laporan akhir hasil penelitian unggulan perguruan tinggi

advertisement
Bidang Unggulan : Ketahanan Pangan
LAPORAN AKHIR HASIL
PENELITIAN UNGGULAN PERGURUAN TINGGIHIBAH BERSAIING (TAHUN KE-1)
TAHUN ANGGARAN 2012
Judul
:
Mobilisasi 3-Isolat Bakteri Untuk Memacu Proses
Nitrifikasi Pada Budidaya Tambah Udang
Ketua
:
Dr. Ir. Anik. M. Ariati, MSc
Anggota
:
1. Ir. Dewa Gede Raka Wiadnya, M.Sc
2. Ating Yuniarti, S.Pi.m M.Aqua
Dibiayai oleh Direktorat Jenderal Pendidikan Tinggi, Kementerian Pendidikan dan Kebudayaan,
Melalui DIPA Universitas Brawijaya nomor : 0636/023-04.2.16/15/2012, tanggal 9 Desember
2011, dan berdasarkan SK Rektor Universitas Brawijaya Nomor : 058/SK/2012 tanggal 8
Pebruari 2012
LembagaPenelitiandanPengabdiankepadaMasyarakat
UniversitasBrawijaya
2012
1
2
ABSTRAK
Nitrifikasi telah dipelajari secara ekstensif untuk signifikan di dalam siklus
nitrogen.Seringkali penurunan nitrogen dari air limbah yang bermasalah karena laju
pertumbuhan yang rendah dari bakteri yang terlibat. Amobilisasi merupakan metode
yang efisien untuk mempertahankan pertumbuhannya bakteri yang lambat pada reaktor.
Sel-sel amobilreaktor terperangkap dalam gel manik-manik membentuk alternatif
tersebut terpasang-sel sistem. Beberapa teknik untuk evaluasi diberikan, termasuk
tingkat konsumsi substrat dan bahan pendukung (matriks). Bakter ini trifikasi
diamobilisasi dengan alginat, karagenan, polivinil alkohol (PVA) dan serbuk gergaji yang
digunakan sebagai matriks. Reaktor matriks dapat mengoksidasi TAN berkisar 63-78%.
Matrik salginat memiliki efisiensi nitrifikasi sebesar 10-20 persen lebih tinggi dari matriks
lainnya. Penggunaan matriks amobil secara efektif dapat mengoksidasi TAN sampai
tiga.
ABSTRACT
Nitrification has been studied extensively for its significance in the nitrogen cycle. Often
nitrogen removal from wastewater is problematic because of the low growth rate of
thebacteria involved. Immobilization is an efficient method to retain slow-growing
organisms in reactors.Immobilized-cell reactor cells entrapped in gel beadsform an
alternative to these attached-cell systems.Several techniques for evaluation are given,
includingsubstrate consumption rates and support material (matrix).Nitrifying
microorganisms, immobilized by alginate, carrageenan, polyvinyl-alcohol (PVA) and
sawdust were used as a matrix. The matrix reactor removed ranging from 63-78%of
TAN.Alginate matrix have the nitrification efficiency of 10-20 percent higher than other
matrix. The matrix can effectively remove of TAN until three times used.
3
RINGKASAN
Amobilisasi bakteri nitrifikasi dapat menjadi metode yang efektif untuk
menurunkan total amonia-nitrogen (TAN) dari budidaya udang. Hal ini dapat membantu
meningkatkan kualitas air untuk budidaya udang dan engurangi biaya modal dan
operasional.
Tujuan dari penelitian ini adalah untuk mendapatkan matrik penjerap bakteri
nitrifikasi (AOB dan NOB) dalam proses amobilisasi yang mampu menurunkan TAN
yang paling efektif.
