persatu, yang telah mendidik dan membimbing penulis dalam memperdalam dunia Teknik Elektronika. 7. Seluruh Staf & Laboran Jurusan Teknik Elektro Universitas Sanata Dharma : Mas Mardi, Mas Suryono, Mas Hardi, Mas Broto yang sudah memberikan bantuan selama proses pembuatan karya tugas akhir. 8. Seluruh Staf Sekretariat Fakultas Sains Dan Teknologi Universitas Sanata Dharma : Mbak Rina, Mas Tri, Mbak Tukija, dan karyawan/i sekretariat lainnya yang tidak dapat penulis sebutkan satu-persatu , terima kasih untuk pemberian pelayanan terbaik buat penulis selama masa studi. x PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 9. Seluruh Personil Satpam Kampus III Universitas Sanata Dharma : Mas Tri, Mas sunny dan semua personil yang tidak dapat penulis sebutkan satu-persatu, terima kasih untuk pelayanan dan menjadi “teman ngobrol” selama masa studi. 10. Untuk kedua orang tua penulis ( Bapa dan Mama Tercinta) yang telah memberikan doa, dorongan moril maupun material, terima kasih untuk kasih dan kesabaran yang tak pernah putus sehingga penulis dapat menyelesaikan tugas akhir ini. 11. Untuk Saudara dan Saudariku tercinta : “My Brotha” Pater Edi Lering, SVD. , “My Sista” Kakak Venta, Kakak Yosi, dan Kakak Helmi terima kasih doanya dan dukungan baik moril maupun materi yang diberikan serta “serangkaian nasihat” yang “tak pernah habis” tapi “membangun”. 12. Untuk Om dan Tanta di Kampung Aibura, Kampung Hagarahu, Kampung Keut, Kampung Belat, Kampung Riit, Kampung Nita, Kampung Kei, dan Kampung Nangarasong : Bapa Kecil dan Mama Kecil Aibura, Om dan Tanta Guru Keut, Bapa Fano dan Mama Fano Hagarahu, Tanta Siti Aibura, Mama Tin dan Bapa Tin Kei, Bapa Kecil dan Mama Kecil Kei, Dede Hero dan Mama Nedis Nangarasong, Doi Nela dan Doi Nona Nita Kloang Terima Kasih untuk dukungan dan Doa semuanya. 13. Untuk “Someone One Special In My Life” , terimakasih untuk Doa serta dukungan yang tak pernah henti serta menjadi tempat berbagi cerita baik saat di Jogja maupun diluar Jogja. 14. Untuk Keluarga Besar Teknik Sanata Dharama Pecinta Alam (Teksapala) : Bang Cegopara, Wereng, Cecak, Walang, Rambo, Daki, Babon, Pacet, Odong, Malaria, Bagor, Semar, Bayam dan Terong untuk dukungan persaudaraan dan semangat berpetualang bersama untuk alam. “Gak ada loe Gak rame BRO …. !! “ 15. Untuk Purnapala Teksapala : Bang Gondes, Kang Gadul, Bang jinggo, Bang Jembat, Bang Krowot, Mas U’uk, Bang Luncang, Mas Cagak, Mas Krupuk, Kak Selet, Mas Lunyem, Mas Jangis, Mas Sapi, Mbak Jungkel, Mbak Kencot, Mbak piret dan Mbak Buncis terima kasih untuk dukungan dan semangatnya abang-abang dan mbak-mbak semua. 16. Untuk teman-teman Kost Damai : “My Best Friend” Si Gendut Florry Saputra, Si Pemabuk Hari Kuntoro, Si Seniman “Bravo” Jelarut, Si Galau “Nyawa” Wibison, Si Nelayan “Cakcuk”, Si Peace “Jo”, Bli “Made Rai”, Kae Valen, Krisna, Si “Big xi PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Boy” Umbu Indra dan masih banyak teman-teman lainnya yang tidak bisa disebutkan satu persatu, terima kasih untuk dukungan dan teman untuk mengisi dan mengobati “Kegalauan” selama di Jogja. 17. Untuk Komunitas Sekretariat Bersama MAPALA Yogyakarta, Komunitas SAN’T EGIDIO Yogyakarta, Komunitas IKAMASI Yogyakarta, Komunitas GLADIAN MAPALA Indonesia, Komunitas GUNUNG HUTAN, Komunitas FLOBAMORATA Kampus III Paingan, terima kasih untuk dukungan dan pengalaman yang telah diberikan. “Good Luck Guys ..!!!” Penulis Menyadari bahwa masih banyak kelemahan dan kekurangan dari penulisan tugas akhir ini. Oleh karena itu segala kritik dan saran yang bersifat membangun sangat penulis harapkan. Akhir kata penulis berharap agar skripsi ini dapat bermanfaat bagi penulis maupun pembaca semuanya. Yogyakarta, 30 Mei 2013 Penulis xii PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI DAFTAR ISI HALAMAN JUDUL ………………………………………………………………. i HALAMAN PERSETUJUAN ……………………………………………………. iii HALAMAN PENGESAHAN …………………………………………………… .. iv PERNYATAAN KEASLIAN KARYA …………………………………………… v HALAMAN PERSEMBAHAN DAN MOTTO HIDUP ………………………… vi LEMBAR PERNYATAAN PERSETUJUAN PUBLIKASI KARYA ILMIAH UNTUK KEPENTINGAN AKADEMIS …………………………………………. vii INTISARI …………………………………………………………………………… viii ABSTRACT ………………………………………………………………………… ix KATA PENGHANTAR …………………………………………………………… x DAFTAR ISI ……………………………………………………………………….. xiii DAFTAR GAMBAR ……………………………………………………………… xvi DAFTAR TABEL …………………………………………………………………. xviii BAB I PENDAHULUAN …………………………………………………………. 1 1.1 Latar Belakang ………………………………………………………………. 1 1.2 Tujuan dan Manfaat …………………………………………………………. 2 1.3 Batasan Masalah …………………………………………………………….. 2 1.4 Metodologi Penelitian ………………………………………………………. 3 BAB II DASAR TEORI …………………………………………………………… 5 2.1 Golongan Darah Manusia …………………………………………………… 5 2.2 Mikrokontroler AVR ATmega8535 ………………………………………… 7 2.2.2 Arstitektur ATMega8535 …………………………………………… 7 2.2.3 Fitur ATMega8535 ………………………………………………… 8 2.2.4 Konfigur Pin ATMega8535 ………………………………………… 8 2.2.5 Peta Memori ………………………………………………………… 9 2.2.6 Status Register (SREG) ……………………………………………… 10 2.2.7 Timer / Counter……………………………………………………… 11 2.2.8 ADC ………………………………………………………………… 12 2.2.9 Inisialisasi ADC …………………………………………………….. 13 xiii PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Penguat Operasional ………………………………………………………… 15 2.3.1 Penguat Pembalik …………………………………………………… 16 2.3.2 Penguat Non-Pembalik ……………………………………………… 17 2.4 Infra Merah …………………………………………………………………. 19 2.5 Fototransistor ………………………………………………………………… 20 2.6 LCD …………………………………………………………………………. 22 BAB III PERANCANGAN PENELITIAN ……………………………………… 25 3.1 Perancangan Sistem …………………………………………………………. 25 3.2 Perancangan Mekanik ………………………………………………………. 26 3.3 Perencanaan Perangkat Keras ………………………………………………. 29 3.3.1 Rangkaian Sensor …………………………………………………… 29 3.3.2 Rangkaian Konfigurasi Penguat Tegangan …………………………. 32 3.3.3 Rangkaian Konfigurasi LCD 16x2 …………………………….……. 33 3.3.4 Rangkaian Mikrokontroler ………………………………….………. 34 2.3 3.3.4.1 Rangkaian Osilator …………………………….…………… 34 3.3.4.2 Rangkaian Reset …………………………………………… 34 Perancangan Perangkat Lunak ……………………………………………… 37 3.4.1 Perangkat Lunak Scan Sampel Darah ……………………………… 38 3.4.1 Perangkat Lunak Pengolahan Data ADC pada ATMega8535 ……… 39 BAB IV HASIL DAN PEMBAHASAN …………………………………………... 40 4.1 Pengujian Rangkaian Sensor ………………………………………………… 41 4.2 Pengujian Rangkaian LCD 16x2 …………………………………………… 46 4.3 Pengujian Rangkaian Pengendali/Pengontrol ………………………………. 47 4.4 Pengujian Sistem Secara Keseluruhan ……………………………………… 50 BAB V KESIMPULAN DAN SARAN …………………………………………… 61 5.1 Kesimpulan ………………………………………………………………….. 61 5.2 Saran ………………………………………………………………………… 61 DAFTAR PUSTAKA ……………………………………………………………… 62 LAMPIRAN ………………………………………………………………………… 63 3.4 xiv PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI DAFTAR GAMBAR Gambar 1.1 Diagram Blok Penentuan Jenis Golongan Darah ………………….. 4 Gambar 2.1 Reaksi Aglutinasi Dan Non-aglutinasi Pada Golongan Darah …….. 6 Gambar 2.2 Pendonor Dan Penerima Transfusi Darah ………………………… 6 Gambar 2.3 Konfigurasi Pin ATmega8535 …………………………………….. 9 Gambar 2.4 Register ADMUX ………………………………………………….. 13 Gambar 2.5 Format Data ADC dengan ADLAR=0 …………………………….. 14 Gambar 2.6 Format Data ADC dengan ADLAR=1 …………………………….. 14 Gambar 2.7 Simbol Skematik Penguat Operasional ……………………………. 15 Gambar 2.8 Penguat Rangkaian Pembalik ……………………………………… 16 Gambar 2.9 Penguat Rangkaian Non-pembalik ………………………………… 18 Gambar 2.10 Simbol Led Infra Merah …………………………………………… 20 Gambar 2.11 Simbol Fototransistor ………………………………………………. 21 Gambar 2.12 Bentuk Fisik LCD Karakter 16x2 ………………………………….. 22 Gambar 2.13 Baris dan kolom Karakter pada LCD 16x2 ………………………… 22 Gambar 2.14 Konfigurasi Kaki LCD 16x2 ………………………………………. 23 Gambar 3.1 Diagram Blok Sistem Penentuan Jenis Golongan Darah Manusia … 25 Gambar 3.2 Desain Mekanik Tampak Atas …………………………………….. 26 Gambar 3.3 Desain Mekanik Tampak Samping ………………………………… 27 Gambar 3.4 Jarak Sensor Dengan Kaca Prefarat ……………………………….. 27 Gambar 3.5 Jarak Antara Sensor ……………………………………………..…. 28 Gambar 3.6 Jarak Badan Alat Secara Keseluruhan …………………………….. 28 Gambar 3.7 Rangkaian Sensor Darah …………………………………………… 30 Gambar 3.8 Rangkaian Op-amp Penguat Sensor ……………………………...… 32 Gambar 3.9 Rangkaian LCD 16x2 ……………………………………………… 33 Gambar 3.10 Pengaturan Port LCD Pada Code Vision AVR ……………………. 33 Gambar 3.11 Rangkaian Osilator ATmega 8535 ………………………………… 34 Gambar 3.12 Rangkaian Reset ATmega 8535 ……………………………………. 35 Gambar 3.13 Sistem Minimun ATmega 8535 …………………………………… 36 Gambar 3.14 Diagram Alir Utama ……………………………………………….. 37 Gambar 3.15 Diagram Alir Scan Sampel Darah …………………………………. 38 xvi PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Gambar 3.16 Diagram Alir Mengolah Data ADC pada ATMEga 8535 …………. 39 Gambar 4.1 Tahap Pengujian Sampel Golongan Darah Manusia.......................... 40 Gambar 4.2 Penempatan Letak Tombol Start/stop, Saklar On/off Dan LCD 16x2 41 Pada Perangkat Keras ...................................................................... Gambar 4.3 Keterangan Letak Sensor Dan Kaca Preparat Pada Perangkat Keras 42 Gambar 4.4 Sensor Tidak Terhalang ..................................................................... 44 Gambar 4.5 Sensor dibuat terhalang …………………………………………...... 45 Gambar 4.6 Semua Sensor Terhalang ………………………………………....... 45 Gambar 4.7 Pengukuran Nilai ADC Dan Tegangan Sensor Saat Tidak Terhalang …………………………………………………………... 45 Gambar 4.8 Pengukuran Nilai ADC dan Tegangan Keluaran Sensor Saat Terhalang …………………………………………………………... 45- Gambar 4.9 Tampilan Awal Pada Penampil LCD 16x2 ........................................ 47 Gambar 4.10 Hasil Pengujian Tombol Start pada LCD 16x2 ................................. 48 Gambar 4.11 Hasil Pengujian Tombol Stop pada LCD 16x2 .................................. 48 Gambar 4.12 Tampilan Pada Penampil LCD 16x2 Saat Siap Membaca Data Dari 50 46 Sensor ……………………………………………………………… Gambar 4.13 Titik Darah Dan Titik Anti Reagen Pada Kaca Preparat …………... 51 Gambar 4.14 Proses Aglutinasi Pada Sampel Darah ……………………............... 51 Gambar 4.15 Sampel Darah “Cornelius Florry Saputra” ........................................ 54 Gambar 4.16 Sampel Darah “Aris Nugroho”…………….. .................................... 55 Gambar 4.17 Penampil LCD Saat Tidak Terdapat Kaca Preparat .......................... 57 Gambar 4.18 Hasil Pengujian 4 Sampel Darah Manusia Pada Penampil LCD 57 16x2 ................................................................................................... Gambar 4.19 Pembuktian Kebenaran Data Sensor B ……………………………. 58 Gambar 4.20 Pembuktian Kebenaran Data Sensor D ……………………………. 59 xvii PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI DAFTAR TABEL Tabel 2.1 Susunan Darah …………………………………………………………... 5 Tabel 2.2 Reaksi aglutinasidan non-aglutinasi pada golongan darah ……………… 6 Tabel 2.3 Pemilihan Mode Tegangan Referensi ADC …………………………….. 13 Tabel 2.4 Tabel Pemilihan Bit Saluran Pembacaan ADC …………………………. 14-15 Tabel 2.5 Konfigurasi kaki LCD 16x2 …………………………………………..… 22-24 Tabel 3.1 Tabel perincian jarak mekanik ……………………………………….….. 29 Tabel 3.1 Konfigurasi Keluaran sensor ke Mikrokontroler ATmega 8535 …….….. 30 Tabel 3.2 Penggunaan Port pada Mikrokontroler …………………………….….… 35-36 Tabel 4.1 Pengukuran Nilai Tegangan Keluaran Sensor ……………………….….. 42-43 Tabel 4.2 Nilai Tegangan Rata-Rata Setiap Sensor ................................................... 44 Tabel 4.3 List Kode Program Konfigurasi dan Perintah LCD 16x2 .......................... 47 Tabel 4.4 Port Mikrokontroler AT-Mega8535 .......................................................... 48 Tabel 4.5 List Kode Program Tombol Start dan Tombol Stop .................................. 49 Tabel 4.6 Nilai Tegangan Referensi Setiap Sensor ................................................... 52 Tabel 4.7 Batas Nilai Tegangan Referensi Proses Aglutinsi ..................................... 53 Tabel 4.8 Data Tegangan DC Keluaran Sensor Ke Mikrokontroler .......................... 54 Tabel 4.9 Pengubahan Nilai Tegangan Referensi Ke Nilai ADC ………….………. 55 Tabel 4.10 List Program Untuk Sensor A …………………………………………… 56 Tabel 4.11 Hasil Nilai Tegangan Dan Nilai ADC …………………………………... 58 Tabel 4.12 Pembuktian Pengujian Sampel Darah Manusia Secara Keseluruhan …… 59 xviii PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI BAB I PENDAHULUAN 1.1. Latar Belakang Perkembangan teknologi dari tahun ke tahun maju semakin pesat, kemajuan tersebut mencakup berbagai bidang kehidupan. Bidang kesehatan merupakan salah satu bagian yang tidak luput dari dukungan teknologi. Kesehatan merupakan aspek penting dalam kehidupan manusia, oleh karena itu kesehatan harus dipantau melalui pemeriksaan secara berkala di laboratorium. Pada umumnya, pemeriksaan darah mutlak dilakukan karena darah berperan penting dalam tubuh manusia. Jika dari hasil pemeriksaan diketahui adanya penurunan jumlah hemoglobin dari yang semestinya, maka transfusi darah perlu dilakukan. Transfusi hanya bisa dilakukan bila golongan darah antara penerima dan pendonor sejenis. Dalam dunia kedokteran, golongan darah manusia dibagi empat yaitu A, B, O, dan AB [12]. Selama ini untuk pengujian golongan darah sering digunakan metode ABO yang prosesnya dilakukan secara manual. Menurut sistem penggolongan darah ABO, darah dibagi 4 golongan, yakni golongan A, B, O, dan AB. Penentuan golongan darah manusia menggunakan cairan reagen yang disebut antisera yaitu antisera A dan antisera B yang akan dicampurkan pada sampel darah manusia [12]. Hal ini tentunya akan menjadi lebih rumit dan membutuhkan perhatian yang lebih apabila sampel darah yang hendak diuji jumlahnya cukup banyak. Oleh karena itu, otomasi alat diperlukan untuk memudahkan proses pendekteksian golongan darah sehingga lebih mudah, cepat dan tepat dalam penentuan sampel darah manusia. Penelitian sebelumnya telah dilakukan oleh Haryono Budi Susilo “Penentuan Golongan Darah Manusia Dengan Sistem Elektronik” dengan menggunakan Op-Amp sebagi penguat sekaligus pembanding tegangan dan ditampilkan pada 7-segmen , serta penelitian yang dilakukan oleh Edmon Syah Putra yaitu “penentuan jenis golongan darah manusia berbasis mikrokontroler AT89S51”. Berdasarkan hal tersebut, perancang membuat alat pendeteksi golongan darah manusia yang berbasis pada mikrokontroler AT-Mega 8535 dengan menggunakan metode ABO. Dalam perancangan, alat ini menggunakan LED infra Merah dan fototransistor sebagai 1 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 2 sensor dengan tegangan keluaran yang dikuatkan oleh op-amp, kemudian mikrokontroler menentukan golongan darah dari sampel yang dideteksi dan ditampilkan pada LCD. Dengan latar belakang tersebut, salah satu bentuk perkembangan teknologi sederhana dalam bidang kesehatan yang dapat dilakukan yaitu “PENENTUAN JENIS GOLONGAN DARAH MANUSIA BERBASIS AT-Mega 8535”. Kelebihan penelitian ini dibandingkan dengan penelitian sebelumnya adalah dapat menentukan jenis golongan darah 4 orang secara bersamaan sehingga penelitian ini lebih efekif dan efisien. 1.2. Tujuan dan Manfaat Tujuan : Merancang dan membuat alat pendekteksi golongan darah manusia secara otomatis berbasis pada mikrokontoler AT-Mega 8535. Manfaat : a. Sebagai alat bantu dalam bidang kesehatan untuk mempermudah proses penentuan jenis golongan darah manusia. b. Mempermudah proses penentuan jenis golongan darah manusia yang efektif dalam jumlah banyak. c. Dapat menghemat tenaga yang dibutuhkan dalam menentukan jenis golongan darah manusia. 1.3. Batasan Masalah Dalam penelitian ini diberikan batasan-batasan masalah agar dapat terarah dan lebih sistematis. Berikut daftar spesifikasi batasan masalah : a. Pengujian alat dilakukan terkait dengan darah manusia. b. Penentuan jenis golongan darah manusia dengan menggunakan sistem A,B,O. c. Jumlah maksimal darah manusia yang diujikan adalah 4 sampel darah. d. Menggunakan 8 buah kaca preparat masing-masing berukuran 2.5 cm x 8 cm sebagai wadah sampel darah manusia. PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 3 e. Dalam 2 buah kaca preparat, terdapat 1 sampel darah manusia yang akan di ujikan. f. Di setiap sampel darah terdapat 2 titik yaitu titik A dan titik B. g. Jarak antara titik pada kaca preparat adalah 3.5 cm. h. Setiap titik sampel darah, terdapat 1 tetes darah manusia dan 2 tetes anti reagen. i. Menggunakan LED infra merah dan fototransistor sebagai sensor pendekteksi berjumlah 8 buah. j. Setiap kaca preparat ditempatkan satu buah sensor. k. Menggunakan Op-Amp sebagai penguat tegangan dari sensor menuju mikrokontroler AT-Mega 8535. l. Menggunakan AT-Mega 8535 sebagai pembanding dan penentuan hasil sampel golongan darah manusia. m. Rangkaian penampil digital hasil golongan darah manusia berupa LCD 16x2. 