Bakteri yang digunakan dalam penelitian ini adalah Nitrosomonas, Nitrobacter
dan Nitrospira. Bakteri ini hasil dari isolasi sedimen tambak udang. Untuk keperluan
amobilisasi, masing-masing bakteri ditumbuhkan pada medianya. Bakteri yang
digunakan untuk proses amobilisasi diambil pada fase ekspon ensial yaitu pada inkubasi
jam ke 12 – 18. Pada penelitian ini menggunakan beberapa matrik seperti alginate,
karagenan, polivnilalkohol (PVA) dan serbuk gergaji sebagai penjerap bakteri. Pengujian
laju nitrifikasi dilakukan dengan sebuah bioreaktor nitrifikasi dengan media yang telah
ditentukan konsentrasi TAN sebesar 1,6mM. Untuk mengetahui efisiensi penggunaan
bakteria mobil, dilakukan pengujian berulang dari manik-manika mobil yang sama.
Hasil penelitian menunjukkan bahwa kemampuan matrik untuk menjerap bakteri
berkisar antara 70-80%. Sedangkan kekuatan gel yang terbentuk paling tinggi pada
matrik alginate dan PVA. Laju penurunan TAN berkisar antara 0,032 sampai 0,042
mM/menit. Laju penurunan TAN sangat dipengaruhi oleh matrik penjerap. Secara ratarata penggunaan penjerap alginate, karagenan, PVA dan serbuk gergaji dapat
menurunkan TAN secara berturut sebesar 0,042; 0,036; 0,033 dan 0,032 mM/menit.
Sedangkan untuk periode penggunaan manik-manika mobil, kemampuan laju
nitrifikasinya menurun secara drastis setelah penggunaan lebih dari tiga kali. Efisiensi
penurunan TAN juga dipengaruhi oleh matrik penjerapnya. Nilai efisiensi penurunan
TAN berkisar antara 62 sampai 78%, dengan efisiensi paling tinggi pada matrik alginat.
Sedangkan efisiensinya menurun sampai 50% setelah penggunaan lebih dari tiga kali.
Dari hasil ini dapat disimpulkan bahwa: Alginat, karagenan, PVA dan serbuk
gergaji merupakan bahan yang dapat digunakan sebagai matrik penjerap untuk bakter
initrifikasi. Kemampuan nitrifikasi yang tertinggi dicapai pada penggunaan matrik
penjerap alginate. Matrik penjerap alginate mempunyai efisiensi nitrifikasi 10-20 persen
lebih tinggi dibanding dengan penjerap karagenan, PVA dan serbuk gergaji. Sehingga
dalam penelitian lanjutan dapat disarankan bahwa Alginat relative efektif dalam
nitrifikasi, tetapi harganya cukup mahal. Sebaliknya serbuk gergaji relative murah
dengan kemampuan 20% lebih rendah. Kedua jenis penjerap ini perlu diuji kemampuan
nitrifikasinya pada budidaya udang.
4
SUMMARY
Immobilization of nitrifying bacteria can be an effective method to reduce the total
ammonia-nitrogen (TAN) from shrimp farming. This can help improve the quality of water
for shrimp farming and reduce capital and operational costs.
The purpose of this study was to obtain a matrix entrapment nitrifying bacteria
(AOB and NOB) in animmobilization process that can effectively reduce of the TAN
concentration.
The bacteria used in this study wereNitrosomonas, Nitrobacter and Nitrospira.
This bacteriaare the result of the isolation from the shrimp pond sediment. For the
purposes of immobilization, each bacterium was grown in the specific medium. The
bacteria that are used toimmobile processtaken from the exponential growth phase at 12
to 18 hours incubation time.Several metrics such as alginate, carrageenan, polyvinyl
alcohol (PVA) and sawdust were used as bacteria entrapped. Nitrification rate was
conducted by using of nitrification bioreactor with media specified TAN concentration of
1.6 mM. To determine the efficiency of the use of immobilized bacteria, repeated testing
of same immobilized beads was applied.
The results showed that the ability of the matrix to adsorb bacteria ranged from
70-80%. While the strength of the gel formed highest in alginate and PVA matrix. The
removal rate of TAN ranged from 0.032 to 0.042 mM/min. The TAN removal rate is
influenced by the matrix entrapped. The matrix of alginate, carrageenan, PVA and
sawdust can removed TAN at 0.042; 0.036; 0.033 and 0.032 mM/min, respectively.
While for the use of immobilized beads, the ability of nitrification rate decreases
dramatically after the use of more than three times. TAN removal efficiency is also
affected by the type of matrix. TAN removal efficiency values ranged from 62 to 78%,
with the highest efficiency in the alginate matrix. While the removal efficiency decreased
to 50% after the use of more than three times.
From these results it can be concluded that: Alginate, carrageenan, PVA and
sawdust are a material that can be used as a matrix for bacterial immobilization. The
ability of nitrification of the highest achieved in the use of alginate matrix. Alginate matrix
have the nitrification efficiency of 10-20 percent higher than matrix of carrageenan, PVA
and sawdust. Thus, in further research can be suggested that Alginate relatively
effective in nitrification, but the price is quite expensive. In contrast with the relatively low
cost sawdust 20% lower capacity. Both types of matrix need to be tested for their
nitrification on shrimp culture
5
DAFTAR PUSTAKA
Avnimelech, Y. and G. Ritvo. 2001. Aeration, mixing and sludge control in shrimp ponds.
Glob. Aquac. Alliance Advocate 4: 51– 53.
Avnimelech, Y. and G. Ritvo. 2003. Shrimp and fish pond soils: processes and
management. Aquaculture 220: 549–567
Bartosch, S., I. Wolgast, E. Spieck & E. Bock, (1999) Identification of nitrite-oxidizing
bacteria with monoclonal antibodies recognizing the nitrite oxidoreductase. Appl
Environ Microbiol 65: 4126-4133
Bartosch, S., C. Harttwig, E. Spieck and E. Bock. 2002. Immunological detection of
Nitrospira-like bacteria in various soils. Microbiol. Ecol. 43: 26-33.
Baticados, M. C. L., Curz-Lacierda, E. R., de la Cruz, M. C., Duremdez-Fernandez, R.
C., Gacutan, R. Q., Lavilla-Pitogo, C. R. and Lio-Po, G. D., Diseases of Penaeid
Shrimp in the Philippines, Aquaculture Extension Manual No. 16. Aquaculture
Department, Southeast Asian Fisheries Development Centre, Philippines, 1990,
p. 46.
Bédard, C., and R. Knowles. 1989. Physiology, biochemistry, and specific inhibitors of
CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol.
Rev. 53:68-84
Bendtsen, J. D., H. Nielsen, D. Widdick, T. Palmer & S. Brunak, (2005) Prediction of
twin-arginine signal peptides. BMC Bioinformatics 6: 167.
Berks, B. C., M. D. Page, D. J. Richardson, A. Reilly, A. Cavill, F. Outen & S. J.
Ferguson, (1995) Sequence analysis of subunits of the membrane-bound nitrate
reductase from a denitrifying bacterium: the integral membrane subunit provides
a prototype for the dihaem electron-carrying arm of a redox loop. Mol Microbiol
15:319-331
Blackburn, T.H. and N.D. Blackburn, 1992. Model of nitrification and denitrification in
marine sediments. FEMS Microbiology Letters, 100:517-522.
Bollmann, A., I. Schmidt, A. M. Saunders & M. H. Nicolaisen, (2005) Influence of
starvation on potential ammonia-oxidizing activity and amoA mRNA levels of
Nitrosospira briensis. Appl Environ Microbiol 71: 1276-1282.
Boyd, C.E., M.E. Tanner, M. Madkour and K. Masuda. 1994. Chemical characteristics of
bottom soils from freshwater and brackishwater aquaculture ponds. J. World
Aquac. Soc. 25: 517–534.