1.4. Metodologi Penelitian Untuk merancang dan membuat suatu perangkat keras dengan hasil yang cukup teliti dan akurat dalam menentukan jenis golongan darah manusia, maka perancang menggunakan metode seperti berikut ini : a. Studi pustaka mengenai konsep dasar penggolongan darah manusia menggunakan sistem A,B,O. b. Mencari data lengkap tentang perangkat keras yang akan dibuat berupa AT-Mega 8535, LED infra merah dan fototransistor, Op-Amp, LCD, dan beberapa perangkat keras lainnya. c. Merancang simulasi perencanaan alat sehingga mendapatkan perangkat keras yang sesuai dengan keinginan menggunakan software Microcap, Eagle dan Google sketch. d. Pembuatan alat perangkat keras yang meliputi kaca preparat, sistim minimum ATMega 8535, LED infra merah, fototransistor, penguat operasional (Op-Amp), penampil LCD, dan perancangan PCB menggunakan software EAGLE. e. Melakukan pengujian dan pengambilan data dengan meneteskan contoh darah manusia pada kaca preparat sebanyak 1 tetes, lalu mencampurkan Reagen A dan Reagen B pada masing-masing sampel darah sebanyak 2 tetes. Proses diawali PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 4 dengan menekan tombol start pada perangkat keras sehingga sensor (led infra merah dan fototransistor) dapat membaca sampel darah yang diujikan, lalu tegangan yang dihasilkan oleh sensor akan dikuatkan oleh op-amp sehingga dapat diproses oleh mikrokontoler AT-Mega 8535 dan dapat ditampilkan hasil pada penampil LCD 16x2. Untuk lebih jelasnya diagram blok penetuan jenis golongan darah dapat dilihat Gambar 1.1. f. Melakukan analisa dan kesimpulan data dengan melihat hasil pada penampil LCD yang sama dan akurat dengan contoh sampel darah yang diujikan. Kesimpulan dapat dilihat pada proses kerja perangkat keras yang mampu membaca data dari sensor dan dapat diproses oleh AT-Mega 8535 sehingga menghasilkan data pada penampil LCD. Kaca preparat (2.5cm x 8cm) (4 buah) Sensor (8 buah) Op-Amp (8 buah) AT-Mega 8535 (1 buah) LCD (Display) (1 buah) Gambar 1.1. Diagram Blok Penentuan Jenis Golongan Darah PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI BAB II DASAR TEORI 2.1 Golongan Darah Manusia Darah merupakan cairan yang bersirkulasi dalam tubuh manusia dan vertebrata yang berfungsi untuk mengirimkan zat-zat dan oksigen yang dibutuhkan oleh jaringan tubuh, serta mengangkut bahan-bahan kimia hasil metabolisme, selain itu darah juga berfungsi untuk pertahanan tubuh terhadap virus atau bakteri. Volume darah secara keseluruhan kirakira merupakan satu perdua belas berat badan atau kira-kira 5 liter dengan perincian 1 liter darah di paru-paru, 3 liter dalam vena-vena sistim peredaran darah, sisanya 1 liter ada dalam jantung dan arteri, arteriola serta kapiler sistematik[11]. Komposisi susunan darah dapat dilihat pada Tabel 2.1[12]. Tabel 2.1. Susunan Darah [12] Air 91.0 % Protein 8.0 % Albumim, globulin, protromblin, dan fibrinogen Mineral 0.9 % Bahan organik 0.1 % Natrium klorida, natrium bikarbonat, garam kalsium, fosfor, besi, dan seterusnya Glukosa, lemak, urea, asam urat, kreatinin, kolestrol, dan asam amino Jika darah dari golongan yang bertentangan ditransfusikan akan mengakibatkan bahan dalam plasma yang bernama aglutinin menggumpal dan juga terjadi hemolisis (memecahnya) sel darah merah[12]. Sampai tahun 1900, transfusi darah pada manusia sering menyebabkan kematian. Kemudian Landsteiner mengajukan konsep mengenai golongan darah, yang kini merupakan dasar pemberian transfusi darah. Sistem golongan darah yang utama berdasar pada ada tidaknya mukopolisakarida yang disebut aglutinogen, yang terdapat di permukaan sel darah merah manusia. Aglutinogen itu dinamakan A dan B. Seseorang yang mempunyai aglutinogen A pada sel darah merahnya, digolongkan dalam golongan darah A. Mereka yang mempunyai aglutinogen B, termasuk golongan darah B. Mereka yang mempunyai aglutinogen A dan B termasuk golongan darah AB. Mereka yang tidak mempunyai aglutinogen A maupun B, termasuk golongan 5 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 6 darah O (biasanya diucapkan sebagai huruf O dan bukan sebagai angka 0 atau nol). Sistem pengujian golongan darah seperti ini disebut sebagai metode ABO, yang prosesnya dilakukan secara manual atau dengan cara meneteskan dua jenis cairan atau reagen pada sampel darah. Dalam proses pengujian sampel darah menggunakan metode ABO, sampel darah akan diteteskan suatu reagen, kemudian pada sampel darah akan terjadi proses aglutinasi atau penggumpalan darah. Hasil reaksi aglutinasi / non-aglutinasi pengujian golongan darah dapat di lihat pada Tabel 2.2 dan pada Gambar 2.1 [11]. Tabel 2.2. Reaksi aglutinasi dan non-aglutinasi pada golongan darah [11] Anti A Anti B Golongan + A + B + + AB O + = Aglutinasi - = non-aglutinasi Gambar 2.1. Reaksi aglutinasi dan non-aglutinasi pada Golongan Darah [15] Agar tidak terjadi aglutinasi, maka pada transfusi, penderita harus diberi darah yang sama golongannya. Maka transfusi darah dapat dilakukan seperti terlihat dalam Gambar 2.2. A O AB B Gambar 2.2. Pendonor dan penerima transfusi darah [11] PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 7 Jadi, bila tidak tersedia darah dengan golongan yang sesuai, darah golongan O dapat diberikan kepada ketiga golongan yang lain. Golongan darah O disebut darah donor universal. Golongan darah A dan B dapat diberikan kepada AB, tetapi tidak kepada O. Darah AB hanya dapat ditransfusikan kepada resipen (penerima) AB. Penderita dengan golongan darah AB dapat menerima darah dari golongan manapun sehingga darah AB disebut resipen universal [11]. 2.2 Mikrokontroler AVR AT-Mega8535 Mikrokontroler adalah sebuah sistem microprosesor yang di dalamnya sudah terdapat CPU, ROM, RAM, I/O, Clock dan peralatan internal lainnya yang sudah terhubung dan teralamati dengan baik. AT-Mega8535 adalah 8-bit mikrokontroler yang termasuk dalam keluarga AVR (Alf and Vegard’s RiscProcecor) yang menggunakan arstitektur RISC (Reduced Instruction Set Computer), diproduksi oleh ATMEL [2]. Hampir semua Intsruksi dieksekusi dalam satu siklus clock dan mempunyai 32 register general-purpose, timer/counter fleksibel dengan mode compare, interupsi internal dan eksternal, serial UART, Programmable Watchdog Timer, dan Power saving mode. AVR juga mempunyai ADC, PWM internal dan In-System Programmable Flash on-chip yang mengijinkan memori program untuk diprogram ulang. 2.2.1 Arsitektur AT-Mega8535 Mikrokontroler AT-Mega8535 memiliki arsitektur sebagai berikut [1]: a. Saluran I/O sebanyak 32 buah, yaitu Port A, Port B, Port C, dan Port D. b. ADC 10-bit sebanyak 8 saluran. c. Tiga buah Timer/Counter dengan kemampuan pembanding. d. CPU yang terdiri dari atas 32 buah register. e. Watchdog Timer denga osilator internal. f. SRAM sebesar 512 byte. g. EEPROM sebesar 512 byte yang dapat diprogram saat operasi. h. Kecepatan maksimal 16 MHz. i. Tegangan operasi 4,5VDC s/d 5,5VDC. j. Memori Flash sebesar 8kb dengan kemampuan Read While Write. k. Unit interupsi internal dan eksternal. PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI l. 8 Port antarmuka SPI (Serial Pheriperal Interface). m. Antarmuka komparator analog. n. Port USART (Universal shynchronous Ashynchronous Receiver Transmitter). 2.2.2 Fitur AT-Mega8535 Kapabilitas detail dari ATmega8535 adalah sebagai berikut [3] : a. Sistem mikroprosesor 8-bit berbasis RISC (Reduced Intruction Set Computer) dengan kecepatan 16 Mhz. b. Kapabilatas memori flash 8 KB, SRAM sebesar 512 byte, dan EEPROM (Electrically Erasable Programmable Read Only Memory) sebesar 512 byte. c. ADC internal dengan fidelitas 10 bit sebanyak 8 channel. d. Portal komunikasi serial (USART) dengan kecepatan maksimal 2,5 Mbps. e. Enam pilihan mode sleep menghemat penggunaan daya listrik. 2.2.3 Konfigurasi Pin AT-Mega8535 Konfigurasi pin AT-Mega8535 bisa dilihat pada Gambar 2.3. Dari gambar tersebut dapat dijelaskan secara fungsional konfigurasi pin AT-Mega8535 sebagai berikut [3]: a. VCC merupakan pin yang berfungsi sebagai pin masukan catu daya. b. GND merupkan pin ground. c. Port A (PA0..PA7) merupakan pin I/O dua arah dan pin masukan ADC. d. Port B (PB0..PB7) merupakan pin I/O dua arah dan pin fungsi khusus, yaitu Timer/Counter, komparator analog, dan SPI. e. Port C (PC0..PC7) merupakan pin I/O dua arah dan pin fungsi khusus, yaitu TWI, komparator analog, dan Timer Oscilator. f. Prot D (PD0..PD7) merupakan pin I/O dua arah dan pin fungsi khusus, yaitu komparator analog, interupsi eksternal, dan komunikasi serial. g. RESET merupakan pin yang digunakan untuk mengembalikan proses kerja mikrokontroler diulang dari awal. h. XTAL1 dan XTAL2 dan merupakan pin masukan tegangan untuk ADC. i. AVCC merupakan pin masukan tegangan untuk ADC. j. AREF merupakan pin masukan tegangan referensi ADC. PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 9 Gambar 2.3. Konfigurasi Pin ATmega8535 [3] 2.2.4 Peta Memori AVR AT-Mega8535 memiliki ruang pengalamatan memori data dan memori program yang terpisah. Memori data terbagi menjadi 3 buah bagian, yaitu 32 buah register umum, 64 buah register I/O, dan 512 byte SRAM Internal. Register keperluan umum menempati space data pada alamat terbawah, yaitu $00 sampai $1F. Sementara itu, register khusus untuk menangani I/O dan kontrol terhadap mikrokontroler menempati 64 alamat berikutnya, yaitu mulai dari $20 hingga $5F. Register tersebut merupakan register yang khusus digunakan untuk mengatur fungsi terhadap berbagai peripheral mikrokontroler, seperti kontrol register, timer/counter, fungsi-fungsi I/O, dan sebagainya. Alamat memori berikutnya digunakan untuk SRAM 512 byte, yaitu pada lokasi $60 sampai dengan $25F. Memori SRAM adalah memori yang digunakan untuk menyimpan data sementara (memori kerja). Semua memori “biasa” akan ditempatkan dalam SRAM . Memori program yang terletak dalam flash PEROM tersusun dalam word atau 2 byte karena setiap instruksi memiliki lebar 16-bit atau 32-bit. AVR AT-Mega8535 memiliki 4Kbyte x 16-bit flash PEROM dengan alamat mulai dari $000 sampai $FFF. AVR tersebut memiliki 12-bit Program Counter (PC) sehingga mampu mengalamati isi flash. Memori flash adalah salah satu jenis ROM yang cara penulisan dan penghapusannya secara elektrik. Memori ini digunakan untuk menempatakan kode-kode program yang akan dieksekusi oleh CPU. Namun memori ini juga dapat digunakan untuk menyimpan angka- PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 10 angka / data konstan, string yang ketika chip running tidak pernah diubah. Selain itu, AVR ATMega8535 juga memiliki memori data berupa EEPROM 8-bit sebanyak 512 byte. Alamat EEPROM dimulai dari $000 sampai $1FF. Memori EEPROM dapat digunakan untuk menyimpan data pada saat chip running dan tidak dapat terhapus meskipun catu daya mati (non volatile) [3]. 2.2.5 Status Register (SREG) Status Register adalah register berisi status yang dihasilkan pada setiap operasi yang dilakukan ketika suatu instruksi dieksekusi. SREG merupakan bagian dari inti CPU mikrokontroler. a. Bit 7-I: Global Interrupt Enable Set bit dilakukan untuk mengaktifkan interupsi. Setelah itu, mengaktifkan pilihan interupsi yang akan gunakan dengan cara bit kontrol registernya dibuat enable secara individu. Apabila terjadi suatu interupsi yang dipicu oleh hardware, maka bit harus dibuat clear dan bit tidak akan mengizinkan terjadinya interupsi, serta instruksi RETI akan melakukan set bit. b. Bit 6-T: Bit Copy Storage Instruksi BLD dan BST menggunakan bit-T sebagai sumber atau tujuan dalam operasi bit. Suatu bit dalam sebuah register GPR dapat disalin ke bit-T menggunakan instruksi BST, dan sebaliknya bit-T dapat disalin kembali ke suatu bit dalam register GPR menggunakan instruksi BLD. c. Bit 5-H: Half Carry Flag d. Bit 4-S: Sign Bit Bit-S merupakan hasil operasi EOR antara flag-N (Negatif) dan flag V (Komplemen dua overflow). e. Bit 3-V: Two’s Complement Overflow Flag Bit ini berguna untuk mendukung operasi aritmatika. f. Bit 2-N: Negative Flag Set bit pada flag-N dilakukan, apabila operasi menghasilkan bilangan negatif. g. Bit I-Z: Zero Flag Set bit dilakukan bila hasil operasi yang diperoleh adalah nol. PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI h. 11 Bit 0-C: Carry Flag Set bit pada carry flag dilakukan, apabila suatu operasi menghasilkan carry. 2.2.6 Timer / counter AVR AT-Mega8535 memiliki tiga buah timer/counter, yaitu 2 buah timer/counter 0 (8 bit) dan 1 buah timer/counter 1(16-bit). Ketiga modul ini dapat diatur dalam mode yang berbeda-beda secara individu dan saling mempengaruhi satu sama lain. Selain itu semua timer/counter juga dapat difungsikan sebagai interupsi. Timer / counter 0 adalah 8 bit timer/counter yang multifungsi. Deskripsi untuk timer/counter 0 pada ATMega8535 adalah sebagai berikut [3]: a. Sebagai counter 1 kanal. b. Timer dinolkan saat match compare (auto reload). c. Dapat menghasilkan gelombang PWM dengan glich-free. d. Frekuensi Generator. e. Prescaler 10-bit untuk timer. f. Intrupsi timer yang disebabkan timer overflow dan match compare. Timer/counter 1 adalah 16 bit timer/counter yang memungkinkan program pewaktuan lebih akurat. Berbagai fitur dari timer/counter1 adalah [3]: a. Desain 16-bit (juga memungkinkan 16-bit PWM). b. Dua buah compare unit. c. Dua buah register pembanding. d. Satu buah unit capture unit. e. Timer dinolkan saat match compare (auto reload). f. Dapat menghasilkan gelombang PWM dengan glich-free. g. Periode PWM yang dapat diubah-ubah. h. Pembangkit frekuensi. i. Empat buah sumber interupsi (TOV1,OCF1A,OCF1B,dan ICF1). PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 12 2.2.7 ADC AT-Mega8535 merupakan tipe AVR yang telah dilengkapi dengan 8 saluran ADC (Analog To Digital Converter) internal dengan fidelitas 10 bit. Dalam mode operasinya, ADC AT-Mega8535 dapat dikonfigurasi, baik sebagai single ended input maupun differential input. Selain itu, ADC AT-Mega8535 memiliki konfigurasi pewaktuan, tegangan referensi, mode operasi, dan kemampuan filter derau yang amat fleksibel sehingga dapat dengan mudah disesuaikan dengan kebutuhan dari ADC itu sendiri [3]. Rangkaian internal ADC ini memiliki catu daya tersendiri yaitu pin AVCC. Tegangan AVCC harus sama dengan VCC . Data hasil konversi ADC untuk resolusi 10-bit dirumuskan sebagai berikut [2]: (2.1) Data hasil konversi ADC untuk resolusi 8-bit dirumuskan sebagai berikut [2]: (2.2) dengan Vin adalah tegangan masukan pada pin yang dipilih sedangkan Vref adalah tegangan referensi yang dipilih. Fitur dari ADC AT-Mega8535 adalah sebagai berikut [2]: a. Resolusi mencapai 10-bit. b. Terdapat 0.5 LSB Integral Non-linearity. c. Akurasi mencapai ± 2 LSB. d. Waktu konversi 13 – 60 µs. e. Mempunyai 8 saluran ADC yang dapat digunakan secara bergantian. f. Optional Left Adjustment untuk pembacaan hasil ADC. g. Mempunyai 0 – VCC Range input ADC. h. Disediakan 2.56V tegangan referensial internal ADC. i. Mode konversi kontinyu (free running) atau mode konversi tunggal (single conversion). j. Interupsi ADC complete. k. Sleep Mode Noise canceler. PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 13 2.2.8 Inisialisasi ADC Proses inisialisasi ADC meliputi proses penentuan clock, tegangan referensi, format output data, dan mode pembacaaan. Register yang perlu diatur nilai bit adalah ADMUX (ADC Multiplexer Selection Register), ADCSRA (ADC Control and Status Register A), dan SFIOR (Special Function IO Register). ADMUX merupakan register 8-bit yang berfungsi menentukan tegangan referensi ADC, format data output, dan saluran ADC yang digunakan [3]. Konfigurasi register ADMUX ditunjukkan seperti pada Gambar 2.4. Gambar 2.4. Register ADMUX [2] Bit –bit penyusunnya dapat dijelaskan sebgai berikut : a. REFS [1..0] merupakan bit pengatur tegangan referensi ADC AT-Mega8535. Memiliki nilai awal 00 sehingga referensi tegangan berasal dari pin AREF. Detail nilai dapat dilihat pada Tabel 2.3. Tabel 2.3. Pemilihan Mode Tegangan Referensi ADC [3] REFS [0 1] Mode tegangan Referensi 00 Berasal dari pin AREF 01 Berasal dari pin AVCC 10 Tidak dipergunakan 11 Berasal dari tegangan referensi internal sebesar 2.56V b. ADLAR merupakan bit pemilih mode data keluaran ADC. Bernilai awal 0 sehingga 2 bit tertinggi data hasil konversinya berada di register ADCL dan 8-bit sisanya berada di register ADCL, seperti ditunjukkan Gambar 2.5 dan jika bernilai 1,maka hasilnya ditunjukkan pada Gambar 2.6. PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 14 Gambar 2.5. Format Data ADC dengan ADLAR=0 [2] Gambar 2.6. Format Data ADC dengan ADLAR=1 [2] c. MUX [ 4..0] merupakan bit pemilih saluran pembacaan ADC yang bernilai awal 0000. Untuk mode single ended input, MUX[4..0] bernilai dari 00000 – 00111 [3]. Untuk lebih jelasnya pemilihan bit saluran pembacaan ADC dapat dilihat pada Tabel 2.4. Tabel 2.4. Tabel Pemilihan Bit Saluran Pembacaan ADC [3] MUX (4…0) 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 10000 10001 10010 10011 10100 10101 Single Ended Input ADC0 ADC1 ADC2 ADC3 ADC4 ADC5 ADC6 ADC7 N/A Pos Differential Input Neg Differential Input Gain N/A ADC0 ADC1 ADC0 ADC1 ADC2 ADC3 ADC2 ADC3 ADC0 ADC1 ADC2 ADC3 ADC4 ADC5 ADC0 ADC0 ADC0 ADC0 ADC2 ADC2 ADC2 ADC2 ADC1 ADC1 ADC1 ADC ADC ADC 10x 200x 200x 10x 10x 200x 200x 1x 1x 1x 1x 1x 1x 1x PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 15 Tabel 2.4. (Lanjutan) Tabel Pemilihan Bit Saluran Pembacaan ADC [3] MUX (4…0) 10110 10111 11001 11010 11011 11100 11101 11110 11111 Single Ended Input N/A 1.22V(VBG) 0V(GND) Pos Differential Input ADC6 ADC7 ADC1 ADC2 ADC3 ADC4 ADC5 Neg Differential Input ADC ADC ADC ADC ADC ADC ADC Gain 1x 1x 1x 1x 1x 1x 1x N/A 2.3 Penguat Operasional Penguat operasional (operational amplifier) secara umum menggambarkan tentang sebuah rangkaian penguat penting yang membentuk dasar dari rangkaian-rangkaian penguat audio dan video, penyaring, buffer, komparator atau pembanding, dan berbagai macam rangkaian analog lainnya. Penguat operasional secara umum dikenal dengan nama op-amp. Op-amp merupakan sebuah penguat arus searah dengan gain tinggi (besarnya gain pada umumnya lebih besar dari 100.000 atau lebih besar dari 100 dB) [4]. Penguat operasional memiliki simbol dengan 2 terminal masukan non-pembalik (diberi tanda V-) dan pembalik (diberi tanda V+) serta 1 terminal keluaran (diberi tanda Vout). Op-amp juga memiliki 2 buah saluran catu daya yaitu tegangan positif (diberi tanda Vs+) dan tegangan negatif (diberi tanda Vs-). Untuk lebih jelasnya simbol penguat operasional dapat dilihat pada Gambar 2.7. Gambar 2.7. Simbol skematik Penguat operasional [4] Tegangan pada terminal keluaran op-amp merupakan perkalian antara selisih tegangan di antara masukan pembalik (V-) dan non-pembalik (V+) dengan besarnya gain yang dimiliki. Dengan demikian, op-amp merupakan sebuah penguat diferensial. Jika masukan pembalik (V-) memiliki potensial yang lebih tinggi, maka tegangan keluaran akan menjadi PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 16 lebih negatif. Demikian juga jika masukan non pembalik (V+) memiliki potensial yang lebih tinggi, maka tegangan keluaran op-amp akan menjadi lebih positif. Untuk dapat menjalankan fungsinya dengan baik, op-amp harus memiliki umpan balik. Hampir seluruh rancangan rangkaian yang ada pada umumnya menggunakan umpan balik negatif untuk mengendalikan besarnya gain serta memperoleh operasi kerja op-amp linear [5]. Umpan balik negatif dapat diperoleh melalui penggunaan komponen-komponen rangkaian, misalnya resistor yang dihubungkan di antara terminal keluaran op-amp dan masukan pembalik op-amp yaitu terminal masukan yang bertanda (V-). 