Boyd, C. 1995. Shrimp pond bottom soil and sediment management. Soil and Sediment
Mangt. Reviews: 166-181
Boyd, C.E., C.W. Wood, and T. Thunjai, 2002. Pond soil characteristics and dynamics of
soil organic matter and nutrients. In: K. McElwee, K. Lewis, M. Nidiffer, and P.
Buitrago
(Editors),
Nineteenth
Annual
Technical
Report.
Pond
dynamics/Aquaculture CRSP, Oregon State University, Corvallis, Oregon, pp.
1–10.
Briggs, M.R.P., and Funge-Smith, S.J., 1994. A nutrient budget of some intensive marine
shrimp ponds in Thailand. Aquaculture and Fisheries Management 25, 789–
6
811.
Burford, M.A., Longmore, A.R., 2001. High ammonium production from sediments in
hypereutrophic shrimp ponds. Marine Ecology Progress Series 224, 187–195.
Burford M.A. and, K. Lorenzen. 2004. Modeling nitrogen dynamics in intensive shrimp
ponds: the role of sediment remineralization. Aquaculture 229 (2004) 129–145
Burford, M.A., and Williams, K.C., 2001. The fate of nitrogenous waste from shrimp
feeding. Aquaculture 198, 79– 93.
Burrell, P.C., J. Keller and L.L. Blackall. 1998. Microbiology of a nitrite-oxidizing
bioreactor. Appl. Environ. Microbiol. 64: 1878-1883.
Chen J.C. & Chen S.F. (1992) Effects of nitrite on growth and molting of Penaeus
monodon juveniles. Comparative Biochemistry and Piujsiology C— Comparative
Pharmacology andToxicoIogy 101.453-458.
Daims, H., S. Lucker & M. Wagner, (2006) daime, a novel image analysis program for
microbial ecology and biofilm research. Environ Microbiol 8: 200-213.
Daims, H., J. Nielsen, P.H. Nielsen, K.H. Schleifer and M. Wagner. 2001. In situ
characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater
treatment plants. Appl. Environ. Microbiol. 67: 5273-5284.
Deizman, M.M. and S. Mostaghimi, 1991. A model for evaluating the impacts of land
application of organic waste on runoff water quality. Research Journal WPFC,
63:17-27.
Denac, M., Uzman, S., Tanaka, H. and Dunn, I. J. Modeling of experiments on biofilm
penetration effects in a fluidized bed nitrification reactor. Biofechnol. Bioeng.
1983, 25, 1841-1861
Ehrich, S., D. Behrens, E. Lebedeva, W. Ludwig and E. Bock. 1995. A new obligately
chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp.
nov. and its phylogenetic relationship. Arch. Microbiol. 164: 16-23.
El Sheikh, A. F. & M. G. Klotz, (2008) Ammonia-dependent differential regulation of the
gene cluster that encodes ammonia monooxygenase in Nitrosococcus oceani
ATCC 19707. Environ Microbiol 10: 3026-3035.
Foesel, B. U., A. Gieseke, C. Schwermer, P. Stief, L. Koch, E. Cytryn, J. R. de la Torre,
J. van Rijn, D. Minz, H. L. Drake & A. Schramm, (2008) Nitrosomonas Nm143like ammonia oxidizers and Nitrospira marina-like nitrite oxidizers dominate the
nitrifier community in a marine aquaculture biofilm. FEMS Microbiol Ecol 63:
192-204
Friedrich, T., (1998) The NADH:ubiquinone oxidoreductase (complex I) from Escherichia
coli. Biochim Biophys Acta 1364: 134-146.
Hariati, A.M., D.G.R. Wiadnya, A. Prajitno, M. Sukkel, J.H. Boon, and M.C.J. Verdegem
1995. Recent development of shrimp, Penaeus monodon (Fabricus) and
Penaeus merguensis ( de Man ), culture in East Java. Aquaculture research 26;
819-829 pp., Elsevier Scien. B.V . Amsterdam
Hariati, A.M., D.G.R. Wiadnya, M.W.Tanck, J.H. Boon and M.C.J. Verdegem. 1996a.
Penaeus monodon ( Fabricus) production related to water quality in East Java ,
Indonesia. Aquaculture Res. 27;255-260
7
Hariati, A.M., D.G.R. Wiadnya, M.W. Tanck, J.H. Boon and M.C.J. Verdegem. 1996b.
Pond production of Penaeus monodon (Fabricus) in relation stocking density,
survival rate and mean weight at haverst in East Java. Aquaculture 27:277-282.
Hariati, A.M., D.G.R. Wiadnya, R.K. Rini, J.H. Boon and M.C.J. Verdegem. 1998.
Penaeus monodon (Fabricus) and Penaeus merguensis (de Man) biculture in
East Java, Indonesia. Aquaculture Research 29: 1-8
Hariati, A.M. 2008. Aplikasi probiotik terhadap karakteristik sedimen dan produksi
tambak udang intensif. Seminar Nasional Perikanan dan Kelautan UB.
Hariati, A.M. dan A. Yuniarti. 2008. Isolasi dan identifikasi bakteri indigeneus dari
udang Vanname, Litopenaeus Vannamei sebagai kandidat probiotik. Seminar
Nasional Hasil Penelitian Perikanan dan Kelautan UGM.
Heylen, K., B. Vanparys, D. Gevers, L. Wittebolle, N. Boon & P. De Vos, (2007) Nitric
oxide reductase (norB) gene sequence analysis reveals discrepancies with
nitrite reductase (nir) gene phylogeny in cultivated denitrifiers. Environ Microbiol
9: 1072-1077.
Hynes, R. K., and R. Knowles. 1982. Effect of acetylene on autotrophic and
heterotrophic nitrification. Can. J. Microbiol. 28:334-340
Jackson, C., Preston, N., Thompson, P., Burford, M., 2003. Nitrogen budget and effluent
nitrogen components at an intensive shrimp farm. Aquaculture 218, 397– 411
Jamu, D.M. and R.H. Piedrahita, 1995. Aquaculture pond modeling for the analysis of
integrated Aquaculture/agriculture systems. In: H. Egna, B. Goetze, D. Burke,
M. McNamara, and D. Clair (Editors), Thirteenth Annual Technical Report, Pond
Dynamics/Aquaculture CRSP, Office of International Research and
Development, Oregon State University, Corvallis, Oregon, USA, pp. 142-147
Jaya, I.B.M.S. 1994a. Organic matter and aquaculture: a review. ASEAN-EEC
Aquaculture development and coordination programme (AADCP), component 1:
metdodology of coastal zone assessment for brackishwater aquaculture. Pp 66.
Jaya, I.B.M.S., C.K. Sutrisno dan N. Hamid. 1994. Analisis mutu sediment di kawasan
tambak desa Turunrejo, Kendal, Jawa Tengah. Majalah Ilmiah Perikanan,
BBAP, Jepara. 1: 1-9
Jime´nez-Montealegre, R., Verdegem, M.C.J., van Dam, A., and Verreth, J.A.J., 2002.
Conceptualization and validation of a dynamic model for the simulation of
nitrogen transformations and fluxes in fish ponds. Ecological Modelling 147,
123– 152.
Juretschko, S., G. Timmermann, M. Schmid, K-H. Schleifer, A. Pommering-Röser, H-P.
Koops and M. Wagner. 1998. Combined molecular and conventional analyses
of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and
Nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiol. 64:
3042-3051
Kleiner, D. (1981). The transport of NH3 and NHz 4 across biological membranes.
Biochim Biophys Acta 639, 41–52.