2.3.1 Penguat pembalik Penguat pembalik adalah rangkaian penguat operasional yang paling dasar. Ia menggunakan umpan balik negatif unutk menstabilkan perolehan tegangan secara keseluruhan. Perolehan tegangan yang tak terduga dan variasinya menjadi tidak berguna tanpa umpan balik [4]. Untuk lebih jelasnya penguat rangkaian pembalik dapat dilihat pada Gambar 2.8. Gambar 2.8. Penguat rangkaian pembalik [4] Jika perolehan tegangan kalang terbuka (AOL) naik karena sesuatu sebab, tegangan keluaran akan naik dan mengumpanbalikkan lebih banyak tegangan ke masukan pembalik. Tegangan umpan balik yang berlawanan ini mengurangi V2 karena itu, meskipun AOL naik, V2 turun, dan keluaran akhir naik kira-kira sama dengan tanpa umpan balik negatif. Hasil keseluruhannya adalah kenaikan yang sangat kecil pada tegangan keluaran, begitu kecil sehingga hampir tidak di perhatikan. PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 17 Dengan adanya sebuah virtual ground pada masukan pembalik seperti yang ditunjukkan pada Gambar 2.8, maka perhitungan tegangan dapat dituliskan sebagai berikut : Ujung kanan R1 adalah ground tegangan, jadi besarnya tegangan masukan adalah Vin = (2.3) Demikian pula, ujung kiri R2 terdapat ground tegangan, jadi besarnya tegangan keluaran adalah Vout = (2.4) Perolehan penguatan tegangan (AV) diperoleh dengan membagi Vout dengan Vin Av = atau Av = (2.5) Av adalah perolehan tegangan kalang tertutup (ACL). Ini disebut dengan perolehan tegangan kalang tertutup karena ini adalah tegangan tempat terdapat jalur umpan balik antara keluaran dan masukan. Karena umpan balik negatif, perolehan tegangan kalang tertutup ACL selalu lebih kecil daripada perolehan tegangan kalang terbuka AOL. Penguat pembalik memiliki arus yang sama dengan kedua resistor [4]. 2.3.2 Penguat Non-Pembalik Penguat non-pembalik menggunakan umpan balik negatif untuk menstabilkan perolehan tegangan keseluruhan. Dengan jenis penguat ini, umpan balik negatif juga menaikkan impedansi masukan dan menurunkan impedansi keluaran [4]. PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 18 Gambar 2.9. Penguat rangkaian non-pembalik [4] Gambar 2.9 menunjukkan rangkaian sebuah penguat non-pembalik. Sebuah tegangan masukan Vin menggerakkan masukan non-pembalik. Tegangan masukan ini diperkuat dan menghasilkan tegangan keluaran in-phase seperti yang ditunjukkan. Bagian dari tegangan keluaran diumpanbalikkan ke masukan melalui pembagi tegangan. Tegangan pada R1 adalah tegangan umpan balik yang diberikan ke masukan pembalik. Tegangan umpan balik ini besarnya hampir sama dengan tegangan masukan. Karena perolehan tegangan kalangterbuka yang tinggi, perbedaan V1 dan V2 menjadi sangat kecil. Karena tegangan umpan balik berlawanan dengan tegangan masukan, maka op-amp menghasilkan umpan balik negatif. Gambar 2.9 memperlihatkan sebuah hubungan singkat virtual antara terminal masukan penguat operasional. Hubungan singkat virtual menyebabkan tegangan masukan muncul pada R1, maka persamaan tegangan masukan dapat ditulis : Vin = I1 * R1 (2.6) Karena tidak ada arus yang mengalir melalui hubungan singkat virtual, arus I1 yang sama harus mengalir melalui R2, yang berarti bahwa tegangan keluar ditentukan oleh : Vout= I1(R2+R1) (2.7) Perolehan penguatan tegangan diperoleh dengan membagi Vout dengan Vin: ACL= atau (2.8) PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI ACL = ( )+1 19 (2.9) Tegangan masukan muncul pada R2 dan arus yang sama mengalir melalui resistor-resistor [4]. Beberapa contoh aplikasi rangkaian dengan op-amp [5] : 1. Op-amp sebagai penjumlah tegangan atau arus. 2. Op-amp sebagai konverter arus ke tegangan. 3. Op-amp sebagai konverter tegangan ke arus. 4. Op-amp sebagai buffer yang sempurna. 5. Op-amp sebagai pengurang. 6. Op-amp sebagai integrator. 7. Op-amp penguat suara. 8. Op-amp penguat video. 9. Op-amp penguat RF dan IF. 10. Op-amp regulator tegangan. 2.4 LED Infra merah LED infra merah (infra red) ini merupakan piranti yang sangat umum digunakan dalam suatu sistem instrumentasi. LED infra merah dapat didefenisikan sebagai alat pemberi sinyal pada sensor [1]. Sinar infra merah tidak terlihat oleh mata manusia. Dioda arsenide gallium merubah energi menjadi panas dan sinar infra merah. LED infra merah memiliki tegangan maju yang lebih tinggi daripada dioda silikon. LED infra merah bekerja di atas tegangan 0.7 V dan memiliki batas tegangan maju (VF) antara 1.5 V sampai 2.5 V tergantung dari tipe LED infra merah. LED infra merah memiliki 2 buah kaki yaitu kaki anoda (A) yang diberi masukan positif dan kaki katoda (K) yang diberi masukan negatif , untuk lebih jelasnya dapat dilihat pada Gambar 2.10 simbol LED infra merah [7]. PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 20 Gambar 2.10. Simbol Led Infra Merah [7] LED infra merah digunakan dalam sistem instrumen pengukuran kecepatan benda bergerak berupa cahaya yang memiliki panjang gelombang dan radiasi yang tajam. Adapun pemancar atau penembak cahaya yang dapat digunakan, seperti LED infra merah dan dioda laser. Prinsip kerja LED infra merah sama dengan LED biasa. Perbedaanya cahaya yang dipancarkan pada LED infra merah berupa cahaya tak tampak. LED infra merah memiliki arus maksimal sebesar 100mA. Kelemahan dari LED infra merah ini adalah daya jelajah yang tidak jauh hanya sekitar 7 – 8 meter dengan sudut radiasi sebesar 45° [10]. LED infra merah bekerja pada arus (IF) 20mA dengan tegangan maju (VF) antara 1.2 V sampai 1.5 V. Nilai resistor dari LED infra merah dihitung berdasarkan hukum ohm, persamaan untuk mencari nilai resistor LED infra merah adalah sebagai berikut [6] : R= (2.10) dengan VS adalah nilai tegangan masukan, VF adalah nilai tegangan maju, dan IF adalah arus LED infra merah. Mengingat tingkat keamanan LED infra merah, maka nilai arus (IF’) yang dipakai adalah 80 % dari nilai arus maksimum LED infra merah (IF). Cara menghitung nilai IF’ seperti yang ditunjukkan pada persamaan 2.11 [7]. IF’ = 80% * IF (2.11) 2.5 Fototransistor Fototransistor dalam sistem instrumentasi berfungsi sebagai sensor yang digunakan sebagai pendekteksi cahaya. Fototransistor yang paling sering dijumpai adalah transistor bipolar NPN dengan sambungan kolektor-basis PN yang peka cahaya. Apabila sambungan PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 21 tersebut dikenai cahaya melalui lensa yang membuka pada bungkus transistor, maka timbul aliran arus kontrol yang menghidupkan transistor ON. Aksi ini sama dengan yang terjadi pada arus basis emitor dari transistor NPN biasa. Fototransistor dapat sebagai alat dengan dua kaki atau tiga kaki. Dalam perancangan ini penulis menggunakan fototransistor dua kaki yaitu kaki kolektor yang diberi masukan positif dan kaki emitor yang diberi masukkan negatif [10]. Simbol fototransistor dapat dilihat pada Gambar 2.11. Kolektor Emiter Gambar 2.11. Simbol fototransistor [6] Fototransistor adalah sensor optic peka cahaya yang akan bertambah resistansinya bila terkena radiasi cahaya minimal 0,1 m W/sr pada sudut 200. Apabila tidak ada cahaya yang masuk pada lensa yang membuka, arus akan mengalir kecil antara kolektor dan emitor. Arus ini disebut arus gelap. Apabila cahaya mengenai sambungan PN kolektor-basis, maka arus basis yang dihasilkan berbanding langsung dengan intensitas cahaya. Aksi tersebut menghasilkan arus kolektor yang dikuatkan. Untuk arus basis yang dibangkitkan, fototransistor bertindak seperti transistor bipolar konvensional. Perubahan resistansinya dapat diketahui dengan cara mengukur perubahan tegangan pada keluarannya [10]. Fototransistor memiliki batas arus maksimal dan batas tegangan yang tergantung pada datasheet jenis fototransistor yang digunakan, oleh karena itu untuk tingkat keamanan fototransistor tahanan pembatas (resistor) perlu dipakai [6]. Nilai tahanan fototransistor (R) memakai perhitungan berdasarkan pada hukum ohm, persamaannya adalah sebagai berikut: R= dengan nilai resistor fototransistor simbolkan R, tegangan masukan adalah V, dan I sebagai arus maksimal fototransistor. (2.12) PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 22 2.6 LCD Liquid Crystal Display (LCD) merupakan salah satu perangkat penampil yang sekarang ini mulai banyak digunakan. Penampil LCD mulai menggantikan fungsi dari penampil Cathode Ray Tube (CRT), yang sudah berpuluh-puluh tahun digunakan manusia sebagai penampil gambar/text baik monokrom (hitam dan putih), maupun berwarna [1]. Terdapat 2 jenis LCD yaitu LCD karakter dan LCD grafik. LCD karakter adalah LCD yang tampilannya terbatas pada tampilan karakter, khususnya karakter ASCII (seperti karakter-karakter yang tercetak pada keyboard komputer). Sedangkan LCD grafik, adalah LCD yang tampilannya tidak terbatas, bahkan dapat menampilkan foto. LCD grafik inilah yang terus berkembang seperti layar LCD yang biasa dilihat di notebook/laptop [14]. Bentuk fisik LCD karakter dapat dilihat pada Gambar 2.12. Gambar 2.12. Bentuk fisik LCD karakter 16x2 [2] Jenis LCD yang beredar di pasaran biasa dituliskan dengan bilangan matriks dari jumlah karakter yang dapat dituliskan pada LCD tersebut, yaitu jumlah kolom karakter dikali jumlah baris karakter. Sebagai contoh, LCD 16x2, artinya terdapat 16 kolom dalam baris ruang karakter sehingga karakter yang dapat dituliskan adalah sebanyak 32 karakter [1]. Untuk lebih jelasnya baris dan kolom karakter LCD 16x2 ditunjukkan pada Gambar 2.13. BARIS BARIS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 KOLOM 1 KOLOM 16 Gambar 2.13. Baris dan kolom Karakter pada LCD 16x2 [14] LCD yang digunakan adalah jenis LCD yang menampilkan data dengan 2 baris tampilan pada display. Keuntungan dari LCD ini adalah [1]: PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 1. 23 Dapat menampilkan karakter ASCII, sehingga dapat memudahkan untuk membuat program tampilan. 2. Mudah dihubungkan dengan port I/O karena hanya menggunakan 8 bit data dan 3 bit control. 3. Ukuran modul yang proposional 4. Daya yang digunakan relatif kecil. Agar dapat mengendalikan LCD karakter dengan baik, koneksi yang benar tentu diperlukan. Untuk itu perlu diketahui pin-pin antarmuka yang dimiliki oleh LCD karakter seperti yang ditunjukkan pada Gambar 2.14 dan Tabel 2.5 LCD karakter yang beredar di pasaran memiliki 16 pin antarmuka. Gambar 2.14. Konfigurasi Kaki LCD 16x2 [13] Tabel 2.5. Konfigurasi kaki LCD 16x2 [1] Nomor PIN Simbol Fungsi 1 Vss GND 2 Vdd/Vcc +5V 3 Vee/Vo Kontras 4 RS Intruksi input/Data input 5 R/W Read/Write 6 E Enable signal 7 DB0 Data pin 0 8 DB1 Data pin 1 9 DB2 Data pin 2 10 DB3 Data pin 3 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 24 Tabel 2.5.(Lanjutan) Konfigurasi kaki LCD 16x2 [1] Nomor Simbol Fungsi 11 DB4 Data pin 4 12 DB5 Data pin 5 13 DB6 Data pin 6 14 DB7 Data pin 7 15 VB+ Back light (+5V) 16 VB- Back light (-5V) PIN Ada dua jenis antarmuka yang dapat digunakan dalam mengendalikan LCD karakter: 4 Bit, dan 8 Bit. Dalam antarmuka 4 Bit hanya membutuhkan empat pin data komunikasi data pararel, DB4 (pin 11) sampai DB7 (pin 14), yang dikoneksikan dengan rangkaian pengendali [1]. PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI BAB III PERANCANGAN PENELITIAN Bab III ini akan membahas mengenai perancangan perangkat keras dan perancangan perangkat lunak. 3.1 Perencanaan Sistem Perencanaan sistem ini membahas tentang kebutuhan-kebutuhan yang harus dipenuhi, agar alat ini dapat bekerja sesuai dengan apa yang direncanakan. Sistem penentuan jenis golongan darah manusia berbasis mikrokontroler AT-Mega8535 terdiri dari beberapa bagian yang saling berhubungan satu dengan yang lainnya. Untuk lebih jelasnya dapat dilihat pada Gambar 3.1 diagram blok sistem penentuan jenis golongan darah manusia. Kaca Preparat Sensor LED infra merah dan Fototransistor LCD 16x12(penampil) MIKROKONTROLER AT-Mega8535 Op-Amp IC LM741 Gambar 3.1. Diagram Blok Sistem Penentuan Jenis Golongan Darah Manusia 25 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 26 Sensor akan mengidentifikasi terjadinya proses aglutinasi pada kaca preparat yang telah diteteskan sampel darah manusia. Tegangan yang dihasilkan oleh sensor akan dikuatkan oleh op-amp LM741 dan dikirimkan untuk diolah ke dalam mikrokontroler AT-Mega8535 sehingga hasil pengolahan dapat ditampilkan pada penampil LCD 16x2. 3.2 Perancangan Mekanik Perancangan mekanik alat pendekteksi golongan darah manusia terdiri dari LCD, saklar ON/OFF, tombol start, tombol reset, kaca preparat, dan sensor. Desain mekanik tampak atas seperti ditunjukkan pada gambar 3.2 dan desain mekanik tampak samping ditunjukkan pada gambar 3.3. Gambar 3.2. Desain Mekanik Tampak Atas PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 27 Gambar 3.3. Desain Mekanik Tampak Samping Panjang badan alat adalah 35 cm dengan pembagian setiap bagian papan terdapat 2 sensor yang memiliki panjang 7.5 cm, jarak antara sensor setiap papannya 3 cm sehingga sisa jarak dipakai untuk memisahkan setiap papannya berjarak 1 cm. Jarak antara fototransistor, kaca preparat, dan LED infra merah masing-masing adalah 3 cm, lebih jelasnya jarak sensor dengan kaca preparat dapat dilihat pada Gambar 3.4 dan jarak antara sensor seperti terlihat pada Gambar 3.5. Gambar 3.4. Jarak sensor dengan kaca preparat PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 28 Gambar 3.5. Jarak antara sensor Jarak secara keseluruhan badan alat dapat dilihat pada Gambar 3.6 dengan perincian pada Tabel 3.1. Gambar 3.6. Jarak badan alat secara keseluruhan PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 29 Tabel 3.1. Tabel perincian jarak mekanik Komponen Jarak Keterangan Panjang 35 cm Lebar 15 cm Tinggi 10 cm LCD 3 cm 3 cm (tepi atas) dan 3 cm (tepi kiri) Saklar 3cm 3cm (tepi atas) dan 3 cm (tepi kanan) Start 3cm 3cm (tepi bawah) dan 8 cm (tepi Reset) Reset 3 cm 3 cm (tepi bawah) dan 3 cm(tepi kanan) 3.3 Perencanaan Perangkat Keras Ada beberapa bagian utama dalam perancangan subsistem perangkat alat penentuan jenis golongan darah manusia berbasis AT-Mega8535, yaitu meliputi rangkaian sensor sebagai input data, rangkaian penguat operasional sebagai penguat tegangan masukan, rangkaian mikrokontroler, dan rangkaian LCD 16x2 sebagai penampil. 3.3.1 Rangkaian Sensor Rangkaian sensor pada perancangan ini merupakan rangkaian paling utama dalam proses pengambilan data. Sensor dalam rangkaian ini menggunakan dua komponen yaitu LED infra merah dan fototransistor. LED infra merah memancarkan cahaya sehingga menembus sampel darah pada kaca preparat dan fototransistor digunakan untuk mendeteksi intensitas cahaya yang dipancarkan oleh LED infra merah. Rangkaian sensor dapat dilihat pada Gambar 3.7. Gambar 3.7. Rangkaian Sensor Darah PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 30 Keluaran dari fototransistor adalah tegangan yang dipengaruhi reaksi penggumpalan darah pada kaca preparat. Besarnya tegangan keluaran berbeda-beda, tergantung dari terjadi penggumpal darah jenis golongan darahnya. Dari hal ini dapat ditentukan jenis golongan darahnya apakah golongan darah A,B,AB, dan O. Rangkaian sensor darah dalam perancangan ini membutuhkan 8 buah sensor untuk 4 sampel darah manusia, dengan pembagian masing-masing 2 buah sensor menguji 1 sampel darah. Keluaran sensor yang telah dikuatkan oleh op-amp dihubungkan ke pin mikrokontroler AT-Mega8535 yaitu PORT A (ADC). Konfigurasi keluaran sensor ke mikrokontroler AT-Mega8535 ditunjukkan seperti pada Tabel 3.2. Tabel 3.2. Konfigurasi Keluaran Sensor Ke Mikrokontroler ATmega8535 Keluaran Sensor Port ATmega 8535 Sensor 1 PA0 (ADC0) Sensor 2 PA1 (ADC1) Sensor 3 PA2 (ADC2) Sensor 4 PA3 (ADC3) Sensor 5 PA4 (ADC4) Sensor 6 PA5 (ADC5) Sensor 7 PA6 (ADC6) Sensor 8 PA7 (ADC7) Fototransistor yang digunakan dalam perancangan tidak memiliki kepekaan yang sama, maka keluaran fototransistor perlu ditambahkan resistor variabel (Rvar), sehingga nilai tegangan pada keluaran semua sensor menjadi sama. Nilai resistor variabel (trimpot) yang digunakan dalam perancangan rangkaian sensor sebesar 5KΩ. Nilai R1 dan R2 dihitung berdasarkan pada persamaan 2.10 dan persamaan 2.12. Untuk tingkat keamanan nilai arus yang melewati fototransistor (IR1), nilai arus IR1 akan dikurangi menjadi 80% berdasarkan pada persamaan 2.11. Perhitungan nilai IR1, R1 dan R2 adalah sebagai berikut : Perhitungan nilai aman arus pada LED infra merah (IF’) : IR1 = 80% * IF IR1 = 0.8 * 20 mA IR1 = 16 mA PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 31 Setelah nilai aman arus LED infra merah (IR1) didapat, maka perhitungan nilai resistor LED infra merah (R1) adalah : R1 = R1 = R1 = 218.75 ohm nilai resistor yang ada dipasaran adalah 220 ohm. Perhitungan nilai resistor fototransistor (R2) : R2 = R2 = R2 = 1250 ohm nilai resistor yang ada dipasaran adalah 1200 ohm. 3.2.2 Rangkaian konfigurasi Penguat Tegangan Tegangan keluaran dari fototransistor masih sangat kecil untuk dipakai secara langsung. Tegangan ini perlu diperkuat oleh sebuah rangkaian penguat tegangan. Rangkaian penguat yang dipakai adalah sebuah penguat operasional yang di konfigurasikan sebagai penguat tidak-pembalik (non-inverting). Dalam perancangan ini, penulis menggunakan IC LM741, yang dapat dilihat pada Gambar 3.8. Gambar 3.8. Rangkaian op-amp penguat sensor [5] PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 32 Seperti terlihat pada Gambar 3.8 masukan op-amp dihubungkan ke keluaran sensor sedangkan keluaran op-amp dihubungkan ke Port A (ADC) mikrokontroler AT-Mega8535. Konfigurasi pin-pin keluaran op-amp dapat di lihat pada Tabel 3.1. Dalam perancangan rangkaian sensor darah menghasilkan tegangan keluaran sebesar 0.1 V, sehingga membutuhkan penguatan sebanyak 40 kali. Berdasarkan pada persamaan 2.9, perhitungan nilai penguatan tegangan adalah sebagai berikut : ACL = 1+ ACL = 1 + = 40 x Voutput = Vinput * ACL Voutput = 0.1 V * 40x = 4 Volt Sehingga nilai tegangan keluaran dari penguat operasional (op-amp) adalah 4 Volt. 3.3.3 Rangkaian konfigurasi LCD 16x2 Dengan menggunakan informasi pada Tabel 2.2, rangkaian pendukung LCD 16x2 dapat dibuat seperti pada Gambar 3.9. Penentuan konfigurasi kaki LCD menuju mikrokontroler ditentukan dengan melihat pada software compiler yang digunakan (Code Vision AVR) seperti yang ditunjukkan pada Gambar 3.10. Gambar 3.9. Rangkaian LCD 16x2 [9] PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 33 Gambar 3.10. Pengaturan Port LCD Pada Code Vision AVR [9] 3.3.4 Rangkaian Mikrokontroler Rangkaian mikrrokontroler akan mengolah data dari sensor dan menampilkan di LCD 16x12 (Display). Mikrokontroler membutuhkan sistem minimum yang terdiri dari rangkaian eksternal yaitu rangkaian osilator dan rangkaian reset. 3.3.4.1 Rangkaian Osilator Rangkaian osilator ini berfungsi sebagai sumber clock bagi mikrokontroler. Rangkaian osilator menggunakan crystal dengan frekuensi sebesar 11,0592 MHz dan menggunakan kapasitor 22pf pada pin XTAL1 dan XTAL2 di mikrokontroler seperti yang terlihat pada gambar 3.11. Pemberian kapasitor bertujuan untuk memperbaiki kestabilan frekuensi yang diberikan oleh osilator eksternal [9]. Gambar 3.11. Rangkaian Osilator AT-Mega8535 [9] PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 34 3.3.4.2 Rangkaian Reset Perancangan rangkaian reset bertujuan untuk memaksa proses kerja pada mikrokontroler dapat diulang dari awal. Saat tombol reset ditekan, mikrokontroler mendapat input logika rendah, sehingga akan menghentikan seluruh proses yang sedang dilakukan mikrokontroler. Gambar 3.12 menunjukan rangkaian reset untuk AT-Mega8535. Gambar 3.12. Rangkaian Reset AT-Mega8535 [9] Resistor dan kapasitor berfungsi untuk tunda waktu tegangan yang masuk ke reset. Waktu yang dibutuhkan untuk reset eksternal tidak sama dengan waktu masukan VCC, sehingga waktu reset diberikan setelah waktu pengisian kapasitor sebagai jedanya. Untuk memperoleh waktu pengisian 47us dengan menggunakan kapasitor sebesar 10nF, nilai resistor minimum dapat dihitung dengan persamaan : T=R*C Maka R = 47us/10nF = 4700 Ω Perancangan penggunaan port sebagai masukan dan keluaran pada AT-Mega8535 disesuaikan dengan kebutuhan, untuk konfigurasi port AT-Mega8535 dapat dilihat pada Tabel 3.3 yang disesuaikan dengan minimum sistem AT-Mega8535 seperti pada Gambar 3.13. PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 35 Tabel 3.3. Penggunaan Port Pada Mikrokontroler FUNGSI INPUT OUTPUT Hardware Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 LCD PORT Mikro PORTA.0 PORTA.1 PORTA.2 PORTA.3 PORTA.4 PORTA.5 PORTA.6 PORTA.7 PORTB. 0-7 Gambar 3.13. Sistem Minimun AT-Mega8535 [9] Konfigurasi port dan gambar rangkaian sensor dapat dilihat pada Tabel 3.1 dan Gambar 3.7, sedangkan untuk konfigurasi port LCD 16x2 dapat di lihat pada Gambar 3.10. PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 36 3.4 Perancangan Perangkat Lunak Perancangan perangkat lunak merupakan tahap pembuatan program yang nantinya difungsikan untuk menjalankan rancangan alat agar sesuai dengan tujuannya. Gambar 3.14 menunjukkan program dimulai dengan inisialisasi hardware yang berhubungan dengan sistem, antara lain AT-Mega8535, sensor, dan LCD. Setelah menginisialisasi, sensor mulai melakukan pembacaaan data dengan scan sampel darah yang diujikan. Data analog yang dihasilkan oleh sensor kemudian akan dikonversi menjadi digital pada ADC yang telah terintregrasi secara internal pada mikrokontroler AT-Mega8535. Proses selanjutnya adalah data yang telah dikonversikan akan diproses dan kemudian akan ditampilkan di LCD berupa nama sensor beserta hasil golongan darah. Setelah itu proses dilanjutkan dengan mengambil data berikutnya secara bergantian. START Inisialisasi Konfigurasi Umum ATMega8535 PORTA>>SENSOR PORTC>>LCD Scan Sampel Darah Oleh Sensor YA Olah Data ADC di ATMega8535 Menampilkan Hasil di LCD Ambil Data Lagi ? TIDAK STOP Gambar 3.14. Diagram Alir Utama PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 37 3.4.1 Perangkat lunak Scan Sampel Darah Perangkat lunak ini berguna untuk mendeteksi sampel darah yang dibaca oleh sensor. Proses diawali dengan menginisialisasi konfigurasi umum AT-Mega8535 termasuk pada port masukan maupun port keluaran. Sensor akan membaca data lalu dikirimkan untuk diproses, sampel darah akan dicek sesuai dengan program yang telah dimasukkan di dalam mikrokontroler. Jika bukan golongan darah A, maka proses dilanjutkan dengan pengecekan golongan darah lainnya, tetapi jika data yang dimasukkan sesuai maka hasil akan ditampilkan pada LCD. Diagram alir Scan sampel darah dapat dilihat pada Gambar 3.15. START Inisialisasi Konfigurasi PORTA>>SENSOR PORTC>>LCD TIDAK CEK SAMPEL DARAH YA CEK GOLONGAN DARAH A YA TIDAK CEK GOLONGAN DARAH B TIDAK YA CEK GOLONGAN DARAH AB YA TAMPILKAN KE LCD Gambar 3.15. Diagram Alir Scan Sampel Darah TIDAK CEK GOLONGAN DARAH O YA PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 38 3.4.2 Perangkat Lunak Pengolahan Data ADC Pada AT-Mega8535 Perangkat lunak ini berguna untuk mengubah sinyal analog menjadi sinyal digital agar dapat diproses didalam mikrokontroler AT-Mega 8535. Proses penginisialisasi ADC terjadi di PORT A sedangkan inisialisasi LCD di PORT C. Data berupa tegangan dikonversi ke dalam ADC (Vin), akan dibandingkan dengan tegangan yang telah ditetapkan (Vref) di dalam Mikrokontroler AT-Mega8535. Jika Vin>=Vref maka data tersebut berlogika 1 sedangkan jika Vin<Vref maka data berlogika 0, perbandingan antar logika 1 dan logika 0 akan diproses dan ditampilkan hasil berupa jenis golongan darah di penampil LCD. Dalam perancangan ini tegangan referensi (Vref) yang digunakan sebesar 2.56 Volt, diambil dari tegangan referensi dalam AT-Mega8535. Diagram alir mengolah data ADC pada AT-Mega8535 dapat dilihat pada Gambar 3.16. START Inisialisasi Konfigurasi ATMega8535 PORTA>>SENSOR PORTC>>LCD Data analog Sensor (Tegangan) Proses ADC Vref = 2.56 Volt Sensor 1 Sensor 2 YA Vin >= Vref = LOGIKA 1 Vin < Vref = LOGIKA 0 Vin >= Vref = LOGIKA 1 Vin < Vref = LOGIKA 0 Pengolahan Hasil Logika Saklar RESET Ditampilkan ke LCD Logika Logika Logika Logika 10 01 11 00 = = = = Gol.Darah A Gol.Darah B Gol.Darah AB Gol. Darah O TIDAK STOP Gambar 3.16. Diagram Alir Mengolah Data ADC Pada AT-Mega8535 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI BAB IV HASIL DAN PEMBAHASAN Bab IV ini akan membahas mengenai hasil pengujian alat yang telah dibuat. Tujuan pengujian ini adalah untuk membuktikan sistem yang diimplementasikan telah memenuhi spesifikasi yang telah direncanakan sebelumnya. Hasil pengujian akan dimanfaatkan untuk menyempurnakan kinerja sistem alat dan sekaligus digunakan untuk pengembangan lebih lanjut. Tahap pengujian sampel golongan darah manusia dapat dilihat pada Gambar 4.1. Gambar 4.1. Tahap Pengujian Sampel Golongan Darah Manusia Alat ini mempunyai fungsi sebagai penentu jenis golongan darah manusia, dengan masukan data melalui sensor dan dapat ditampilkan pada LCD 16x2. Tahap pengujian alat 39 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 40 dilakukan dengan menempatkan sampel darah dengan anti reagen A pada titik 1 kaca preparat dan anti reagen B pada titik 2 kaca preparat. Langkah selanjutnya letakkan kaca preparat diantara sensor LED infra merah dan sensor fototransistor, kemudian tekan tombol start. Tunggu beberapa saat, sensor akan membaca sampel darah dan menghasilkan tegangan yang akan dikuatkan oleh Op-Amp. Tegangan yang telah dikuatkan oleh Op-Amp akan dikirimkan ke mikrokontroler AT-Mega8535 untuk diproses sehingga dapat ditampilkan pada penampil LCD 16x2. Penempatan letak tombol start, tombol stop, saklar on/off dan LCD 16x2 pada perangkat keras dapat dilihat pada Gambar 4.2. Gambar 4.2. Penempatan Letak Tombol Start/stop, Saklar On/off Dan LCD 16x2 Pada Perangkat Keras. Ada beberapa tahap pengujian yang dilakukan untuk mengetahui tingkat keberhasilan alat yang dibuat yaitu : 1. Pengujian rangkaian sensor 2. Pengujian rangkaian LCD 16x2 3. Pengujian rangkaian pengendali/pengontrol 4. Pengujian sistem keseluruhan 4.1 Pengujian Rangkaian Sensor Bagian utama dari perangkat ini adalah sensor darah yang meliputi LED infra merah dan fototransistor. Sensor darah diperlukan untuk mendekteksi proses aglutinasi pada dua titik sampel darah yang diujikan. LED infra merah akan memancarkan cahaya yang akan menembus sampel darah dan sebuah fototransistor diperlukan untuk menerima cahaya dari LED infra merah yang telah menembus sampel darah. Pengujian dilakukan dengan cara menghalangi sinar yang dipancarkan oleh LED infra merah menuju fototransistor PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 41 menggunakan benda padat sehingga perbedaaan nilai tegangan yang diukur dapat diketahui. Dalam pengujian ini benda padat yang digunakan adalah kertas yang tak tembus oleh cahaya. Nilai tegangan dc yang diukur pada keluaran sensor penerima fototransistor telah dikuatkan oleh Op-Amp. Keterangan letak sensor dan kaca preparat pada perangkat keras dapat dilihat pada Gambar 4.3. Gambar 4.3. Keterangan Letak Sensor Dan Kaca Preparat Pada Perangkat Keras Untuk mendapatkan nilai tegangan rata-rata setiap sensor maka dilakukan pengambilan data dari keluaran fototransistor sebanyak 10 kali pengujian. Data yang diambil dari keluaran sensor fototransistor berupa nilai tegangan DC. Pengukuran nilai tegangan keluaran sensor penerima fototransistor dapat dilihat pada Tabel 4.1. Tabel 4.1. Pengukuran Nilai Tegangan Keluaran Sensor Pengujian Pengujian Tegangan ke A1 A2 B1 B2 C1 C2 D1 D2 1 0.02 V 0.06 V 0.07 V 0.10 V 0.25 V 0.20 V 0.13 V 0.19 V 2 0.01 V 0.03 V 0.03 V 0.05 V 0.20 V 0.20 V 0.47 V 0.41 V 3 0.04 V 0.10 V 0.03 V 0.06 V 0.55 V 0.52 V 0.08 V 0.11 V 4 0.01 V 0.02 V 0.03 V 0.07 V 0.20 V 0.19 V 0.15 V 0.23 V 5 0.04 V 0.12 V 0.03 V 0.06 V 0.18 V 0.18 V 0.07 V 0.10 V 6 0.02 V 0.05 V 0.03 V 0.07 V 0.23 V 0.20 V 0.18 V 0.25 V 7 0.06 V 0.14 V 0.08 V 0.11 V 0.29 V 0.14 V 0.04 V 0.05 V 8 0.03 V 0.07 V 0.17 V 0.23 V 0.15 V 0.16 V 0.18 V 0.26 V (Volt) Terhalang Sensor PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 42 Tabel 4.1. (Lanjutan) Pengukuran Nilai Tegangan Keluaran Sensor Pengujian Pengujian Tegangan Sensor ke A1 A2 B1 B2 C1 C2 D1 D2 9 0.05 V 0.11 V 0.16 V 0.22 V 0.15 V 0.15 V 0.06 V 0.09 V 10 0.03 V 0.06 V 0.09 V 0.12 V 0.13 V 0.12 V 0.05 V 0.07 V Tak 1 2.56 V 2.22 V 2.48 V 1.55 V 1.83 V 1.04 V 2.40 V 2.34 V Terhalang 2 2.55 V 2.21 V 2.47 V 1.54 V 1.80 V 1.03 V 2.38 V 2.34 V 3 2.55 V 2.21 V 2.47 V 1.54 V 1.79 V 1.03 V 2.38 V 2.33 V 4 2.55 V 2.22 V 2.59 V 1.73 V 1.79 V 1.02 V 2.45 V 2.43 V 5 2.56 V 2.23 V 2.47 V 1.55 V 1.78 V 1.02 V 2.47 V 2.46 V 6 2.55 V 2.20 V 2.60 V 1.75 V 1.99 V 1.21 V 2.40 V 2.36 V 7 2.54 V 2.19 V 2.47 V 1.55 V 1.88 V 1.11 V 2.50 V 2.49 V 8 2.54 V 2.19 V 2.47 V 1.55 V 2.09 V 1.30 V 2.53 V 2.55 V 9 2.56 V 2.25 V 2.47 V 1.55 V 2.05 V 1.26 V 2.44 V 2.41 V 10 2.54 V 2.20 V 2.48 V 1.56 V 1.86 V 1.09 V 2.40 V 2.36 V (Volt) Dari pengujian yang dilakukan pada Tabel 4.1 terlihat nilai keluaran tegangan dari setiap sensor berbeda-beda, hal ini disebabkan karakteristik setiap sensor tidak sama dan juga dipengaruhi oleh intensitas cahaya yang masuk dari luar . Berdasarkan hasil pengukuran nilai tegangan yang diperoleh pada Tabel 4.1, nilai tegangan rata-rata setiap sensor dapat ditentukan dengan menggunakan persamaan berikut ini : Vrata-rata = ……………………………….(4.1) Dari persamaan 4.1 nilai tegangan rata-rata didapat dari jumlah nilai tegangan 10 kali pengujian terhadap sensor dibagi jumlah pengujian sebanyak 10 kali. Dari perhitungan yang dilakukan maka didapatkan nilai tegangan rata-rata setiap sensor. Untuk lebih jelasnya nilai tegangan rata-rata setiap sensor dapat dilihat pada Tabel 4.2. PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 43 Tabel 4.2. Nilai Tegangan Rata-Rata Setiap Sensor Sensor Tidak Terhalang Terhalang A1 2.58 Volt 0.02 Volt A2 2.24 Volt 0.05 Volt B1 1.96 Volt 0.13 Volt B2 1.59 Volt 0.23 Volt C1 1.62 Volt 0.12 Volt C2 1.00 Volt 0.12 Volt D1 2.37 Volt 0.19 Volt D2 2.33 Volt 0.26 Volt Nilai tegangan sensor saat terhalang akan lebih kecil dibandingkan dengan nilai tegangan sensor saat tidak terhalang . Ketika sensor terhalang, sinar yang diterima oleh fototransistor akan berkurang sehingga menghasilkan tegangan yang sangat kecil, begitupun sebaliknya saat sensor tidak terhalang maka sinar yang diterima oleh fototransistor bertambah banyak sehingga tegangan yang dihasilkan bertambah besar. Cara pengujian sensor dapat dilihat pada Gambar 4.4 saat sensor tidak terhalang dan pada saat sensor terhalang dapat dilihat pada Gambar 4.5 dan Gambar 4.6. Pegukuran nilai tegangan sensor dilakukan menggunakan rumus ADC yang ditampilkan pada penampil LCD 16x2. Untuk lebih jelasnya pengukuran nilai ADC dan tegangan sensor dapat dilihat pada Gambar 4.7 saat sensor tidak terhalang dan Gambar 4.8 saat sensor terhalang. Gambar 4.4. Sensor Tidak Terhalang PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Gambar 4.5.Sensor Dibuat terhalang Sensor A1 dan A2 Sensor C1 dan C2 Gambar 4.6. Semua Sensor Terhalang Sensor B1 dan B2 Sensor D1 dan D Gambar 4.7. Pengukuran Nilai ADC Dan Tegangan Sensor Saat Tidak Terhalang Sensor A1 dan A2 44 Sensor B1 dan B2 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Sensor C1 dan C2 45 Sensor D1 dan D2 Gambar 4.8. Pengukuran Nilai ADC Dan Tegangan Keluaran Sensor Saat Terhalang Pengukuran nilai tegangan menggunakan rumus ADC yang diproses oleh mikrokontroler dan ditampilkan pada penampil LCD 16x2. Rumus ADC yang digunakan dalam pengujian nilai tegangan sensor adalah sebagai berikut [2]: Nilai ADC = Nilai Vin = ………………………………......................(4.2) x Vref…………..