Kochba, M., S. Diab, and Y. Avnimelech, 1994. Modeling nitrogen transformations in
intensively aerated fish ponds. Aquaculture, 120:95-104
Lebedeva, E. V., M. Alawi, F. Maixner, P. G. Jozsa, H. Daims & E. Spieck, (2008)
8
Physiological and phylogenetic characterization of a novel lithoautotrophic nitrite
oxidizing bacterium, ‘Candidatus Nitrospira bockiana’. Int J Syst Evol Microbiol
58:242-250.
Lefebvre, S., Bacher, C., Meuret, A., and Hussenot, J., 2001. Modeling approach of
nitrogen and phosphorus exchanges at the sediment– water interface of an
intensive fishpond system. Aquaculture 195, 279– 297.
Lorenzen, K., 1999. Nitrogen recovery from shrimp pond effluent: dissolved N removal
has greater overall potential than particulate nitrogen removal, but requires
higher rates of water exchange than presently used. Aquaculture Research 30,
923– 927.
Manju, N.J. , V. Deepest, Cini Achuthan, P. Rosamma and I.S. Bright Singh. 2009.
Immobilization of nitrifying bacterial consortia on wood particle for
bioaugmentating nitrification in shrimp culture systems. Aquaculture 294 (1009)
65-75
Maixner, F., D. R. Noguera, B. Anneser, K. Stoecker, G. Wegl, M. Wagner & H. Daims,
(2006) Nitrite concentration influences the population structure of Nitrospira-like
bacteria. Environ Microbiol 8: 1487-1495
Meincke, M., E. Bock, D. Kastrau & P. M. H. Kroneck, (1992) Nitrite oxidoreductase from
Nitrobacter hamburgensis: redox centers and their catalytic role. Arch Microbiol
158: 127-131
Meincke1 M, Bock E, Kastrau D, Kroneck PMH (2004). “Nitrite oxidoreductase from
Nitrobacter hamburgensis: redox centers and their catalytic role”. Arch
Microbiol. 158 (2): 127–31.
Milde K. and E. Bock. 1984. Isolation and partial characterization of inner and outer
membrane fractions of Nitrobacter hamburgensis.FEMS Microbiol Lett 21 : 137141
Millamena CM. (1990) Organic pollution resulting from excess feed and metabolite buildup: effect on P. monodon postlarvae. Aquacultural Engineering 9, 143-150.
Munsiri, P., C.E. Boyd, and B.J. Hajek, 1995. Physical and chemical characteristics of
bottom soil profiles in ponds at Auburn, Alabama, USA, and a proposed method
for describing pond soil horizons. J. World Aquacult. Soc., 26:346–377.
Nakamura, Y., H. Satoh, T. Kindaichi & S. Okabe, (2006) Community structure,
abundance, and in situ activity of nitrifying bacteria in river sediments as
determined by the combined use of molecular techniques and microelectrodes.
Environ Sci Technol 40: 1532-1539
Seo, J.-K., Jung, I.-H., Kim, M.-R., Kim, B.J., Nam, S.-W., Kim, S.-K., 2001. Nitrification
performance of nitrifiers immobilized in PVA(polyvinyl alcohol) for a marine
recirculating aquarium system. Aquacultural Engineering 24, 181–194.
Schramm, A., D. De Beer, M. Wagner and R. Amann. 1998. Identification and activities
in situ of Nitrosospira and Nitrospira spp. As dominant populations in a nitrifying
fluidized bed reactor. Appl. Environ. Microbiol. 64: 3480-3485.
Schmidt, I., O. Sliekers, M. Schmid, E. Bock, J. Fuerst, J.G. Kuenen, M.S.M. Jetten, and
M. Strous. 2003. New concepts of microbial treatment processes for the
nitrogen removal in wastewater. FEMS Microbiol. Rev. 27: 481-492
9
Shin, M., Nguyen, T., Ramsay, J., 2002. Evaluation of support materials for the surface
immobilization and decoloration of amaranth by Trametes versicolor. Applied
Microbiology Biotechnology 60, 218–223
Sonnenholzner, S. and C.E. Boyd, 2000. Vertical gradients of organic matter
concentration and respiration rate in pond bottom soils. J. World Aquacult. Soc.,
31:376–380
Spector, T. 1978 Refinement of the coomassie blue method of protein quantification.