………………………………(4.3) Terlihat pada Gambar 4.7 tegangan yang didapatkan pada sensor yang tidak terhalang lebih besar dibanding tegangan pada sensor yang terhalang, seperti pada Gambar 4.8. Hal ini membuktikan bahwa sensor A1, sensor A2, sensor B1, sensor B2, sensor C1, sensor C2, sensor D1, dan sensor D2 dapat bekerja dengan baik. 4.2 Pengujian Rangkaian LCD 16x2 Rangkaian LCD 16x2 digunakan untuk menampilkan data golongan darah manusia yang mampu menampilkan 16 kolom dan 2 baris karakter . Untuk melakukan pengujian LCD, program harus didownload ke mikrokontroler. Setelah program didownload ke mikrokontroler AT-Mega8535, pertama program akan mengeksekusi konfigurasi LCD agar dapat menampilkan data, setelah proses pembacaan konfigurasi LCD barulah LCD dapat menampilkan data pesan sesuai dengan karakter yang dimasukkan. Contoh list kode program LCD dapat dilihat pada Tabel 4.3. PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 46 Tabel 4.3. List Kode Program Konfigurasi Dan Perintah LCD 16x2 Listkode Program Keterangan 'konfigurasi pin LCD Config Lcdpin = Pin , Db4 = Portb.4 , Db5 = Portb.5 Konfigurasi port LCD ke mikrokontroler AT- Db6 = Portb.6 Mega8535 Config Lcdpin = Pin , Db7 = Portb.7 , E = Portb.3 , Rs = Portb.2 Config Lcd = 16 * 2 Konfigurasi LCD 16x2 Cursor Off Kursor mati Main: Menampilkan karakter pesan pada LCD Locate 1 , 2 : Lcd " +CREATED+ " Karakter pesan pada baris 1 kolom 2 Locate 2 , 1 : Lcd "By Theo Lering" Karakter pesan pada baris 2 kolom 1 Dari list kode program terlihat port yang digunakan untuk menghubungkan LCD 16x2 ke mikrokontroler AT-Mega8535 adalah port B. Perintah penampil awal pada kolom 1 baris 2 adalah karakter “+ CREATED +” dan pada baris 2 kolom 1 adalah karakter “By Theo Lering”. Dari hasil pengujian LCD 16x2 bisa menampilkan karakter dengan sangat baik. Hasil pengujian tampilan awal pada penampil LCD 16x2 dapat dilihat pada Gambar 4.9. Gambar 4.9. Tampilan Awal Pada Penampil LCD 16x2 4.3 Pengujian Rangkaian Pengendali/Pengontrol Pada rangkaian pengendali atau pengontrol akan dilakukan pengujian pada rangkaian mikrokontroler. Mikrokontroler merupakan pemorses data utama dalam perancangan ini. Mikrokontroler yang digunakan dalam rangkaian pengendali/pengontrol ini adalah ATMega8535, yang pengujiannya dilakukan dengan menghubungkan port ke beberapa PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 47 rangkaian. Port mikrokontroler AT-Mega 8535 yang digunakan dalam perancangan dapat dilihat pada Tabel 4.4. Tabel 4.4. Port Mikrokontroler AT-Mega8535 Port AT-Mega8535 Rangkaian Port A Sensor Port B LCD 16x2 Port C.2 Tombol Stop Port C.3 Tombol Start Pengujian rangkaian pengendali/pengontrol dilakukan pada tombol start dan tombol stop. Ketika tombol perintah pada perangkat keras ditekan (tombol start dan tombol stop) mikrokontroler akan memproses perintah program dan menampilkan data pada penampil LCD. Untuk lebih jelasnya hasil pengujian tombol start dan tombol stop pada LCD 16x2 dapat dilihat pada Gambar 4.10 dan Gambar 4.11. Gambar 4.10. Hasil Pengujian Tombol Start Pada LCD 16x2 Gambar 4.11. Hasil Pengujian Tombol Stop Pada LCD 16x2 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 48 Terlihat pada Gambar 4.10 ketika tombol start aktif, LCD akan menampilkan hasil berupa data golongan darah sesuai dengan perintah program pada mikrokontroler, sedangkan ketika tombol stop aktif, seperti yang ditunjukkan pada Gambar 4.11 maka LCD akan menampilkan karakter “THANK YOU” pada baris ke 1 dan karakter “GOD BLESSING” pada baris ke 2, setelah karakter ditampilkan mikrokontroler akan menghentikan sistem program secara keseluruhan . Dari hasil pengujian yang dilakukan menunjukan rangkaian pengendali/pengontrol bekerja dengan baik. List kode program tombol start dan stop dapat dilihat pada Tabel 4.5. Tabel 4.5. List Kode Program Tombol Start Dan Tombol Stop List kodeProgram ‘sub berhenti Berhenti: Cls Locate 1 , 16 Lcd Chr(1) ; "THANK YOU" ; Chr(1) Locate 2 , 14 Lcd Chr(1) ; "GOD BLESSING" ; Chr(1) For Kiri = 1 To 12 Shiftlcd Left Waitms 20 Next End ‘sub utama Utama: Locate 1 , 1 : Lcd " Golongan Darah " Call Sensor_a() Call Sensor_b() Call Sensor_c() Call Sensor_d() Return Do If Pinc.2 = 0 Then Gosub Utama If Pinc.3 = 0 Then Gosub Berhenti Loop End Keterangan Perintah program saat tombol stop aktif Membersihkan karakter LCD Baris 1 kolom 16 Karakter (+) dan tulisan “THANK YOU” Baris 2 kolom 14 Karakter (+) dan tulisan “GOD BLESSING” Geser kekiri sebanyak 12 kali Waktu 20 milisecon Perintah menghentikan program Perintah program saat tombol start aktif Menampilkan tulisan pada baris 1 kolom 1 Memanggil sensor_a Memanggil sensor_b Memanggil sensor_c Memanggil sensor_d Tombol Start Tombol Stop PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 49 4.4 Pengujian Sistem Keseluruhan Pengujian secara keseluruhan merupakan tahap akhir dari pengujian. Semua bagian dari perangkat keras dihubungkan dan data golongan darah manusia ditampilkan pada penampil hasil LCD 16x2. Supaya komponen pendukung dapat saling berkomunikasi program secara keseluruhan didownload ke mikrokontroler terlebih dahulu. Adapun beberapa tahapan yang harus dilakukan untuk menguji sistem secara keseluruhan. Tahap pertama perangkat keras dihubungkan ke tegangan sumber, maka mikrokontroler akan memproses perintah program awal berupa pesan karakter pada LCD 16x2 berupa karakter “+ CREATED +” pada baris pertama dan karakter “By Theo Lering” pada baris kedua. Tampilan awal pada penampil LCD 16x2 dapat dilihat pada Gambar 4.9. Selanjutnya mikrokontroler akan memproses dan menjalankan data yang dikirimkan oleh setiap sensor. Data yang dibaca oleh sensor berupa tegangan DC. Tampilan pada penampil LCD 16x2 saat siap membaca data berupa tulisan pesan karakter yaitu karakter “Tekan” pada baris pertama dan karakter “Tombol Start” pada baris kedua. Tampilan pada penampil LCD 16x2 saat siap membaca data dari sensor dapat dilihat pada Gambar 4.12. Gambar 4.12. Tampilan Pada Penampil LCD 16x2 Saat Siap Membaca Data Dari Sensor Tahap kedua yaitu meneteskan darah manusia yang akan diujikan pada pada kaca preparat. Terdapat 2 titik darah pada setiap kaca preparat, titik A untuk untuk darah yang dicampur anti reagen A dan titik B untuk darah yang akan dicampur anti reagen B. Titik darah dan titik anti reagen pada kaca preparat dapat dilihat pada Gambar 4.13. PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 50 Gambar 4.13. Titik Darah Dan Titik Anti Reagen Pada Kaca Preparat Setelah darah dan anti reagen dicampur pada masing-masing titik, maka sampel darah pada kaca preparat ditempatkan pada setiap sensor. Dalam penelitian ini menggunakan 4 buah kaca preparat yang masing-masing preparat menguji jenis golongan darah untuk 1 sampel darah manusia. Untuk lebih jelasnya penempatan kaca preparat pada sensor dapat dilihat pada Gambar 4.3. Tahap ketiga adalah proses pembacaan sampel darah oleh sensor lalu dikirimkan ke mikrokontroler AT-Mega8535 untuk diproses. Data yang dikirimkan oleh sensor ke mikrokontroler berupa nilai tegangan ADC. Nilai tegangan sensor bergantung pada ada tidaknya proses aglutinasi pada sampel darah. Untuk lebih jelasnya dapat dilihat pada Gambar 4.14 ketika darah mengalami proses aglutinasi dan darah tidak mengalami proses aglutinasi. Gambar 4.14. Proses Aglutinasi Pada Sampel Darah Ketika darah tidak mengalami proses aglutinasi maka tegangan dari sensor akan mengecil, begitupun sebaliknya ketika terjadi proses aglutinasi maka tegangan dari sensor akan membesar. Batas nilai tegangan setiap sensor berbeda-beda, hal ini dikarenakan PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 51 karakteristik setiap sensor tidak sama dan ketepatan titik setiap sensor tidak akurat sehingga tegangan yang didapatkan tidak maksimal. untuk menentukan nilai tegangan referensi setiap sensor, maka diambil nilai tengah setiap sensor saat terhalang dan tidak terhalang. Nilai Tegangan Referensi setiap sensor dapat dlihat pada Tabel 4.6. Tabel 4.6. Nilai Tegangan Referensi Setiap Sensor Nama Sensor Tegangan Rata-Rata Terhalang Tidak Tegangan Referensi Terhalang Sensor A1 2.58 Volt 0.02 Volt 1.30 Volt Sensor A2 2.24 Volt 0.05 Volt 1.15 Volt Sensor B1 1.96 Volt 0.13 Volt 1.05 Volt Sensor B2 1.59 Volt 0.23 Volt 0.91 Volt Sensor C1 1.62 Volt 0.12 Volt 1.74 Volt Sensor C2 1.00 Volt 0.12 Volt 0.56 Volt Sensor D1 2.37 Volt 0.19 Volt 1.28 Volt Sensor D2 2.33 Volt 0.26 Volt 1.30 Volt Nilai pada Tabel 4.5 didapat nilai tengah tegangan rata-rata antara sensor saat terhalang dan saat sensor tidak terhalang. Untuk persamaan perhitungan nilai tegangan referensi sensor adalah sebagai berikut : Vref = …………(4.4) Seperti pada sensor A1 nilai tegangan rata-rata sensor saat terhalang sebesar 2.58 Volt dan saat tidak terhalang sebesar 0.02 Volt. Maka perhitungan nilai tegangan referensi sensor A1 adalah sebagai berikut : Vref = Vref = 1.30 V PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 52 Berdasarkan perhitungan diatas, maka didapatkan nilai tegangan referensi untuk sensor A1 adalah sebesar 1.30 Volt. Perhitungan ini juga berlaku untuk sensor lainnya, seperti yang terlihat pada Tabel 4.6. Tahap berikutnya adalah melakukan perhitungan nilai tegangan saat terjadi proses aglutinasi dan saat tidak terjadi proses aglutinasi pada sampel darah karen penentuan jenis golongan darah bergantung pada ada tidaknya proses aglutinasi pada sampel darah yang diujikan. Nilai tegangan yang didapatkan dari keluaran sensor dipengaruhi oleh proses aglutinasi, sehingga perlu ditentukan batas nilai tegangan keluaran setiap sensor saat terjadinya proses aglutinasi darah. Untuk lebih jelasnya batas nilai tegangan referensi saat tidak terjadi proses aglutinasi dan saat terjadi proses aglutinasi dapat dilihat pada Tabel 4.7. Tabel 4.7. Batas Nilai Tegangan Referensi Proses Aglutinsi Sensor Nilai Tegangan Referensi Aglutinasi Tidak Aglutinasi Sensor A1 > 1.30 Volt < 1.30 Volt Sensor A2 > 1.15 Volt < 1.15 Volt Sensor B1 > 1.05 Volt < 1.05 Volt Sensor B2 > 0.91 Volt < 0.91 Volt Sensor C1 > 1.74 Volt < 1.74 Volt Sensor C2 > 0.56 Volt < 0.56 Volt Sensor D1 > 1.28 Volt < 1.28 Volt Sensor D2 > 1.30 Volt < 1.30 Volt Terlihat pada Tabel 4.7 darah mengalami proses aglutinasi jika nilai tegangan keluaran sensor melebihi nilai tegangan referensi sensor dan jika darah tidak mengalami proses aglutinasi maka nilai tegangan keluaran sensor lebih kecil dari nilai tegangan referensi sensor. Seperti yang terlihat pada Tabel 4.7, jika darah mengalami proses aglutinasi maka nilai tegangan keluaran sensor A1 akan melebihi batas nilai tegangan referensi yaitu sebesar 1,3 Volt dan jika nilai tegangan keluaran sensor A1 kurang dari 1,30 volt maka sampel darah tidak mengalami proses aglutinasi. Berikut ini adalah nilai tegangan keluaran sensor yang diambil dari sampel darah manusia. Data tegangan dari keluaran sensor dapat dilihat pada Tabel 4.8. PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 53 Tabel 4.8. Data Tegangan DC Keluaran Sensor Ke Mikrokontroler Nilai Tegangan Nama Sampel Darah Keterangan Sensor Titik 1 Titik 2 Melia Restyanty PBI / 2007 Sensor A 1.57 V 1.04 V Cornelius Florry Saputra TI / 2006 Sensor B 1.05 V 1.40 V Kristianto Wibison So INSTIPER / 2011 Sensor C 1.65 V 0.60 V Totok Dwi Apriyanto TI / 2006 Sensor D 0.99 V 0.99 V Ricky Roland Manurung TE / 2006 Sensor A 0.44 V 1.58 V Heripson Samuel TM / 2011 Sensor B 1.17 V 1.37 V Kristianto Wibison So INSTIPER / 2011 Sensor C 1.70 V 0.49 V Aris Nugroh TM / 2005 Sensor D 0.45 V 0.47 V Virgilius Y.C. Jelarut UPN / 2008 Sensor A 1.37 V 0.90 V Dwi Elok P. Ningtyas BK / 2008 Sensor B 1.43 V 0.63 V Benediktus Y. Adipradana TI / 2006 Sensor C 0.97 V 0.40 V Yulius Djangga Bewa RESPATI / 2005 Sensor D 0.99 V 1.66 V Dari Tabel 4.8 diatas terlihat bahwa ada perbedaan tegangan ketika terjadi proses aglutinasi pada sampel darah. Seperti pada sampel darah “Cornelius Florry Saputra” terlihat pada sensor B titik 1 tegangan yang didapatkan sebesar 1.05 V dan pada titik 2 tegangan sebesar 1.40 V. Dari nilai tegangan yang didapatkan menunjukan terjadi proses aglutinasi pada titik 1 dan tidak terjadi aglutinasi pada titik 2. Untuk sampel darah “Aris Nugroho” sensor D pada titik 1 tegangan sebesar 0.45 V dan pada titik 2 tegangan sebesar 0.47 V, dari nilai tegangan didapatkan bahwa pada titik 1 dan titik 2 tidak mengalami proses aglutinasi. Untuk lebih jelasnya proses aglutinasi dan tidak terjadi aglutinasi dapat dilihat pada Gambar 4.15 untuk sampel darah “Cornelius Florry Saputra” dan pada Gambar 4.16 untuk sampel darah “Aris Nugroho” . Gambar 4.15. Sampel Darah “Cornelius Florry Saputra” PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 54 Gambar 4.16. Sampel Darah “Aris Nugroho” Dari data yang didapat diatas, selanjutnya mikrokontroler akan memproses dan menentukan jenis golongan darah yang diujikan sesuai dengan perintah program yang ada dalam mikrokontroler AT-Mega8535. Mengacu pada persamaan 4.1 maka nilai tegangan yang dihasilkan dapat diubah kedalam bentuk nilai ADC sehingga dapat dibaca dan diproses oleh mikrokontroler.Pengubahan nilai tegangan referensi kedalam nilai ADC dapat dilihat pada Tabel 4.9. Tabel 4.9. Pengubahan Nilai Tegangan Referensi Ke Nilai ADC Sensor Nilai Tegangan Referensi Nilai ADC Sensor A1 1.30 Volt 266 Sensor A2 1.15 Volt 235 Sensor B1 1.05 Volt 215 Sensor B2 0.91 Volt 186 Sensor C1 1.74 Volt 356 Sensor C2 0.56 Volt 115 Sensor D1 1.28 Volt 262 Sensor D2 1.30 Volt 266 Setelah didapat nilai ADC tegangan referensi, maka mikrokontroler AT-Mega 8535 dapat memproses data sehingga dapat ditampilkan pada penampil LCD 16x2. Contoh list kode program untuk sensor A dapat dilihat pada Tabel 4.10. PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 55 Tabel 4.10. List Program Untuk Sensor A List Kode Program 'sub sensor_a Sub Sensor_a() A1 = Getadc(0) A2 = Getadc(1) If A1 > 266And A1 <= 550 And A2 < 235 Then Locate 2 , 3 Lcd "A" Elseif A1 < 266 And A2 > 235 And A2 <= 500 Then Locate 2 , 3 Lcd "B Elseif A1 <= 550 And A1 > 266 And A2 > 235 And A2 <= 500 Then Locate 2 , 3 Lcd "AB" Elseif A1 < 266 And A2 < 235 Then Locate 2 , 3 Lcd "O" Else Locate 2 , 3 Lcd "X" End If Keterangan Sub Sensor A Memanggil nilai ADC pin A.0 Memanggil nilai ADC pin A.1 Program Golongan Darah A Program Golongan darah B Progam Golongan Darah AB Program Golongan Darah O Tidak terdapat kaca preparat Waitms 100 End Sub Dari program diatas terlihat nilai tegangan referensi telah diubah kedalam nilai ADC. pada sensor A1 menjadi 266 dan sensor A2 menjadi 235. Apabila tejadi proses aglutinasi pada sensor A1 maka nilai ADC akan lebih dari 266 dan jika tidak mengalami proses aglutinasimaka nilai ADC akan kurang dari 266. Sama seperti pada sensor A2, jika terjadi aglutinasi maka nilai ADC akan lebih dari 235 dan jika tidak terjadi proses aglutinasi maka nilai ADC kurang dari 235. Untuk mengetahui ada tidaknya kaca preparat pada sensor maka dibuat batasan maksimum nilai ADC pada program, masing-masing sensor memiliki batasan nilai maksimum ADC yang berbeda. Batas nilai maksimum ADC sensor A1 sebesar 550 dan untuk sensor A2 sebesar 500. Ketika nilai ADC yang masuk dari setiap sensor melebihi batas maksimum maka mikrokontroler akan menampilkan karakter “X” yang artinya tidak terdapat kaca preparat pada perangkat keras. Penampil LCD saat tidak terdapat kaca preparat pada perangkat keras dapat dilihat pada Gambar 4.17. PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 56 Gambar 4.17. Penampil LCD Saat Tidak Terdapat Kaca Preparat Dari data sampel darah manusia yang telah diujikan pada Tabel 4.5. Didapatkan hasil secara keseluruhan yang ditampilkan pada penampil LCD 16x2. Pengujian dilakukan pada 4 sampel darah manusia, sampel darah ditempatkan pada masing-masing sensor yaitu pada sensor A, sensor B, sensor C, dan sensor D. Gambar 4.18 menunjukan hasil pengujian untuk 4 sampel darah pada penampil LCD 16x2. Gambar 4.18. Hasil Pengujian 4 Sampel Darah Manusia Pada Penampil LCD 16x2 Hasil Pengujian yang didapat pada Gambar 4.18 sesuai dengan program yang telah dimasukkan kedalam mikrokontroler AT-Mega8535. Untuk perhitungan nilai tegangan dan pengubahan kedalam nilai ADC dapat dilihat pada Tabel 4.11. PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 57 Tabel 4.11. Hasil Nilai Tegangan Dan Nilai ADC Nilai Tegangan Sampel Darah Sensor Melia Restyanty Sensor A 1.27 V Cornelius Florry S Sensor B Kristianto W. So Totok Dwi A. Titik 1 Titik 2 Nilai ADC Gol. Darah Titik 1 Titik 2 1.04 V 260 213 O 1.05 V 1.40 V 236 267 B Sensor C 1.65 V 0.60 V 337 123 A Sensor D 0.99 V 0.99 V 202 203 O Dari data pada Tabel 4.11 didapatkan sampel darah sensor A1 dan sensor A2 tidak mengalami aglutinasi ,hal ini terlihat karena nilai tegangan yang didapat pada sensor A1 sebesar 1,27 V dan sensor A2 sebesar 1,04 V kurang dari tegangan referensi yang telah ditentukan pada program yaitu sensor A1 sebesar 1,34 V dan sensor A2 sebesar 1,22 V. Nilai tegangan referensi dapat dilihat pada Tabel 4.6. Dari data yang didapat maka sampel darah untuk sensor A adalah golongan darah O. Untuk sensor B pada titik 1 nilai tegangan yang didapat kurang dari nilai tegangan referensi sedangkan pada titik 2 nilai tegangan yang didapat lebih besar dari tegangan referensi sehingga hasil untuk sensor B adalah golongan darah B. Pada sensor C titik 1 nilai tegangan sensor lebih besar dari nilai tegangan referensi dan pada titik 2 nilai tegangan yang didapat kurang dari tegangan referensi sehingga pada sensor C sehingga hasil golongan darah untuk sensor C adalah darah A. Untuk sensor D pada titik 1 dan titik 2 mendapatkan nilai tegangan yang kurang dari tegangan referensi sehingga hasil untuk sensor D adalah golongan darah O. Untuk hasil pengujian golongan darah manusia pada penampil LCD 16x2 dapat dilihat pada Gambar 4.18. Pembuktian kebenaran hasil pengujian dapat dilihat pada Gambar 4.19 untuk sampel darah sensor B dan Gambar 4.20 untuk sampel darah D. Gambar 4.19. Pembuktian Kebenaran Data Sensor B PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 58 Gambar 4.20. Pembuktian Kebenaran Data Sensor D Pada Gambar 4.19 sampel darah sensor B menunjukan terjadinya proses aglutinasi pada titik 2 sehingga jenis golongan darah sampel “Cornelius Florry S” adalah golongan darah B. Sedangkan Gambar 4.20 sampel “Totok Dwi A” yang terdapat pada sensor D, tidak terjadi aglutinasi pada kedua titik sehingga golongan darah yang ditampilkan adalah golongan darah O. Untuk Pembuktian pengujian sampel darah manusia secara keseluruhan dapat dilihat pada Tabel 4.12. Tabel 4.12. Pembuktian Pengujian Sampel Darah Manusia Secara Keseluruhan Sampel Darah Golongan Pembuktian menurut KTP Darah (Kartu Tanda Penduduk) Melia Restyanty O Golongan Darah O Cornelius Florry S B Golongan Darah B Kristianto W. So A Golongan Darah A Totok Dwi A. O Golongan Darah O Ricky Roland M. A Golongan Darah A Heripson Samuel O Golongan Darah O Kristianto Wibison So B Golongan Darah B Aris Nugroho O Golongan Darah O Virgilius Y.C. Jelarut A Golongan Darah A Dwi Elok P. Ningtyas A Golongan Darah A Benediktus Y. Adipradana O Golongan Darah O Yulius Djangga Bewa B Golongan Darah B PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 59 Pembuktian kebenaran hasil pengujian dicocokkan dengan golongan darah yang tertera pada KTP (Kartu Tanda Penduduk), gambar pembuktian KTP terlampir. Dari hasil pengujian secara keseluruhan membuktikan bahwa perancangan perangkat keras yang telah dibuat sesuai dengan perhitungan pada program yang terdapat dalam mikrokontroler AT-Mega8535 sehingga dapat menunjukan hasil pengujian golongan darah dengan baik dan benar. PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI BAB V KESIMPULAN DAN SARAN 5.1 Kesimpulan Setelah dilakukan pengujian alat maka didapatkan kesimpulan tentang sistem ini, diantaranya adalah : 1. Tegangan yang dihasilkan setiap sensor berbeda-beda karena kepekaan setiap sensor tidak sama. 2. Sensor dapat menghasilkan tegangan sesuai dengan tingkat aglutinasi pada sampel darah. 