Anal Biochem 86:142–146
Spieck E., J. Aamand, S. Bartosch and E. Bock. 1996a. Immunocytochemical detection
and location of the membrane-bound nitrite oxidoreductase in cells of
Nitrobacter and Nitrospira. FEMS Microbiol Lett 139:71–76
Spieck, E., C. Hartwig, I. McCormack, F. Maixner, M. Wagner, A. Lipski & H. Daims,
(2006) Selective enrichment and molecular characterization of a previously
uncultured Nitrospira-like bacterium from activated sludge. Environ Microbiol 8:
405-415.
Spieck E., S. Müller, A. Engel, E. Mandelkow, H. Patel. And E. Bock. 1996b. Twodimensional structure of membrane-bound nitrite oxidoreductase from
Nitrobacter hamburgensis. J Struct Biol. 117:117–123
Spieck E, Ehrich S, Aamand J, Bock E (1998). “Isolation and immunocytochemical
location of the nitrite-oxidizing system in nitrospira moscoviensis”. Arch
Microbiol. 169 (3): 225–30
Sudirdjo, Marsoedi dan A.M. Hariati. 2001. Efektifitas bakteri super-Nb dalam
mengendalikan laju akumulasi bahan 10lastic dan kualitas air media budidaya
udang windu (Penaeus Monodon Fab.) BIOSAIN 1 (3):
Sundermeyer-Klinger H., W. Meyer, B. Warninghoff and E. Bock. 1984. Membranebound nitrite oxidoreductase of Nitrobacter : evidence for a nitrate reductase
system. Arch Microbiol. 140:153–158
Tanaka Y., Y. Fukumori and T. Yamanaka. 1983. Purification of cytochrome a1c1 from
Nitrobacter agilis and characterization of nitrite oxidation system of the
bacterium. Arch Microbiol. 135:265–271
Vanparys, B., E. Spieck, K. Heylen, L. Wittebolle, J. Geets, N. Boon & P. De Vos, (2007)
The phylogeny of the genus Nitrobacter based on comparative rep-PCR, 16S
rRNA and nitrite oxidoreductase gene sequence analysis. Syst Appl Microbiol
30: 297-308.
Watson, S.W., E. Bock, F.W. Valois, J.B. Waterbury and U. Schlosser. 1986. Nitrospira
marina gen. nov. sp. nov.: a hemolithotrophic nitrite-oxidizing bacterium. Arch
Microbiol. 144:1–7
Watson, S.W., E. Bock, H. Harms, H-P. Koops and A.B. Hooper. 1989. Nitrifying
bacteria. Staley JT, Bryant MP, Pfennig N, Holt JG [Eds] Bergey’s Manual of
Systematic Bacteriology.
Wiadnya, D.G.R., P.J. Mous, R. Djohani, M.V. Erdmann, A. Halim, M. Knight, L. PetSoede, & J.S. Pet, 2005a. Marine Capture Fisheries Policy Formulation and the
Role of Marine Protected Areas as Tool for Fisheries Management in Indonesia.
Mar. Res. Indonesia (2005) 30:33-45
10
Wiadnya, D.G.R., R. Djohani, M.V. Erdmann, A. Halim, M. Knight, P.J. Mous, J.S. Pet, &
L. Pet-Soede, 2005b. Kajian kebijakan pengelolaan perikanan tangkap di
Indonesia: menuju pembentukan kawasan perlindungan laut. Jurnal Penelitian
Perikanan Indonesia 11(3):65-77
11
Download