3. Nilai tegangan dari sensor dapat dibaca dan diproses didalam mikrokontroler ATMega 8535 sesuai dengan hasil perancangan. 4. Hasil data sampel darah yang diujikan dapat ditampilkan pada penampil LCD 16x2 dengan baik dan benar. 5. Alat sudah berhasil menampilkan hasil golongan darah manusia yang diujikan. 5.2 Saran 1. Penempatan kaca preparat pada alat dibuat lebih mudah dan praktis. 2. Ketepatan titik dan jarak antara sensor pemancar LED infra merah dan sensor penerima foto transistor harus diperhatikan seakurat mungkin. 3. Alat dibuat lebih portable sehingga mudah dibawa dan tidak membutuhkan sumber tegangan dari luar. 4. Dibuat sistem database sehingga lebih muda dalam pengarsipan. 60 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI LAMPIRAN 62 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Pembuktian Golongan Darah Dengan Kartu Tanda Penduduk (KTP) Sampel Darah Melia Restyanty Golongan Pembuktian menurut KTP Darah (Kartu Tanda Penduduk) O - Cornelius Florry S B Kristianto W. So A Totok Dwi A. O Ricky Roland M. A - Heripson Samuel O - PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Kristianto Wibison So B Aris Nugroho O Virgilius Y.C. Jelarut A PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Dwi Elok P. Ningtyas A Benediktus Y. Adipradana O Yulius Djangga Bewa B PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI RANGKAIAN SENSOR DAN OP-AMP PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI RANGKAIAN KESELURUHAN PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI $regfile = "8535def.dat" $crystal = 12000000 'Deklarasi Variabel Declare Sub Sensor_a() Declare Sub Sensor_b() Declare Sub Sensor_c() Declare Sub Sensor_d() Config Porta = Input Config Portc = Input Config Portb = Output Config Adc = Single , Prescaler = Auto , Reference = Avcc 'Konfigurasi tipe data pada variabel yang dipakai Dim A1 As Word Dim A2 As Word Dim B1 As Word Dim B2 As Word Dim C1 As Word Dim C2 As Word Dim D1 As Word PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Dim D2 As Word Dim Kiri As Integer Dim Kanan As Integer 'konfigurasi pin LCD Config Lcdpin = Pin , Db4 = Portb.4 , Db5 = Portb.5 , Db6 = Portb.6 Config Lcdpin = Pin , Db7 = Portb.7 , E = Portb.3 , Rs = Portb.2 Config Lcd = 16 * 2 Cursor Off Deflcdchar 1 , 32 , 32 , 4 , 14 , 4 , 4 , 4 , 32 'Memulai program Cls Locate 1 , 4 : Lcd Chr(1) ; " CREATED " ; Chr(1) Waitms 100 Locate 2 , 2 : Lcd "By Theo Lering" Waitms 200 'Teks kekiri Locate 1 , 4 : Lcd Chr(1) ; " CREATED " ; Chr(1) Locate 2 , 2 : Lcd "By Theo Lering" PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Waitms 50 For Kiri = 1 To 15 Shiftlcd Left Waitms 20 Next 'Teks kekanan Cls Locate 1 , 3 : Lcd " PENDEKTEKSI " Locate 2 , 2 : Lcd "GOLONGAN DARAH" Waitms 200 Locate 1 , 3 : Lcd " PENDEKTEKSI " Locate 2 , 2 : Lcd "GOLONGAN DARAH" Waitms 50 For Kanan = 1 To 15 Shiftlcd Right Waitms 20 Next Cls PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 'Memulai adc Start Adc Do If Pinc.2 = 1 Then Gosub Teks_1 If Pinc.2 = 0 Then Gosub Utama If Pinc.3 = 0 Then Gosub Berhenti Loop End 'Sub utama Utama: Cls Locate 1 , 2 : Lcd "Blood Scanner" Locate 2 , 4 : Lcd "Progresss...." Waitms 200 Locate 1 , 2 : Lcd "Blood Scanner" Locate 2 , 4 : Lcd "Progresss...." For Kanan = 1 To 15 Shiftlcd Right Waitms 15 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Next Cls Locate 1 , 1 : Lcd " Golongan Darah " Call Sensor_a() Call Sensor_b() Call Sensor_c() Call Sensor_d() Waitms 500 Cls Return 'sub sensor_a Sub Sensor_a() A1 = Getadc(0) A2 = Getadc(1) If A1 > 266 And A1 <= 550 And A2 < 235 Then Locate 2 , 3 Lcd "A" Elseif A1 < 266 And A2 > 235 And A2 <= 500 Then Locate 2 , 3 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Lcd "B" Elseif A1 <= 550 And A1 > 266 And A2 > 235 And A2 <= 500 Then Locate 2 , 3 Lcd "AB" Elseif A1 < 266 And A2 < 235 Then Locate 2 , 3 Lcd "O" Else Locate 2 , 3 Lcd "X" End If Waitms 100 End Sub 'sub sensor_b Sub Sensor_b() B1 = Getadc(2) B2 = Getadc(3) If B1 > 215 And A1 <= 560 And B2 < 186 Then Locate 2 , 7 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Lcd "A" Elseif B1 < 215 And B2 > 186 And B2 <= 380 Then Locate 2 , 7 Lcd "B" Elseif B1 <= 560 And B1 > 215 And B2 > 186 And B2 <= 380 Then Locate 2 , 7 Lcd "AB" Elseif B1 < 215 And B2 < 186 Then Locate 2 , 7 Lcd "O" Else Locate 2 , 7 Lcd "X" End If Waitms 100 End Sub 'sub sensor_c Sub Sensor_c() C1 = Getadc(4) PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI C2 = Getadc(5) If C1 > 356 And C1 <= 480 And C2 < 115 Then Locate 2 , 10 Lcd "A" Elseif C1 < 356 And C2 > 115 And C2 <= 300 Then Locate 2 , 10 Lcd "B" Elseif C1 <= 480 And C1 > 356 And C2 > 115 And C2 <= 300 Then Locate 2 , 10 Lcd "AB" Elseif C1 < 356 And C2 < 115 Then Locate 2 , 10 Lcd "O" Else Locate 2 , 10 Lcd "X" End If Waitms 100 End Sub PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI 'sub sensor_d Sub Sensor_d() D1 = Getadc(6) D2 = Getadc(7) If D1 > 262 And D1 <= 540 And D2 < 266 Then Locate 2 , 14 Lcd "A" Elseif D1 < 262 And D2 > 266 And D2 <= 540 Then Locate 2 , 14 Lcd "B" Elseif D1 <= 540 And D1 > 262 And D2 > 266 And D2 <= 540 Then Locate 2 , 14 Lcd "AB" Elseif D1 < 262 And D2 < 266 Then Locate 2 , 14 Lcd "O" Else Locate 2 , 14 Lcd "X" PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI End If Waitms 100 End Sub 'sub berhenti Berhenti: Cls Locate 1 , 16 : Lcd Chr(1) ; "THANK YOU" ; Chr(1) Locate 2 , 14 : Lcd Chr(1) ; "GOD BLESSING" ; Chr(1) For Kiri = 1 To 12 Shiftlcd Left Waitms 20 Next End 'sub teks_1 Teks_1: Locate 1 , 6 : Lcd "Tekan" Locate 2 , 3 : Lcd "Tombol Start" Waitms 5 Return PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Revised December 2005 LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A 3-Terminal 1A Positive Voltage Regulator General Description The LM78XX series of three terminal positive regulators are available in the TO-220 package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut down and safe operating area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents. Features O Output Current up to 1A O Output Voltages of 5, 6, 8, 9, 12, 15, 18, 24 O Thermal Overload Protection O Short Circuit Protection O Output Transistor Safe Operating Area Protection Ordering Code: Product Number Output Voltage Tolerance Package Operating Temperature LM7805CT LM7806CT LM7808CT LM7809CT LM7810CT r4% 40qC - 125qC LM7812CT LM7815CT LM7818CT LM7824CT TO-220 LM7805ACT LM7806ACT LM7808ACT LM7809ACT LM7810ACT r2% 0qC - 125qC LM7812ACT LM7815ACT LM7818ACT LM7824ACT © 2005 Fairchild Semiconductor Corporation DS400018 www.fairchildsemi.com LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A 3-Terminal 1A Positive Voltage Regulator April 1999 LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Internal Block Diagram www.fairchildsemi.com 2 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Parameter Symbol Value Unit VI 35 V VI 40 V RTJC 5 qC/W Input Voltage (for VO = 5V to 18V) (for VO = 24V) Thermal Resistance Junction-Cases (TO-220) Thermal Resistance Junction-Air (TO-220) RTJA 65 qC/W Operating Temperature Range TOPR 0 a 125 qC 40 a 125 qC 0 a 125 qC 65 a 150 qC LM78xx LM78xxA Storage Temperature Range TSTG Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications. Electrical Characteristics (LM7805) (Refer to the test circuits. 40qC TJ 125qC, IO = 500mA, VI = 10V, CI = 0.1P F, unless otherwise specified) Parameter Output Voltage Line Regulation Symbol VO Regline Min Typ Max TJ = 25qC Conditions 4.8 5.0 5.2 5mA d IO d 1A, PO d 15W, VI = 7V to 20V 4.75 5.0 5.25 TJ = 25qC (Note 2) Load Regulation Quiescent Current Quiescent Current Change Regload IQ 'IQ V VO = 7V to 25V – 4.0 100 VI = 8V to 12V – 1.6 50.0 mV IO = 5mA to 1.5mA – 9.0 100 IO = 250mA to 750mA – 4.0 50.0 mV TJ = 25qC – 5.0 8.0 IO = 5mA to 1A – 0.03 0.5 VI = 7V to 25V – 0.3 1.3 mA mA IO = 5mA – 0.8 – mV/qC Output Noise Voltage VN f = 10Hz to 100KHz, TA = 25qC – 42.0 – PV/VO Ripple Rejection (Note 3) RR f = 120Hz, VO = 8V to 18V 62.0 73.0 – dB IO = 1A, TJ = 25qC – 2.0 – V Output Voltage Drift (Note 3) Dropout Voltage 'VO/'T TJ = 25qC Unit VDROP Output Resistance (Note 3) rO f = 1KHz – 15.0 – m: Short Circuit Current ISC VI = 35V, TA = 25qC – 230 – mA Peak Current (Note 3) IPK TJ =25qC – 2.2 – A Note 2: Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used. Note 3: These parameters, although guaranteed, are not 100% tested in production. 3 www.fairchildsemi.com LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A Absolute Maximum Ratings(Note 1) LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Electrical Characteristics (LM7806) (Refer to the test circuits. 40qC TJ 125qC, IO = 500mA, VI = 11V, CI = 0.33P F, CO = 0.1P F, unless otherwise specified) Parameter Output Voltage Line Regulation Symbol VO Regline Min Typ Max TJ = 25qC Conditions 5.75 6.0 6.25 5mA d IO d 1A, PO d 15W, VI = 8.0V to 21V 5.7 6.0 6.3 VI = 8V to 25V – 5.0 120 VI = 9V to 13V – 1.5 60.0 TJ = 25qC (Note 4) Load Regulation Regload TJ = 25qC Quiescent Current Quiescent Current Change IQ 'IQ mV – 9.0 120 IO = 250mA to 750mA – 3.0 60.0 TJ = 25qC – 5.0 8.0 IO = 5mA to 1A – – 0.5 VI = 8V to 25V – – 1.3 mV mA mA IO = 5mA – 0.8 – mV/qC Output Noise Voltage VN f = 10Hz to 100KHz, TA = 25qC – 45.0 – PV/VO Ripple Rejection (Note 5) RR f = 120Hz, VO = 8V to 18V 62.0 73.0 – dB IO = 1A, TJ = 25qC – 2.0 – V Output Voltage Drift (Note 5) Dropout Voltage 'VO/'T V IO = 5mA to 1.5mA (Note 4) Unit VDROP Output Resistance (Note 5) rO f = 1KHz – 19.0 – m: Short Circuit Current ISC VI = 35V, TA = 25qC – 250 – mA Peak Current (Note 5) IPK TJ =25qC – 2.2 – A Note 4: Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used. Note 5: These parameters, although guaranteed, are not 100% tested in production. Electrical Characteristics (LM7808) (Refer to the test circuits. 40qC TJ 125qC, IO = 500mA, VI = 14V, CI = 0.33P F, CO = 0.1P F, unless otherwise specified) Parameter Output Voltage Line Regulation Symbol VO Regline Min Typ Max TJ = 25qC Conditions 7.7 8.0 8.3 5mA d IO d 1A, PO d 15W, VI = 10.5V to 23V 7.6 8.0 8.4 TJ = 25qC (Note 6) Load Regulation Regload TJ = 25qC (Note 6) Quiescent Current Quiescent Current Change IQ 'IQ V VI = 10.5V to 25V – 5.0 160 VI = 11.5V to 17V – 2.0 80.0 IO = 5mA to 1.5mA – 10.0 160 IO = 250mA to 750mA – 5.0 80.0 mV mV TJ = 25qC – 5.0 8.0 IO = 5mA to 1A – 0.05 0.5 VI = 10.5V to 25V – 0.5 1.0 mA mA IO = 5mA – 0.8 – mV/qC Output Noise Voltage VN f = 10Hz to 100KHz, TA = 25qC – 52.0 – PV/VO Ripple Rejection (Note 7) RR f = 120Hz, VO = 11.5V to 21.5V 56.0 73.0 – dB IO = 1A, TJ = 25qC – 2.0 – V Output Voltage Drift (Note 7) Dropout Voltage 'VO/'T Unit VDROP Output Resistance (Note 7) rO f = 1KHz – 17.0 – m: Short Circuit Current ISC VI = 35V, TA = 25qC – 230 – mA Peak Current (Note 7) IPK TJ =25qC – 2.2 – A Note 6: Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used. Note 7: These parameters, although guaranteed, are not 100% tested in production. www.fairchildsemi.com 4 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI (Refer to the test circuits. 40qC TJ 125qC, IO = 500mA, VI = 15V, CI = 0.33P F, CO = 0.1P F, unless otherwise specified) Parameter Output Voltage Line Regulation Symbol VO Regline Min Typ Max TJ = 25qC Conditions 8.65 9.0 9.35 5mA d IO d 1A, PO d 15W, VI = 11.5V to 24V 8.6 9.0 9.4 VI = 11.5V to 25V – 6.0 180 VI = 12V to 17V – 2.0 90.0 IO = 5mA to 1.5mA – 12.0 180 IO = 250mA to 750mA – 4.0 90.0 TJ = 25qC – 5.0 8.0 IO = 5mA to 1A – – 0.5 VI = 11.5V to 26V – – 1.3 TJ = 25qC (Note 8) Load Regulation Regload TJ = 25qC (Note 8) Quiescent Current Quiescent Current Change IQ 'IQ V mV mV mA mA IO = 5mA – 1.0 – mV/qC Output Noise Voltage VN f = 10Hz to 100KHz, TA = 25qC – 58.0 – PV/VO Ripple Rejection (Note 9) RR f = 120Hz, VO = 13V to 23V 56.0 71.0 – dB IO = 1A, TJ = 25qC – 2.0 – V Output Voltage Drift (Note 9) Dropout Voltage 'VO/'T Unit VDROP Output Resistance (Note 9) rO f = 1KHz – 17.0 – m: Short Circuit Current ISC VI = 35V, TA = 25qC – 250 – mA Peak Current (Note 9) IPK TJ =25qC – 2.2 – A Note 8: Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used. Note 9: These parameters, although guaranteed, are not 100% tested in production. Electrical Characteristics (LM7810) (Refer to the test circuits. 40qC TJ 125qC, IO = 500mA, VI = 16V, CI = 0.33P F, CO = 0.1P F, unless otherwise specified) Parameter Output Voltage Line Regulation Symbol VO Regline Min Typ Max TJ = 25qC Conditions 9.6 10.0 10.4 5mA d IO d 1A, PO d 15W, VI = 12.5V to 25V 9.5 10.0 10.5 VI = 12.5V to 25V – 10.0 200 VI = 13V to 25V – 3.0 100 IO = 5mA to 1.5mA – 12.0 200 IO = 250mA to 750mA – 4.0 400 TJ = 25qC – 5.1 8.0 IO = 5mA to 1A – – 0.5 VI = 12.5V to 29V – – 1.0 TJ = 25qC (Note 10) Load Regulation Regload TJ = 25qC (Note 10) Quiescent Current Quiescent Current Change IQ 'IQ V mV mV mA mA IO = 5mA – 1.0 – mV/qC Output Noise Voltage VN f = 10Hz to 100KHz, TA = 25qC – 58.0 – PV/VO Ripple Rejection (Note 11) RR f = 120Hz, VO = 13V to 23V 56.0 71.0 – dB IO = 1A, TJ = 25qC – 2.0 – V Output Voltage Drift (Note 11) Dropout Voltage 'VO/'T Unit VDROP Output Resistance (Note 11) rO f = 1KHz – 17.0 – m: Short Circuit Current ISC VI = 35V, TA = 25qC – 250 – mA Peak Current (Note 11) IPK TJ =25qC – 2.2 – A Note 10: Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used. Note 11: These parameters, although guaranteed, are not 100% tested in production. 5 www.fairchildsemi.com LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A Electrical Characteristics (LM7809) LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Electrical Characteristics (LM7812) (Refer to the test circuits. 40qC TJ 125qC, IO = 500mA, VI = 19V, CI = 0.33P F, CO = 0.1P F, unless otherwise specified) Parameter Output Voltage Line Regulation Symbol VO Regline Min Typ Max TJ = 25qC Conditions 11.5 12.0 12.5 5mA d IO d 1A, PO d 15W, VI = 14.5V to 27V 11.4 12.0 12.6 VI = 14.5V to 30V – 10.0 240 VI = 16V to 22V – 3.0 120 IO = 5mA to 1.5mA – 11.0 240 IO = 250mA to 750mA – 5.0 120 TJ = 25qC (Note 12) Load Regulation Regload TJ = 25qC (Note 12) Quiescent Current Quiescent Current Change IQ 'IQ V mV mV TJ = 25qC – 5.1 8.0 IO = 5mA to 1A – 0.1 0.5 VI = 14.5V to 30V – 0.5 1.0 mA mA IO = 5mA – 1.0 – mV/qC Output Noise Voltage VN f = 10Hz to 100KHz, TA = 25qC – 76.0 – PV/VO Ripple Rejection (Note 13) RR f = 120Hz, VI = 15V to 25V 55.0 71.0 – dB IO = 1A, TJ = 25qC – 2.0 – V Output Voltage Drift (Note 13) Dropout Voltage 'VO/'T Unit VDROP Output Resistance (Note 13) rO f = 1KHz – 18.0 – m: Short Circuit Current ISC VI = 35V, TA = 25qC – 230 – mA Peak Current (Note 13) IPK TJ =25qC – 2.2 – A Note 12: Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used. Note 13: These parameters, although guaranteed, are not 100% tested in production. Electrical Characteristics (LM7815) (Refer to the test circuits. 40qC TJ 125qC, IO = 500mA, VI = 23V, CI = 0.33P F, CO = 0.1P F, unless otherwise specified) Parameter Output Voltage Line Regulation Symbol VO Regline Min Typ Max TJ = 25qC Conditions 14.4 15.0 15.6 5mA d IO d 1A, PO d 15W, VI = 17.5V to 30V 14.25 15.0 15.75 VI = 17.5V to 30V – 11.0 300 VI = 20V to 26V – 3.0 150 IO = 5mA to 1.5mA – 12.0 300 IO = 250mA to 750mA – 4.0 150 TJ = 25qC – 5.2 8.0 IO = 5mA to 1A – – 0.5 VI = 17.5V to 30V – – 1.0 TJ = 25qC (Note 14) Load Regulation Regload TJ = 25qC (Note 14) Quiescent Current Quiescent Current Change IQ 'IQ V mV mV mA mA IO = 5mA – 1.0 – mV/qC Output Noise Voltage VN f = 10Hz to 100KHz, TA = 25qC – 90.0 – PV/VO Ripple Rejection (Note 15) RR f = 120Hz, VI = 18.5V to 28.5V 54.0 70.0 – dB IO = 1A, TJ = 25qC – 2.0 – V Output Voltage Drift (Note 15) Dropout Voltage 'VO/'T Unit VDROP Output Resistance (Note 15) rO f = 1KHz – 19.0 – m: Short Circuit Current ISC VI = 35V, TA = 25qC – 250 – mA Peak Current (Note 15) IPK TJ =25qC – 2.2 – A Note 14: Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used. Note 15: These parameters, although guaranteed, are not 100% tested in production. www.fairchildsemi.com 6 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI (Refer to the test circuits. 40qC TJ 125qC, IO = 500mA, VI = 27V, CI = 0.33P F, CO = 0.1P F, unless otherwise specified) Parameter Output Voltage Line Regulation Symbol VO Regline Min Typ Max TJ = 25qC Conditions 17.3 18.0 18.7 5mA d IO d 1A, PO d 15W, VI = 21V to 33V 17.1 18.0 18.9 VI = 21V to 33V – 15.0 360 VI = 24V to 30V – 5.0 180 IO = 5mA to 1.5mA – 15.0 360 IO = 250mA to 750mA – 5.0 180 TJ = 25qC – 5.2 8.0 IO = 5mA to 1A – – 0.5 VI = 21V to 33V – – 1.0 TJ = 25qC (Note 12) Load Regulation Regload TJ = 25qC (Note 12) Quiescent Current Quiescent Current Change IQ 'IQ V mV mV mA mA IO = 5mA – 1.0 – mV/qC Output Noise Voltage VN f = 10Hz to 100KHz, TA = 25qC – 110 – PV/VO Ripple Rejection (Note 17) RR f = 120Hz, VI = 22V to 32V 53.0 69.0 – dB IO = 1A, TJ = 25qC – 2.0 – V Output Voltage Drift (Note 17) Dropout Voltage 'VO/'T Unit VDROP Output Resistance (Note 17) rO f = 1KHz – 22.0 – m: Short Circuit Current ISC VI = 35V, TA = 25qC – 250 – mA Peak Current (Note 17) IPK TJ =25qC – 2.2 – A Note 16: Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used. Note 17: These parameters, although guaranteed, are not 100% tested in production. Electrical Characteristics (LM7824) (Refer to the test circuits. 40qC TJ 125qC, IO = 500mA, VI = 33V, CI = 0.33P F, CO = 0.1P F, unless otherwise specified) Parameter Output Voltage Line Regulation Symbol VO Regline Min Typ Max TJ = 25qC Conditions 23.0 24.0 25.0 5mA d IO d 1A, PO d 15W, VI = 27V to 38V 22.8 24.0 25.25 VI = 27V to 38V – 17.0 480 VI = 30V to 36V – 6.0 240 IO = 5mA to 1.5mA – 15.0 480 IO = 250mA to 750mA – 5.0 240 TJ = 25qC (Note 18) Load Regulation Regload TJ = 25qC (Note 18) Quiescent Current Quiescent Current Change IQ 'IQ V mV mV TJ = 25qC – 5.2 8.0 IO = 5mA to 1A – 0.1 0.5 VI = 27V to 38V – 0.5 1.0 mA mA IO = 5mA – 1.5 – mV/qC Output Noise Voltage VN f = 10Hz to 100KHz, TA = 25qC – 60.0 – PV/VO Ripple Rejection (Note 19) RR f = 120Hz, VI = 28V to 38V 50.0 67.0 – dB IO = 1A, TJ = 25qC – 2.0 – V Output Voltage Drift (Note 19) Dropout Voltage 'VO/'T Unit VDROP Output Resistance (Note 19) rO f = 1KHz – 28.0 – m: Short Circuit Current ISC VI = 35V, TA = 25qC – 230 – mA Peak Current (Note 19) IPK TJ =25qC – 2.2 – A Note 18: Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used. Note 19: These parameters, although guaranteed, are not 100% tested in production. 7 www.fairchildsemi.com LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A Electrical Characteristics (LM7818) LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Electrical Characteristics (LM7805A) (Refer to the test circuits. 0qC TJ 125qC, IO = 1A, VI = 10V, CI = 0.33P F, CO = 0.1P F, unless otherwise specified) Parameter Output Voltage Line Regulation Symbol VO Regline (Note 20) Min Typ Max TJ = 25qC Conditions 4.9 5.0 5.1 IO = 5mA to 1A, PO d 15W, VI = 7.5V to 20V 4.8 5.0‘ 5.2 VI = 7.5V to 25V, IO = 500mA – 5.0 50.0 VI = 8V to 12V – 3.0 50.0 – 5.0 50.0 TJ = 25qC Regload (Note 20) Quiescent Current Quiescent Current Change IQ 'IQ – 1.5 25.0 TJ = 25qC, IO = 5mA to 1.5mA – 9.0 100 IO = 5mA to 1mA – 9.0 100 IO = 250mA to 750mA – 4.0 50.0 TJ = 25qC – 5.0 6.0 IO = 5mA to 1A – – 0.5 VI = 8V to 25V, IO = 500mA – – 0.8 VI = 7.5V to 20V, TJ = 25qC – – 0.8 mV mA mA IO = 5mA – 0.8 – mV/qC Output Noise Voltage VN f = 10Hz to 100KHz, TA = 25qC – 10.0 – PV/VO Ripple Rejection (Note 21) RR f = 120Hz, IO = 500mA, VI = 8V to 18V – 68.0 – dB IO = 1A, TJ = 25qC – 2.0 – V Output Voltage Drift (Note 21) Dropout Voltage 'VO/'T V mV VI = 7.3V to 20V VI = 8V to 12V Load Regulation Unit VDROP Output Resistance (Note 21) rO f = 1KHz – 17.0 – m: Short Circuit Current ISC VI = 35V, TA = 25qC – 250 – mA Peak Current (Note 21) IPK TJ =25qC – 2.2 – A Note 20: Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used. Note 21: These parameters, although guaranteed, are not 100% tested in production. www.fairchildsemi.com 8 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI (Refer to the test circuits. 0qC TJ 125qC, IO = 1A, VI = 11V, CI = 0.33P F, CO = 0.1P F, unless otherwise specified) Parameter Output Voltage Line Regulation Symbol VO Regline (Note 22) Min Typ Max TJ = 25qC Conditions 5.58 6.0 6.12 IO = 5mA to 1A, PO d 15W, VI = 8.6V to 21V 5.76 6.0 6.24 VI = 8.6V to 25V, IO = 500mA – 5.0 60.0 VI = 9V to 13V – 3.0 60.0 – 5.0 60.0 TJ = 25qC Regload (Note 22) Quiescent Current Quiescent Current Change IQ 'IQ – 1.5 30.0 TJ = 25qC, IO = 5mA to 1.5mA – 9.0 100 IO = 5mA to 1mA – 4.0 100 IO = 250mA to 750mA – 5.0 50.0 TJ = 25qC – 4.3 6.0 IO = 5mA to 1A – – 0.5 VI = 19V to 25V, IO = 500mA – – 0.8 VI = 8.5V to 21V, TJ = 25qC – – 0.8 mV mA mA IO = 5mA – 0.8 – mV/qC Output Noise Voltage VN f = 10Hz to 100KHz, TA = 25qC – 10.0 – PV/VO Ripple Rejection (Note 23) RR f = 120Hz, IO = 500mA, VI = 9V to 19V – 65.0 – dB IO = 1A, TJ = 25qC – 2.0 – V Output Voltage Drift (Note 23) Dropout Voltage 'VO/'T V mV VI = 8.3V to 21V VI = 9V to 13V Load Regulation Unit VDROP Output Resistance (Note 23) rO f = 1KHz – 17.0 – m: Short Circuit Current ISC VI = 35V, TA = 25qC – 250 – mA Peak Current (Note 23) IPK TJ =25qC – 2.2 – A Note 22: Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used. Note 23: These parameters, although guaranteed, are not 100% tested in production. 9 www.fairchildsemi.com LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A Electrical Characteristics (LM7806A) LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Electrical Characteristics (LM7808A) (Refer to the test circuits. 0qC TJ 125qC, IO = 1A, VI = 14V, CI = 0.33P F, CO = 0.1P F, unless otherwise specified) Parameter Output Voltage Line Regulation Symbol VO Regline (Note 24) Min Typ Max TJ = 25qC Conditions 7.84 8.0 8.16 IO = 5mA to 1A, PO d 15W, VI = 10.6V to 23V 7.7 8.0 8.3 VI = 10.6V to 25V, IO = 500mA – 6.0 80.0 VI = 11V to 17V – 3.0 80.0 – 6.0 80.0 TJ = 25qC Regload (Note 24) Quiescent Current Quiescent Current Change IQ 'IQ – 2.0 40.0 TJ = 25qC, IO = 5mA to 1.5mA – 12.0 100 IO = 5mA to 1mA – 12.0 100 IO = 250mA to 750mA – 5.0 50.0 TJ = 25qC – 5.0 6.0 IO = 5mA to 1A – – 0.5 VI = 11V to 25V, IO = 500mA – – 0.8 VI = 10.6V to 23V, TJ = 25qC – – 0.8 mV mA mA IO = 5mA – 0.8 – mV/qC Output Noise Voltage VN f = 10Hz to 100KHz, TA = 25qC – 10.0 – PV/VO Ripple Rejection (Note 25) RR f = 120Hz, IO = 500mA, VI = 11.5V to 21.5V – 62.0 – dB IO = 1A, TJ = 25qC – 2.0 – V Output Voltage Drift (Note 25) Dropout Voltage 'VO/'T V mV VI = 10.4V to 23V VI = 11V to 17V Load Regulation Unit VDROP Output Resistance (Note 25) rO f = 1KHz – 18.0 – m: Short Circuit Current ISC VI = 35V, TA = 25qC – 250 – mA Peak Current (Note 25) IPK TJ =25qC – 2.2 – A Note 24: Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used. Note 25: These parameters, although guaranteed, are not 100% tested in production. www.fairchildsemi.com 10 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI (Refer to the test circuits. 0qC TJ 125qC, IO = 1A, VI = 15V, CI = 0.33P F, CO = 0.1P F, unless otherwise specified) Parameter Output Voltage Line Regulation Symbol VO Regline (Note 26) Min Typ Max TJ = 25qC Conditions 8.82 9.0 9.16 IO = 5mA to 1A, PO d 15W, VI = 11.2V to 24V 8.65 9.0 9.35 VI = 11.7V to 25V, IO = 500mA – 6.0 90.0 VI = 12.5V to 19V – 4.0 45.0 – 6.0 90.0 TJ = 25qC Regload (Note 26) Quiescent Current Quiescent Current Change IQ 'IQ – 2.0 45.0 TJ = 25qC, IO = 5mA to 1.0mA – 12.0 100 IO = 5mA to 1mA – 12.0 100 IO = 250mA to 750mA – 5.0 50.0 TJ = 25qC – 5.0 6.0 IO = 5mA to 1A – – 0.5 VI = 12V to 25V, IO = 500mA – – 0.8 VI = 11.7V to 25V, TJ = 25qC – – 0.8 mV mA mA IO = 5mA – 1.0 – mV/qC Output Noise Voltage VN f = 10Hz to 100KHz, TA = 25qC – 10.0 – PV/VO Ripple Rejection (Note 27) RR f = 120Hz, IO = 500mA, VI = 12V to 22V – 62.0 – dB IO = 1A, TJ = 25qC – 2.0 – V Output Voltage Drift (Note 27) Dropout Voltage 'VO/'T V mV VI = 11.5V to 24V VI = 12.5V to 19V Load Regulation Units VDROP Output Resistance (Note 27) rO f = 1KHz – 17.0 – m: Short Circuit Current ISC VI = 35V, TA = 25qC – 250 – mA Peak Current (Note 27) IPK TJ =25qC – 2.2 – A Note 26: Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used. Note 27: These parameters, although guaranteed, are not 100% tested in production. 11 www.fairchildsemi.com LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A Electrical Characteristics (LM7809A) LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Electrical Characteristics (LM7810A) (Refer to the test circuits. 0qC TJ 125qC, IO = 1A, VI = 16V, CI = 0.33P F, CO = 0.1P F, unless otherwise specified) Parameter Output Voltage Line Regulation Symbol VO Regline (Note 28) Min Typ Max TJ = 25qC Conditions 9.8 10.0 10.2 IO = 5mA to 1A, PO d 15W, VI = 12.8V to 25V 9.6 10.0 10.4 VI = 12.8V to 26V, IO = 500mA – 8.0 100 VI = 13V to 20V – 4.0 50.0 – 8.0 100 TJ = 25qC Regload (Note 28) Quiescent Current Quiescent Current Change IQ 'IQ – 3.0 50.0 TJ = 25qC, IO = 5mA to 1.5mA – 12.0 100 IO = 5mA to 1mA – 12.0 100 IO = 250mA to 750mA – 5.0 50.0 TJ = 25qC – 5.0 6.0 IO = 5mA to 1A – – 0.5 VI = 12.8V to 25V, IO = 500mA – – 0.8 VI = 13V to 26V, TJ = 25qC – – 0.5 mV mA mA IO = 5mA – 1.0 – mV/qC Output Noise Voltage VN f = 10Hz to 100KHz, TA = 25qC – 10.0 – PV/VO Ripple Rejection (Note 29) RR f = 120Hz, IO = 500mA, VI = 14V to 24V – 62.0 – dB IO = 1A, TJ = 25qC – 2.0 – V Output Voltage Drift (Note 29) Dropout Voltage 'VO/'T V mV VI = 12.5V to 25V VI = 13V to 20V Load Regulation Units VDROP Output Resistance (Note 29) rO f = 1KHz – 17.0 – m: Short Circuit Current ISC VI = 35V, TA = 25qC – 250 – mA Peak Current (Note 29) IPK TJ =25qC – 2.2 – A Note 28: Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used. Note 29: These parameters, although guaranteed, are not 100% tested in production. www.fairchildsemi.com 12 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI (Refer to the test circuits. 0qC TJ 125qC, IO = 1A, VI = 19V, CI = 0.33P F, CO = 0.1P F, unless otherwise specified) Parameter Output Voltage Line Regulation Symbol VO Regline (Note 30) Min Typ Max TJ = 25qC Conditions 11.75 12.0 12.25 IO = 5mA to 1A, PO d 15W, VI = 14.8V to 27V 11.5 12.0 12.5 VI = 14.8V to 30V, IO = 500mA – 10.0 120 VI = 16V to 22V – 4.0 120 – 10.0 120 TJ = 25qC Regload (Note 30) Quiescent Current Quiescent Current Change IQ 'IQ – 3.0 60.0 TJ = 25qC, IO = 5mA to 1.5mA – 12.0 100 IO = 5mA to 1mA – 12.0 100 IO = 250mA to 750mA – 5.0 50.0 TJ = 25qC – 5.1 6.0 IO = 5mA to 1A – – 0.5 VI = 14V to 27V, IO = 500mA – – 0.8 VI = 15V to 30V, TJ = 25qC – – 0.8 mV mA mA IO = 5mA – 1.0 – mV/qC Output Noise Voltage VN f = 10Hz to 100KHz, TA = 25qC – 10.0 – PV/VO Ripple Rejection (Note 31) RR f = 120Hz, IO = 500mA, VI = 14V to 24V – 60.0 – dB IO = 1A, TJ = 25qC – 2.0 – V Output Voltage Drift (Note 31) Dropout Voltage 'VO/'T V mV VI = 14.5V to 27V VI = 16V to 22V Load Regulation Units VDROP Output Resistance (Note 31) rO f = 1KHz – 18.0 – m: Short Circuit Current ISC VI = 35V, TA = 25qC – 250 – mA Peak Current (Note 31) IPK TJ =25qC – 2.2 – A Note 30: Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used. Note 31: These parameters, although guaranteed, are not 100% tested in production. 13 www.fairchildsemi.com LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A Electrical Characteristics (LM7812A) LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Electrical Characteristics (LM7815A) (Refer to the test circuits. 0qC TJ 125qC, IO = 1A, VI = 23V, CI = 0.33P F, CO = 0.1P F, unless otherwise specified) Parameter Output Voltage Line Regulation Symbol VO Regline (Note 32) Min Typ Max TJ = 25qC Conditions 14.75 15.0 15.3 IO = 5mA to 1A, PO d 15W, VI = 17.7V to 30V 14.4 15.0 15.6 VI = 17.4V to 30V, IO = 500mA – 10.0 150 VI = 20V to 26V – 5.0 150 – 11.0 150 TJ = 25qC Regload (Note 32) Quiescent Current Quiescent Current Change IQ 'IQ – 3.0 75.0 TJ = 25qC, IO = 5mA to 1.5mA – 12.0 100 IO = 5mA to 1mA – 12.0 100 IO = 250mA to 750mA – 5.0 50.0 TJ = 25qC – 5.2 6.0 IO = 5mA to 1A – – 0.5 VI = 17.5V to 30V, IO = 500mA – – 0.8 VI = 17.5V to 30V, TJ = 25qC – – 0.8 mV mA mA IO = 5mA – 1.0 – mV/qC Output Noise Voltage VN f = 10Hz to 100KHz, TA = 25qC – 10.0 – PV/VO Ripple Rejection (Note 33) RR f = 120Hz, IO = 500mA, VI = 18.5V to 28.5V – 58.0 – dB IO = 1A, TJ = 25qC – 2.0 – V Output Voltage Drift (Note 33) Dropout Voltage 'VO/'T V mV VI = 17.5V to 30V VI = 20V to 26V Load Regulation Units VDROP Output Resistance (Note 33) rO f = 1KHz – 19.0 – m: Short Circuit Current ISC VI = 35V, TA = 25qC – 250 – mA Peak Current (Note 33) IPK TJ =25qC – 2.2 – A Note 32: Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used. Note 33: These parameters, although guaranteed, are not 100% tested in production. www.fairchildsemi.com 14 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI (Refer to the test circuits. 0qC TJ 125qC, IO = 1A, VI = 27V, CI = 0.33P F, CO = 0.1P F, unless otherwise specified) Parameter Output Voltage Line Regulation Symbol VO Regline (Note 34) Min Typ Max TJ = 25qC Conditions 17.64 18.0 18.36 IO = 5mA to 1A, PO d 15W, VI = 21V to 33V 17.3 18.0 18.7 VI = 21V to 33V, IO = 500mA – 15.0 180 VI = 21V to 33V – 5.0 180 – 15.0 180 TJ = 25qC Regload (Note 34) Quiescent Current Quiescent Current Change IQ 'IQ – 5.0 90.0 TJ = 25qC, IO = 5mA to 1.5mA – 15.0 100 IO = 5mA to 1mA – 15.0 100 IO = 250mA to 750mA – 7.0 50.0 TJ = 25qC – 5.2 6.0 IO = 5mA to 1A – – 0.5 VI = 12V to 33V, IO = 500mA – – 0.8 VI = 12V to 33V, TJ = 25qC – – 0.8 mV mA mA IO = 5mA – 1.0 – mV/qC Output Noise Voltage VN f = 10Hz to 100KHz, TA = 25qC – 10.0 – PV/VO Ripple Rejection (Note 35) RR f = 120Hz, IO = 500mA, VI = 22V to 32V – 57.0 – dB IO = 1A, TJ = 25qC – 2.0 – V Output Voltage Drift (Note 35) Dropout Voltage 'VO/'T V mV VI = 20.6V to 33V VI = 24V to 30V Load Regulation Units VDROP Output Resistance (Note 35) rO f = 1KHz – 19.0 – m: Short Circuit Current ISC VI = 35V, TA = 25qC – 250 – mA Peak Current (Note 35) IPK TJ =25qC – 2.2 – A Note 34: Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used. Note 35: These parameters, although guaranteed, are not 100% tested in production. 15 www.fairchildsemi.com LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A Electrical Characteristics (LM7818A) LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Electrical Characteristics (LM7824A) (Refer to the test circuits. 0qC TJ 125qC, IO = 1A, VI = 33V, CI = 0.33P F, CO = 0.1P F, unless otherwise specified) Parameter Output Voltage Line Regulation Symbol VO Regline (Note 36) Min Typ Max TJ = 25qC Conditions 23.5 24.0 24.5 IO = 5mA to 1A, PO d 15W, VI = 27.3V to 38V 23.0 24.0 25.0 VI = 27V to 38V, IO = 500mA – 18.0 240 VI = 21V to 33V – 6.0 240 – 18.0 240 TJ = 25qC Regload (Note 36) Quiescent Current Quiescent Current Change IQ 'IQ – 6.0 120 – 15.0 100 IO = 5mA to 1mA – 15.0 100 IO = 250mA to 750mA – 7.0 50.0 TJ = 25qC – 5.2 6.0 IO = 5mA to 1A – – 0.5 VI = 27.3V to 38V, IO = 500mA – – 0.8 VI = 27.3V to 38V, TJ = 25qC – – 0.8 TJ = 25qC, IO = 5mA to 1.5mA mV mA mA IO = 5mA – 1.5 – mV/qC Output Noise Voltage VN f = 10Hz to 100KHz, TA = 25qC – 10.0 – PV/VO Ripple Rejection (Note 37) RR f = 120Hz, IO = 500mA, VI = 28V to 38V – 54.0 – dB IO = 1A, TJ = 25qC – 2.0 – V Output Voltage Drift (Note 37) Dropout Voltage 'VO/'T V mV VI = 26.7V to 38V VI = 30V to 36V Load Regulation Units VDROP Output Resistance (Note 37) rO f = 1KHz – 20.0 – m: Short Circuit Current ISC VI = 35V, TA = 25qC – 250 – mA Peak Current (Note 37) IPK TJ =25qC – 2.2 – A Note 36: Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty is used. Note 37: These parameters, although guaranteed, are not 100% tested in production. www.fairchildsemi.com 16 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI FIGURE 1. Quiescent Current FIGURE 2. Peak Output Current FIGURE 3. Output Voltage FIGURE 4. Quiescent Current 17 www.fairchildsemi.com LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A Typical Performance Characteristics LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Typical Applications FIGURE 5. DC Parameters FIGURE 6. Load Regulation FIGURE 7. Ripple Rejection FIGURE 8. Fixed Output Regulator www.fairchildsemi.com 18 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI FIGURE 9. Note: To specify an output voltage, substitute voltage value for “XX”. A common ground is required between the Input and the Output voltage. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage. Note: CI is required if regulator is located an appreciable distance from the power supply filter. Note: CO improves stability and transient response. IRI t 5 IQ VO = VXX (1 R2 / R1) IQ R2 FIGURE 10. Circuit for Increasing Output Voltage IRI t 5 IQ VO = VXX (1 R2 / R1) IQ R2 FIGURE 11. Adjustable Output Regulator (7V to 30V) 19 www.fairchildsemi.com LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A Typical Applications (continued) LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Typical Applications (continued) FIGURE 12. High Current Voltage Regulator FIGURE 13. High Output Current with Short Circuit Protection FIGURE 14. Tracking Voltage Regulator www.fairchildsemi.com 20 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A Typical Applications (continued) FIGURE 15. Split Power Supply (r15V - 1A) FIGURE 16. Negative Output Voltage Circuit FIGURE 17. Switching Regulator 21 www.fairchildsemi.com LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Physical Dimensions inches (millimeters) unless otherwise noted Package Number TO-220 www.fairchildsemi.com 22 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION As used herein: provided in the labeling, can be reasonably expected to result in significant injury to the user. 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or 2. A critical component is any component of a life support (b) support or sustain life, or (c) whose failure to perform device or system whose failure to perform can be reasonwhen properly used in accordance with instructions for use ably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. PRODUCT STATUS DEFINITIONS Definition of terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only. 23 www.fairchildsemi.com LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A 3-Terminal 1A Positive Voltage Regulator DISCLAIMER PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI SFH 313 SFH 313 FA NPN-Silizium-Fototransistor New: Silicon NPN Phototransistor SFH 313 SFH 313 FA fex06626 .Neu: Area not flat 1.8 1.2 29 27 Cathode (Diode) Collector (Transistor) 9.0 8.2 7.8 7.5 5.9 5.5 ø5.1 ø4.8 0.8 0.4 2.54 mm spacing 0.6 0.4 0.6 0.4 5.7 5.1 Chip position GEX06260 fexf6626 Approx. weight 0.5 g Maße in mm, wenn nicht anders angegeben/Dimensions in mm, unless otherwise specified. Wesentliche Merkmale Features ● Speziell geeignet für Anwendungen im ● Especially suitable for applications from Bereich von 460 nm bis 1080 nm (SFH 313) und bei 880 nm (SFH 313 FA) ● Hohe Linearität ● 5 mm-Plastikbauform 460 nm to 1080 nm (SFH 313) and of 880 nm (SFH 313 FA) ● High linearity ● 5 mm plastic package Anwendungen Applications ● Computer-Blitzlichtgeräte ● Lichtschranken für Gleich- und ● ● ● ● Wechsellichtbetrieb ● Industrieelektronik ● “Messen/Steuern/Regeln” Semiconductor Group 1 Computer-controlled flashes Photointerrupters Industrial electronics For control and drive circuits 1997-11-27 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI SFH 313 SFH 313 FA Typ Type Bestellnummer Ordering Code SFH 313 SFH 313-2 SFH 313-3 Q62702-P1667 Q62702-P1751 Q62702-P1752 SFH 313 FA SFH 313 FA-2 SFH 313 FA-3 Q62702-P1674 Q62702-P1753 Q62702-P1754 Grenzwerte Maximum Ratings Bezeichnung Description Symbol Symbol Wert Value Einheit Unit Betriebs- und Lagertemperatur Operating and storage temperature range Top; Tstg – 55 ... + 100 °C Löttemperatur bei Tauchlötung Lötstelle ≥ 2 mm vom Gehäuse, Lötzeit t ≤ 5 s Dip soldering temperature ≥ 2 mm distance from case bottom, soldering time t ≤ 5 s TS 260 °C Löttemperatur bei Kolbenlötung Lötstelle ≥ 2 mm vom Gehäuse, Lötzeit t ≤ 3 s Iron soldering temperature ≥ 2 mm distance from case bottom t ≤ 3 s TS 300 °C Kollektor-Emitterspannung Collector-emitter voltage VCE 70 V Kollektorstrom Collector current IC 50 mA Kollektorspitzenstrom, τ < 10 µs Collector surge current ICS 100 mA Emitter-Kollektorspannung Emitter-collector voltage VEC 7 V Verlustleistung, TA = 25 °C Total power dissipation Ptot 200 mW Wärmewiderstand Thermal resistance RthJA 375 K/W Semiconductor Group 2 1997-11-27 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI SFH 313 SFH 313 FA Kennwerte (TA = 25 °C, λ = 950 nm) Characteristics Bezeichnung Description Symbol Symbol Wert Value SFH 313 SFH 313 FA 870 Einheit Unit Wellenlänge der max. Fotoempfindlichkeit Wavelength of max. sensitivity λS max 850 Spektraler Bereich der Fotoempfindlichkeit S = 10 % von Smax Spectral range of sensitivity S = 10 % of Smax λ 460 ... 1080 740 ... 1080 nm Bestrahlungsempfindliche Fläche Radiant sensitive area A 0.55 0.55 mm2 Abmessung der Chipfläche Dimensions of chip area L×B L×W 1×1 1×1 mm × mm Abstand Chipoberfläche zu Gehäuseoberfläche Distance chip front to case surface H 5.1 ... 5.7 5.1 ... 5.7 mm Halbwinkel Half angle ϕ ± 10 ± 10 Grad deg. Kapazität, VCE = 0 V, f = 1 MHz, E = 0 Capacitance CCE 15 15 pF Dunkelstrom Dark current VCE = 10 V, E = 0 ICEO 10 (≤ 200) 10 (≤ 200) nA IPCE IPCE ≥ 2.5 30 ≥ 2.5 – mA mA Fotostrom Photocurrent Ee = 0.5 mW/cm2, VCE = 5 V Ev = 1000 Ix, Normlicht/standard light A, VCE = 5 V Semiconductor Group 3 nm 1997-11-27 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI SFH 313 SFH 313 FA Die Fototransistoren werden nach ihrer Fotoempfindlichkeit gruppiert und mit arabischen Ziffern gekennzeichnet. The phototransistors are grouped according to their spectral sensitivity and distinguished by arabian figures. Bezeichnung Description Symbol Wert Value Einheit Unit -1 -2 -3 IPCE 2.5 ... 5 4 ... 8 6.3 ... 12.5 ≥ 10 mA Anstiegszeit/Abfallzeit Rise and fall time IC = 1 mA, VCC = 5 V, RL = 1 kΩ tr, tf 8 10 12 14 µs Kollektor-EmitterSättigungsspannung Collector-emitter saturation voltage IC = IPCEmin1) × 0.3, Ee = 0.5 mW/cm2 VCEsat 150 150 150 150 mV Fotostrom, λ = 950 nm Photocurrent Ee = 0.5 mW/cm2, VCE = 5 V 1) 1) -4 IPCEmin ist der minimale Fotostrom der jeweiligen Gruppe IPCEmin is the min. photocurrent of the specified group Directional characteristics Srel = f (ϕ) 40 30 20 10 ϕ 0 OHF02330 1.0 50 0.8 60 0.6 70 0.4 80 0.2 0 90 100 1.0 0.8 0.6 Semiconductor Group 0.4 0 20 40 60 80 4 100 120 1997-11-27 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI SFH 313 SFH 313 FA TA = 25 °C, λ = 950 nm Rel.spectral sensitivity SFH 313, Srel = f (λ) OHF02332 100 Rel.spectr.sensitivity SFH 313FA, Srel= f(λ) Dark current, ICEO = f (VCE), E = 0 OHF02331 100 S rel % S rel % 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 Photocurrent IPCE = f (TA), VCE = 5 V, normalized to 25oC Ι PCE 0 400 500 600 700 800 900 nm 1100 λ Ι CEO 10 1 10 0 10 -1 10 -2 400 500 600 700 800 900 nm 1100 λ Photocurrent IPCE = f (Ee), VCE = 5 V OHF01524 1.6 0 OHF02337 10 2 mA 20 30 40 50 V 70 V CE OHF02344 50 C CE pF 1.4 40 10 1 1.2 10 Collector-emitter capacitance CCE = f (VCE), f = 1 MHz Ι PCE Ι PCE 25 OHF02341 10 2 nA 1.0 30 10 0.8 0 20 0.6 10 -1 0.4 10 0.2 0 -25 0 25 50 75 C 100 TA OHF02336 mW/cm 2 Ee 1 mW cm 2 10 -1 10 0 10 1 V 10 2 VCE Total power dissipation Ptot = f (TA) OHF02342 10 2 nA Ptot OHF02340 250 mW 200 10 1 0.5 0 -2 10 10 0 Ι CEO Ι PCE 10 10 -2 Dark current ICEO = f (TA), VCE = 10 V, E = 0 Photocurrent IPCE= f (VCE) E = parameter 10 2 mA 10 -2 -3 10 mW cm 2 150 1 0.25 10 mW cm 2 0 100 mW 0.1 2 cm 10 -1 50 10 0 10 -2 0 10 20 30 40 50 Semiconductor Group V 70 VCE 0 20 40 5 60 80 ˚C 100 TA 0 0 20 40 60 80 ˚C 100 TA 1997-11-27 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Technical Data Sheet 5mm Infrared LED , T-1 3/4 IR333/H0/L10 Features ․High reliability ․High radiant intensity ․Peak wavelength λp=940nm ․2.54mm Lead spacing ․Low forward voltage ․Pb free ․The product itself will remain within RoHS compliant version. Descriptions ․EVERLIGHT’S Infrared Emitting Diode(IR333/H0/L10) is a high intensity diode , molded in a blue transparent plastic package. ․The device is spectrally matched with phototransistor , photodiode and infrared receiver module. Applications ․Free air transmission system ․Infrared remote control units with high power requirement ․Smoke detector ․Infrared applied system Device Selection Guide LED Part No. Chip Material Lens Color IR GaAlAs Blue Everlight Electronics Co., Ltd. http:\\www.everlight.com Rev 4 Page: 1 of 7 Device No:DIR-033-083 Prepared date:07-20-2005 Prepared by:Jaine Tsai PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI IR333/H0/L10 Package Dimensions Notes: 1.All dimensions are in millimeters 2.Tolerances unless dimensions ±0.25mm Absolute Maximum Ratings (Ta=25℃) Parameter Symbol Rating Continuous Forward Current IF 100 Units mA Peak Forward Current IFP 1.0 A Reverse Voltage VR 5 V Operating Temperature Topr -40 ~ +85 ℃ Storage Temperature Tstg -40 ~ +85 ℃ Soldering Temperature Tsol 260 ℃ Power Dissipation at(or below) 25℃Free Air Temperature Pd 150 mW Notes: *1:IFP Conditions--Pulse Width≦100μs and Duty≦1%. *2:Soldering time≦5 seconds. Everlight Electronics Co., Ltd. http:\\www.everlight.com Rev 4 Page: 2 of 7 Device No:DIR-033-083 Prepared date:07-20-2005 Prepared by:Jaine Tsai PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI IR333/H0/L10 Electro-Optical Characteristics (Ta=25℃) Parameter Radiant Intensity Symbol Ee Condition IF=20mA Min. Typ. Max. 11 12 -- IF=100mA -- 45 -- -- 400 -- 940 -- 45 -- 1.2 1.5 -- 1.4 1.8 -- 2.6 4.0 VR=5V -- -- 10 IF=20mA -- 40 -- Pulse Width≦100μs ,Duty≦1% IF=1A Pulse Width≦100μs ,Duty≦1%. Peak Wavelength λp IF=20mA -- Spectral Bandwidth Δλ IF=20mA -- IF=20mA IF=100mA Forward Voltage VF Pulse Width≦100μs ,Duty≦1% IF=1A Pulse Width≦100μs ,Duty≦1%. Reverse Current View Angle IR 2θ1/2 Units mW/sr nm nm V μA deg Everlight Electronics Co., Ltd. http:\\www.everlight.com Rev 4 Page: 3 of 7 Device No:DIR-033-083 Prepared date:07-20-2005 Prepared by:Jaine Tsai PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI IR333/H0/L10 Typical Electro-Optical Characteristics Curves Fig.1 Forward Current vs. Ambient Temperature Fig.2 Spectral Distribution 140 100 IF=20mA Ta=25° C 120 80 100 80 60 60 40 40 20 20 0 0 -40 -20 0 20 40 60 80 100 Fig.3 Peak Emission Wavelength Ambient Temperature Fig.4 Forward Current vs. Forward Voltage 4 10 980 960 3 10 940 2 10 920 900 -25 1 10 0 25 50 75 100 0 1 2 3 Everlight Electronics Co., Ltd. http:\\www.everlight.com Rev 4 Device No:DIR-033-083 Prepared date:07-20-2005 Prepared by:Jaine Tsai 4 Page: 4 of 7 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI IR333/H0/L10 Typical Electro-Optical Characteristics Curves Fig.5 Relative Intensity vs. Forward Current Fig.6 Relative Radiant Intensity vs. Angular Displacement -20 Ie-Radiant Intensity(mW/sr) 1000 -10 0 10 20 30 100 10 0 10 0 10 1 2 10 10 3 10 4 IF-Forward Current (mA) Fig.7 Relative Intensity vs. Ambient Temperature(°C) 1.0 40 0.9 50 0.8 0.7 60 70 80 0.6 0.4 0.2 0 0.2 0.4 0.6 Fig.8 Forward Voltage vs. Ambient Temperature(°C) 15 1.3 IF=20mA 10 1.2 5 1.1 0 1 25 50 75 100 120 IF=20mA 25 50 75 100 Everlight Electronics Co., Ltd. http:\\www.everlight.com Rev 4 Device No:DIR-033-083 Prepared date:07-20-2005 Prepared by:Jaine Tsai 120 Page: 5 of 7 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI IR333/H0/L10 Reliability Test Item And Condition The reliability of products shall be satisfied with items listed below. Confidence level:90% LTPD:10% NO. Item 1 Solder Heat Test Conditions Test Hours/ Sample Cycles Sizes TEMP.:260℃±5℃ 10secs 2 Temperature Cycle H : +100℃ 3 Thermal Shock 15mins L : -40℃ 5mins 15mins H :+100℃ 5mins L :-10℃ 10secs 5mins Failure Judgement Criteria Ac/Re 22pcs 300Cycles 22pcs 0/1 IR≧U×2 Ee≦L×0.8 VF≧U×1.2 300Cycles 22pcs 0/1 0/1 U:Upper Specification Limit L:Lower 4 High Temperature Storage TEMP.:+100℃ 1000hrs 22pcs 5 Low Temperature Storage TEMP.:-40℃ 1000hrs 22pcs 1000hrs 22pcs 0/1 1000hrs 22pcs 0/1 6 DC Operating Life IF=20mA 7 High Temperature/ 85℃ / 85% R.H Specification Limit 0/1 0/1 High Humidity Everlight Electronics Co., Ltd. http:\\www.everlight.com Rev 4 Page: 6 of 7 Device No:DIR-033-083 Prepared date:07-20-2005 Prepared by:Jaine Tsai PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI IR333/H0/L10 Packing Quantity Specification 1.500PCS/1Bag,5Bags/1Box 2.10Boxes/1Carton Label Form Specification CPN: Customer’s Production Number P/N : Production Number QTY: Packing Quantity AT: Ranks HUE: Peak Wavelength REF: Reference LOT No: Lot Number MADE IN TAIWAN: Production Place RoHS IR333/H0/L10 Notes 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification. 2. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets. 3. These specification sheets include materials protected under copyright of EVERLIGHT corporation. Please don’t reproduce or cause anyone to reproduce them without EVERLIGHT’s consent. EVERLIGHT ELECTRONICS CO., LTD. Office: No 25, Lane 76, Sec 3, Chung Yang Rd, Tucheng, Taipei 236, Taiwan, R.O.C Tel: 886-2-2267-2000, 2267-9936 Fax: 886-2267-6244, 2267-6189, 2267-6306 http:\\www.everlight.com Everlight Electronics Co., Ltd. http:\\www.everlight.com Rev 4 Page: 7 of 7 Device No:DIR-033-083 Prepared date:07-20-2005 Prepared by:Jaine Tsai PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI LM741 LM741 Operational Amplifier Literature Number: SNOSC25B August 2000 LM741 Operational Amplifier General Description The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications. The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations. The LM741C is identical to the LM741/LM741A except that the LM741C has their performance guaranteed over a 0˚C to +70˚C temperature range, instead of −55˚C to +125˚C. Features Connection Diagrams Metal Can Package Dual-In-Line or S.O. Package 00934103 00934102 Note 1: LM741H is available per JM38510/10101 Order Number LM741H, LM741H/883 (Note 1), LM741AH/883 or LM741CH See NS Package Number H08C Order Number LM741J, LM741J/883, LM741CN See NS Package Number J08A, M08A or N08E Ceramic Flatpak 00934106 Order Number LM741W/883 See NS Package Number W10A Typical Application Offset Nulling Circuit 00934107 © 2004 National Semiconductor Corporation DS009341 www.national.com LM741 Operational Amplifier PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI LM741 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Absolute Maximum Ratings (Note 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 7) LM741A LM741 ± 22V ± 22V ± 18V 500 mW 500 mW 500 mW ± 30V ± 15V ± 30V ± 15V ± 30V ± 15V Output Short Circuit Duration Continuous Continuous Continuous Operating Temperature Range −55˚C to +125˚C −55˚C to +125˚C 0˚C to +70˚C Storage Temperature Range −65˚C to +150˚C −65˚C to +150˚C −65˚C to +150˚C 150˚C 150˚C 100˚C N-Package (10 seconds) 260˚C 260˚C 260˚C J- or H-Package (10 seconds) 300˚C 300˚C 300˚C Vapor Phase (60 seconds) 215˚C 215˚C 215˚C Infrared (15 seconds) 215˚C 215˚C 215˚C Supply Voltage Power Dissipation (Note 3) Differential Input Voltage Input Voltage (Note 4) Junction Temperature LM741C Soldering Information M-Package See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices. ESD Tolerance (Note 8) 400V 400V 400V Electrical Characteristics (Note 5) Parameter Conditions LM741A Min Input Offset Voltage LM741 Min LM741C Typ Max 1.0 5.0 Min Units Typ Max Typ Max 0.8 3.0 2.0 6.0 mV 4.0 mV TA = 25˚C RS ≤ 10 kΩ RS ≤ 50Ω mV TAMIN ≤ TA ≤ TAMAX RS ≤ 50Ω RS ≤ 10 kΩ 6.0 Average Input Offset 7.5 15 mV µV/˚C Voltage Drift Input Offset Voltage TA = 25˚C, VS = ± 20V ± 10 ± 15 ± 15 mV Adjustment Range Input Offset Current TA = 25˚C 3.0 TAMIN ≤ TA ≤ TAMAX Average Input Offset 30 20 200 70 85 500 20 200 nA 300 nA 0.5 nA/˚C Current Drift Input Bias Current TA = 25˚C Input Resistance TA = 25˚C, VS = ± 20V 1.0 TAMIN ≤ TA ≤ TAMAX, 0.5 30 TAMIN ≤ TA ≤ TAMAX 80 80 0.210 6.0 500 80 1.5 0.3 2.0 500 0.8 0.3 2.0 nA µA MΩ MΩ VS = ± 20V Input Voltage Range ± 12 TA = 25˚C TAMIN ≤ TA ≤ TAMAX www.national.com ± 12 2 ± 13 ± 13 V V Parameter (Continued) Conditions LM741A Min Large Signal Voltage Gain Typ LM741 Max Min Typ 50 200 LM741C Max Min Typ 20 200 Units Max TA = 25˚C, RL ≥ 2 kΩ VS = ± 20V, VO = ± 15V 50 V/mV VS = ± 15V, VO = ± 10V V/mV TAMIN ≤ TA ≤ TAMAX, RL ≥ 2 kΩ, VS = ± 20V, VO = ± 15V 32 V/mV VS = ± 15V, VO = ± 10V VS = ± 5V, VO = ± 2V Output Voltage Swing 25 15 V/mV 10 V/mV ± 16 ± 15 V VS = ± 20V RL ≥ 10 kΩ RL ≥ 2 kΩ V VS = ± 15V RL ≥ 10 kΩ ± 12 ± 10 RL ≥ 2 kΩ Output Short Circuit TA = 25˚C 10 Current TAMIN ≤ TA ≤ TAMAX 10 Common-Mode TAMIN ≤ TA ≤ TAMAX Rejection Ratio 25 35 Supply Voltage Rejection TAMIN ≤ TA ≤ TAMAX, Ratio VS = ± 20V to VS = ± 5V RS ≤ 50Ω 25 ± 14 ± 13 V 25 mA 95 86 96 90 70 90 dB 77 96 77 96 dB µs TA = 25˚C, Unity Gain 0.25 0.8 0.3 0.3 Overshoot 6.0 20 5 5 TA = 25˚C Slew Rate TA = 25˚C, Unity Gain Supply Current TA = 25˚C Power Consumption TA = 25˚C 0.437 1.5 0.3 0.7 VS = ± 20V 80 LM741 % MHz 0.5 0.5 V/µs 1.7 2.8 1.7 2.8 mA 50 85 50 85 mW 150 VS = ± 15V LM741A dB dB Rise Time Bandwidth (Note 6) V mA 70 80 RS ≤ 10 kΩ Transient Response ± 12 ± 10 40 RS ≤ 10 kΩ, VCM = ± 12V RS ≤ 50Ω, VCM = ± 12V ± 14 ± 13 mW VS = ± 20V TA = TAMIN 165 mW TA = TAMAX 135 mW VS = ± 15V TA = TAMIN 60 100 mW TA = TAMAX 45 75 mW Note 2: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. 3 www.national.com LM741 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Electrical Characteristics (Note 5) LM741 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Electrical Characteristics (Note 5) (Continued) Note 3: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and Tj max. (listed under “Absolute Maximum Ratings”). Tj = TA + (θjA PD). Thermal Resistance θjA (Junction to Ambient) θjC (Junction to Case) Cerdip (J) DIP (N) HO8 (H) SO-8 (M) 100˚C/W 100˚C/W 170˚C/W 195˚C/W N/A N/A 25˚C/W N/A Note 4: For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the supply voltage. Note 5: Unless otherwise specified, these specifications apply for VS = ± 15V, −55˚C ≤ TA ≤ +125˚C (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to 0˚C ≤ TA ≤ +70˚C. Note 6: Calculated value from: BW (MHz) = 0.35/Rise Time(µs). Note 7: For military specifications see RETS741X for LM741 and RETS741AX for LM741A. Note 8: Human body model, 1.5 kΩ in series with 100 pF. Schematic Diagram 00934101 www.national.com 4 inches (millimeters) unless otherwise noted Metal Can Package (H) Order Number LM741H, LM741H/883, LM741AH/883, LM741AH-MIL or LM741CH NS Package Number H08C 5 www.national.com LM741 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Physical Dimensions LM741 PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Physical Dimensions inches (millimeters) unless otherwise noted (Continued) Ceramic Dual-In-Line Package (J) Order Number LM741J/883 NS Package Number J08A Dual-In-Line Package (N) Order Number LM741CN NS Package Number N08E www.national.com 6 inches (millimeters) unless otherwise noted (Continued) 10-Lead Ceramic Flatpak (W) Order Number LM741W/883, LM741WG-MPR or LM741WG/883 NS Package Number W10A National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications. For the most current product information visit us at www.national.com. LIFE SUPPORT POLICY NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. BANNED SUBSTANCE COMPLIANCE National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no ‘‘Banned Substances’’ as defined in CSP-9-111S2. National Semiconductor Americas Customer Support Center Email: [email protected] Tel: 1-800-272-9959 www.national.com National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: [email protected] Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: [email protected] National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: [email protected] Tel: 81-3-5639-7560 LM741 Operational Amplifier PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI Physical Dimensions PLAGIAT PLAGIATMERUPAKAN MERUPAKANTINDAKAN TINDAKANTIDAK TIDAKTERPUJI TERPUJI IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Communications and Telecom www.ti.com/communications Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap Wireless Connectivity www.ti.com/wirelessconnectivity TI E2E Community Home Page www.ti.com/video e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated