2 TINJAUAN PUSTAKA 2.1 Deskripsi dan

advertisement
2 TINJAUAN PUSTAKA
2.1 Deskripsi dan Klasifikasi Lobster Air Tawar (Cherax quadricarinatus)
Lobster air tawar ini sering disebut dengan nama Queensland red claw
atau red claw. Cherax quadricarinatus adalah salah satu jenis lobster air tawar
yang berasal dari Australia. Lobster ini banyak ditemukan di sungai air deras serta
danau di pantai utara daerah timur laut Queensland. Tubuhnya berwarna biru
kehijauan. Lobster jantan yang sudah dewasa memiliki capit berwarna merah
di bagian luarnya. Panjang tubuhnya berkisar 25 cm dengan bobot tubuh
sekitar 450 g.
Berikut ini adalah klasifikasi lobster air tawar (Von Martens 1868 diacu
dalam Belle 2010):
Kingdom
: Animalia
Filum
: Arthropoda
Subfilum
: Crustaceae
Kelas
: Malacostraca
Ordo
: Decapoda
Famili
: Parastacidae
Species
: Cherax quadricarinatus
Gambar 1 Lobster air tawar (Cherax quadricarinatus)
(Anonim 2011a)
Red claw hidup pada perairan darat dengan suhu air berkisar 20 – 31 oC
(ideal 26 – 29 oC), pH air 7, dan kesadahan air 10 – 20 odH. Pada umur 6-7 bulan,
lobster sudah mulai memijah dan bertelur. Dalam sekali memijah, jumlah telur
yang dihasilkan dapat mencapai 100 – 200 butir. Sementara jika sudah mencapai
satu tahun, produksi telurnya mencapai 600 – 1000 butir/ekor. Dalam waktu
setahun, induk betina mampu bertelur hingga 5 kali.
Gambar 2 Morfologi dan bagian-bagian utama tubuh lobster air tawar.
(Anonim 2012)
Morfologi tubuh lobster terdiri dari dua bagian, yaitu bagian depan dan
bagian belakang. Bagian depan terdiri dari bagian kepala dan dada. Kedua bagian
itu disebut cephalothorac. Kepala lobster ditutupi oleh cangkang kepala, yang
disebut carapace (karapas). Kelopak kepala bagian depan disebut rostrum.
Bentuknya runcing dan bergerigi. Kepala lobster terdiri dari enam ruas. Pada
bagian itu terdapat beberapa organ lain. Sepasang mata berada pada ruas pertama.
Kedua mata itu memiliki tangkai dan bisa bergerak. Pada ruas kedua dan ketiga
terdapat sungut kecil, yang disebut antennula, dan sungut besar yang disebut
antenna. Sedangkan pada ruas keempat, kelima dan keenam terdapat rahang
(mandibula), maxilla I dan maxilla II. Ketiga bagian ini berfungsi sebagai alat
makan (Wiyanto dan Hartono 2003 diacu dalam Susanto 2010). Organ lain yang
ada pada bagian kepala adalah kaki jalan, jumlahnya empat pasang, dengan
ukuran kaki paling depan lebih besar. Bagian belakang terdiri dari badan dan ekor.
Kedua bagian itu disebut abdomen. Pada bagian atas abdomen ditutupi dengan
enam buah kelopak, sedangkan bagian bawahnya tidak tertutup, tetapi berisi enam
kaki renang (pleopoda). Ekor terdiri dari bagian tengah yang disebut telson dan
bagian samping yang disebut uropoda.
Lobster air tawar merupakan hewan yang seluruh tubuhnya terbungkus
cangkang (ekternal skeleton). Lobster air tawar memiliki alat pelengkap pada
bagian luar, yaitu : (1) sepasang antena yang berfungsi sebagai perasa dan peraba
terhadap pakan dan kondisi lingkungan, (2) sepasang antenula yang berfungsi
sebagai alat penciuman, mulut dan sepasang capit (cheliped) yang lebar dengan
ukuran lebih panjang jika dibandingkan dengan ruas dasar capitnya, (3) enam ruas
badan (abdomen) sedikit memipih dengan lebar rata-rata hampir sama dengan
lebar kepala, (4) ekor. Ekor terdiri dari ekor tengah (telson) memipih, sedikit lebar
dan dilengkapi duri-duri halus yang muncul di semua bagian tepi ekor. Bagian
ekor lainnya adalah dua pasang ekor samping (uropod) yang juga memipih.
(5) Enam pasang kaki renang (pleopoda) yang berperan dalam melakukan gerakan
renang. Disamping sebagai alat berenang, kaki induk pada lobster betina
digunakan sebagai alat untuk menambah oksigen dengan pergerakannya. Selain
itu juga digunakan untuk membersihkan telur atau larva dari tumpukan kotoran
yang terendap, (6) empat pasang kaki jalan (pereipoda) (Iskandar 2003 diacu
dalam Susanto 2010).
Sistem peredaran darah lobster adalah sistem peredaran darah terbuka.
Dengan sistem ini lobster tidak mempunyai arteri atau vena untuk mengalirkan
darahnya. Darah yang mengandung oksigen dipompa oleh jantung ke seluruh
tubuh. Darah tidak mengandung hemoglobin, melainkan hemosianin yang daya
ikatnya terhadap O2 rendah (Lukito dan Prayugo 2007).
2.2 Sistem Saraf dan Chemoreseptor pada Crutacea
Sistem saraf pusat pada crustacea terdiri dari saraf ventral berganda yang
dihubungkan satu sama lain dengan ganglia. Ganglia bersifat sangat kompleks,
dengan ganglia yang terbesar terdapat pada ujung anterior. Ganglia berfungsi
sebagai otak. Crustacea dapat hidup tahunan dan mempunyai otak yang samar
(palsu), dalam hal ukuran dan kompleksitasnya, beberapa menyebutkan otak pada
crustacea mirip antara octopus dan serangga (Sanderman et al. 1992 diacu dalam
Barr et al. 2008). Unit-unit sensori berkembang seiring dengan frekuensi moulting
selama masa pertumbuhan dan dipengaruhi oleh masa hidup dari regenerasi
sel saraf (Beltz dan Sandeman 2003 diacu dalam Elwood 2009). Selama ecdysis,
crustacea berada dalam kondisi yang rawan, dan sebagai akibat peningkatan tahap
kompleksitas dari sensor aparatusnya, tambahan fungsi sensor yang baru harus
segera terbentuk ( Ali 1987 diacu dalam Elwood 2009).
Pada crustacea, reseptor neuron dikemas dalam kutikula dari eksoskeleton
yang disebut sensilla (Derby dan Steullet 2001 diacu dalam Elwood 2009).
Sensilla akan menyampaikan stimulan melalui neuron sensory ke organ atau
bagian yang dituju. Beragam jenis reseptor ditemukan pada permukaan termasuk
mechanoreceptor, chemoreceptor, dan bimodal sensillae (Ali 1987 diacu dalam
Elwood 2009). Chemosensilla terdapat pada hampir di seluruh permukaan
eksoskeleton dan memungkinkan pendeteksian terhadap perubahan-perubahan
kimia pada lingkungan (Derby dan Steullet 2001 diacu dalam Elwood 2009).
Chemosensilla akan mendistribusikan pesan berupa stimulan kimia ke seluruh
permukaan tubuh lobster, termasuk antenna, antenulla, mulut, lengan (capit dan
kaki), chepalothorax, abdomen dan telson (Derby 1982,1989; Derby dan Atema
1982a; Spencer 1986; Tierney et al. 1988; Hallberg et al 1997; Cate dan Derby
2000, 2001 diacu dalam Steullet et al. 2001).
Penerimaan rangsang (stimulan) berupa bau pada kelas crustacea
dilakukan secara cepat oleh pelipatan dua flagela pada tiap pasang antenanya
(antenna dan antennula). Dua flagella merupakan penyusun setiap ruas antenna.
Setiap segmen flagella (flagellum) disebut anulli (Laverack 1964; Steullet et al.
2000 diacu dalam Daniel 2008). Flagela lateral terdiri dari aestethasc sensilla
yang merupakan tempat bagi unimodal neuron chemosensory. Neuron sensori
pada aestethasc dan nonaesthetasc sensilla berakhir pada separasi bagian otak,
lobus olfaktori, dan neuropil pada antena lateral. Lobster dan crustacea
mempunyai beragam jenis tipe setae (Steullet 2001). Aestethacs terdapat pada
bagian yang disebut setae (seperti rambut halus). Setae diketahui berfungsi
sebagai pendeteksi eksternal akan adanya kemungkinan perubahan lingkungan.
Studi yang lebih mendalam mengenai setae pada crustacea (dalam hal ini
pada Panulirus argus) dilakukan oleh Daniel et al. (2008). Kelas crustacea
memiliki
keberagaman
setae
yang
bersifat
impresif
pada
permukaan
eksoskeletonnya, dengan jumlah terbesar berada pada antennula. Antennula telah
diidentifikasi sebagai mediator penerima rangsang yang bersifat kimia. Antena
berfungsi sebagai pendukung beberapa perilaku pada kelas crustacea, termasuk
mencari pasangan, pertahanan diri, pelipatan antennula, antennula grooming,
penciuman terhadap makanan, dan kegiatan memanjat.
2.3 Deskripsi dan Klasifikasi Pala (Myristica sp.)
Tanaman ini berasal dari Pulau Banda dan sekarang sudah menyebar ke
daerah-daerah lain di Indonesia, bahkan sampai di Grenada, Amerika Tengah dan
lain-lain. Jenis ini sampai sekarang masih merupakan jenis yang unggul, tumbuh
baik di daerah pegunungan dengan ketinggian kurang dari 700 meter dari
permukaan laut (Nurdjanah 2007). Terdapat enam jenis pala di Maluku, yaitu
Myristica fragrans, M. argantea. M. fattua, M. specioga, M. sucedona, dan
M. malabarica, namun yang memiliki nilai ekonomi adalah Myristica fragrans.
Tanaman pala dengan umur 25 – 50 tahun dapat menghasilkan 160 kg
buah/pohon/tahun (Bustaman 2008). Jenis ini membentuk pohon yang tingginya
lebih dari 18 meter (Nurdjanah 2007). Pala mempunyai beberapa nama seperti
mace (United Kingdom) ; muscadier (Prancis); nuez moscada (Uruguay,
Spanyol); dan nutmeg (United Kongdom) (Leon 1991).
Buah pala mengandung 8 - 10 % komponen volatil (myristica oleum),
30 - 40 % lemak jenuh, 9 - 13 % air, dan 5 % mineral. Minyak biji pala memiliki
12 % myristicin, gliceryn ester dari asam miristat (C14H28O2) (Playfair 1841 diacu
dalam Kartez 2011). Setiap 100 g daging buah pala mengandung 10 g air, 7 g
protein, 33 g lemak, serta minyak yang menguap (minyak atsiri) dengan
komponen utama monoterpen hidrokarbon (61 – 88 % seperti alpha pinene, beta
pinene, sabinene), asam monoterpenes (5-10%), aromatik eter (2 – 18 % misalnya
myristicin, elemicin, safrole) (Nurdjanah 2007).
Dosis oral sebanyak 24 mg/kg berat badan merupakan dosis letal pada
kucing. Toksisitas akut oral (LD50) pada tikus besar sebesar 2600 ± 220 mg/kg
berat badan. Sedangkan toksisitas akut oral (LD50) biji pala yang berasal dari
Indian Timur
pada tikus mencit sebesar 5620 ± 520 mg/kg berat badan.
(Jenner et al. 1979 diacu dalam Pratiwi 2000).
Menurut Kartez (2011) klasifikasi pala adalah sebagai berikut :
Kingdom
: Plantae
Divisi
: Magnoliophyta
Kelas
: Magnoliopsida
Ordo
: Magnoliales
Famili
: Myristicaceae
Genus
: Myristica
Spesies
: Myristica sp.
Gambar 3 Buah pala (kiri) dan biji pala kering (kanan)
(Anonim (2010) dan Anonim (2011b))
Buah untuk keperluan rempah biasa dipetik pada umur 9 bulan sejak
persarian bunga. Buahnya berbentuk peer, lebar, dan ujungnya meruncing,
kulitnya licin, berdaging dan cukup banyak mengandung air. Jika sudah masak
petik, warnanya kuning pucat dan membelah dua kemudian jatuh. Biji pala
tunggal, berkeping dua, dilindungi oleh tempurung, walaupun tidak tebal tapi
cukup keras. Bentuk biji bulat telur hingga lonjong, mempunyai tempurung
berwarna coklat tua, dan licin permukaannya. Bila sudah cukup tua setelah
dikeringkan warnanya menjadi coklat muda di bagian bawah dan coklat tua di
bagian atasnya dengan permukaan yang keriput dan beraluran. Biji dan fuli yang
cukup tua dimanfaatkan sebagai rempah, sedangkan biji dan fuli yang berasal dari
buah yang muda, dimanfaatkan sebagai bahan baku minyak pala karena
kandungan atsirinya yang jauh lebih tinggi dibandingkan biji dan fuli yang tua.
Pada buah pala muda (umur 4 - 5 bulan) kadar minyak atsiri berkisar 8-17 %
(Nurdjanah 2007). Minyak pala dan fuli digunakan sebagai flavor pada produkproduk berbasis daging, pikel, saus dan sup, serta untuk menetralkan bau yang
tidak menyenangkan pada rebusan kubis (Librianto et al., 2004 diacu dalam
Nurdjanah 2007).
Senyawa yang terdapat dalam minyak atsiri pala (pada spesies pala maba)
terdiri dalam beberapa golongan, yaitu senyawa yang tergolong monoterpen,
monoterpen alkohol, seskiterpen, sikloterpen alkohol, dan fenil propena. Senyawa
yang tergolong dalam monoterpen antara lain α-Pinena, β-Pinena, β-Mirsena,
α-Felandrena, α-Terpinena, limonene, Osimena, senyawa yang tergolong
monoterpen alkohol antara lain : β-Linalol, 4-Metil-1-(1-metiletil)-3-sikloheksen1-ol, isobonieol. Senyawa yang termasuk seskiterpena antara lain kopaena,
isokariofilina, dan α-Kariofilina. Senyawa yang tergolong dalam sikloterpen
alkohol antara lain elemol, gualol, dan guaiol. Senyawa yang tergolong fenil
propena antara lain safrol, isoeugenol, metal eugenol, metil isoeugenol, miristisin,
dan elemisin. Fenil propena merupakan senyawa yang tergolong dominan berada
pada minyak atsiri pala, yaitu safrol (2,21 %), metil eugenol (29,76 %), myristicin
(3,57 %), dan elemicin (3,81 %) (Agusta 2000).
Dari buah dan biji pala dapat dihasilkan minyak yang menghasilkan
senyawa myristicin yang berpotensi sebagai obat penenang (Casarett 1975 diacu
dalam Pratiwi 2000). Menurut Leon (1991) dua komponen utama dalam biji pala,
yaitu myristicin dan elemicin, keduanya berpotensi sebagai obat pshycotropic
(penenang). Elemicin dapat mengoksidasi oleficin pada rantai molekulnya.
Senyawa yang terbentuk akibat reaksi tersebut adalah vinil alkohol yang diduga
dapat menyebabkan transaminasi untuk produksi TMA (3,4,5,-trimethoxy
amphetamine). TMA diketahui berpotensi sebagai obat psychotropic. Elemicin
(C12H16O3) mempunyai bobot molekul 208,26 (Harborne dan Baxter 1996 diacu
dalam Leon 1991).
Shulgin (1966) diacu dalam Pratiwi (2000) menyatakan bahwa senyawa
myristicin yang terdapat dalam minyak biji pala berpotensi sebagai substansi
psychotropic untuk mengganti senyawa sintesis. Myristicin merupakan senyawa
dengan rumus molekul C12H16O3 dengan bobot molekul 192,21. Dalam tubuh,
myristicin diubah menjadi MMDA (3-methoxy-4,5-methylenedioxy amphetamine).
MMDA diketahui mempunyai potensi yang lebih besar dibandingkan TMA
sebagai obat pshychotropic. TMA dan MMDA mempunyai efek halusinogen dan
antimual (Leon 1991). Selain myristicin dan elemicin, senyawa yang diduga
bersifat anestetik adalah metil eugenol dan metil isoeugenol. Baik myristicin,
elemicin, metil eugenol dan metil isoeugenol bekerja mempengaruhi kerja sistem
saraf pusat. Pada dosis tinggi senyawa tersebut bersifat narkotik (Agusta 2000).
2.4 Pembiusan Ikan
Menurut Wright dan Hall (1961), mekanisme pembiusan meliputi tiga
tahap, yaitu :
a. Berpindahnya bahan pembius dari lingkungan ke dalam muara pernafasan
organisme.
b. Difusi membran dalam tubuh yang menyebabkan terjadinya penyerapan bahan
pembius ke dalam darah.
c. Sirkulasi darah dan jaringan menyebabkan substansi masuk ke seluruh tubuh.
Kecepatan distribusi dan penyerapan oleh sel ini sangat beragam, tergantung
pada volume aliran darah dan kandungan lemak pada setiap jaringan.
Jika induksi zat anestesi berjalan cepat, satu hal yang sulit untuk
dibedakan adalah perubahan kondisi fisiologis hewan uji, karena itu penggunaan
dosis yang tepat merupakan bagian penting untuk menghindari over dosis. Untuk
keperluan anestesi yang cepat dan tidak memerlukan prosedur yang invasif,
disarankan agar anestesi cukup sampai pada tahap pingsan ringan, misalnya pada
aplikasi pengukuran bobot, penanganan, dan inspeksi. Sedangkan prosedur yang
invasif dan memerlukan waktu pingsan yang relatif lama, misalnya anestesi untuk
pembedahan maka pelaksanaan anestesi lebih disarankan dengan penambahan
oksigen jika diperlukan (Sneddon 2012).
Dengan sifat bahan anestetik yang mudah larut dalam air dan lemak,
proses difusi zat anestetik dalam darah melalui insang terjadi sangat cepat.
Masuknya cairan anestetik ke dalam sistem darah akan disebarkan ke seluruh
tubuh termasuk otak dan jaringan lain (Wright dan Hall 1961). Bobot pembiusan
zat anestetik terhadap ikan ditentukan oleh kadar zat anestetik yang terkandung
dalam jaringan otak atau sarafnya (Hun 1970 diacu dalam Ferreira et al. 1984).
Hal lain yang juga penting diperhatikan adalah temperatur normal sesuai
dengan lingkungan. Hal ini untuk menghindari gejala stres yang tidak diinginkan
sehubungan dengan sifat poikilotermal ikan. Hipoksia menyebabkan respon stres
pada ikan yang dapat memperlambat waktu pemulihan setelah proses anestesi.
Hipoksia juga dapat terjadi ketika ada bagian insang yang tidak menyentuh atau
terisi air, hal tersebut menyebabkan filamen insang lemah dan menjadi kering.
Faktor-faktor yang perlu diamati dalam proses anestesi antara lain, parameter
kualitas air yang meliputi pH, salinitas, alkalinitas. Idealnya air yang digunakan
untuk proses anestesi merupakan air yang digunakan untuk pemeliharaan ikan
dalam akuarium. Hal ini berguna untuk mereduksi stres selama induksi zat pada
biota. Selain itu faktor seperti temperatur, bobot, dan kondisi ikan juga akan
mempengaruhi respon ikan saat proses anestesi (Sneddon 2012).
2.5 Anestesi
Bahan anestesi mengganggu secara langsung maupun tidak langsung
terhadap keseimbangan kationik tertentu di dalam otak selama masa anestesinya.
Terganggunya keseimbangan ionik dalam otak menyebabkan ikan tersebut mati
rasa karena syaraf kurang berfungsi. Gangguan keseimbangan ionik dalam otak
ikan menyebabkan insang tidak dapat berfungsi secara normal dan proses
osmoregulasi oksigen yang terlarut dalam air ke dalam sel darah dan insang
terganggu sehingga kadar oksigen terlarut juga sangat rendah (Willford 1970).
Anestesi berguna untuk mereduksi aktivitas dan memperkecil stres pada
ikan (Iversen et al. 2003 diacu dalam Farstad et al. 2008). Bahan anestesi yang
ditambahkan
dalam
air
dengan
dosis
rendah
dapat
digunakan
untuk
memingsankan ikan untuk tujuan transportasi. Anestesi dapat mengurangi laju
metabolisme dan memperkecil kebutuhan oksigen, mengurangi aktivitas,
mengoptimalkan penanganan dan mengurangi respon stress (Cookie et al. 2004
diacu dalam Farstad et al 2008).
Pemilihan bahan anestesi secara umum didasarkan pada beberapa
ketentuan, yaitu: aman bagi pemakai; ketersediaan yang cukup; biaya yang
efektif; mudah digunakan; dan bersifat alami (Ho dan Heath 2000 diacu dalam
Farstad et al. 2008). Marking dan Mayer (1985) diacu dalam Farstad et al. (2008)
menyebutkan beberapa daftar karakteristik untuk anestesi ideal. Secara singkat,
karakteristik bahan anestesi setidaknya mempunyai prinsip mengurangi kapasitas
stres dengan cara memblokade pusat hypothalamus-pituitary-internal (HPI) dan
membuat ikan tidak merespon stres (Farstad et al. 2008).
Faktor yang menentukan efikasi zat anestesi terhadap hewan uji
(hewan perairan) terdiri dari dua faktor, yaitu biotik dan abiotik. Faktor biotik
meliputi umur hewan uji, jenis kelamin, kondisi fisiologis, bobot, tahap
pertumbuhan, dan kondisi reproduksi. Faktor abiotik meliputi kualitas air, yaitu
laju konsumsi oksigen, fluktuasi suhu serta pH media anestesi (Sneddon 2012).
Ikan adalah organisme poikilotermal sehingga suhu air yang ambien diperlukan
untuk menjaga keseimbangan kondisi tubuhnya dengan lingkungan. Suhu akan
mempengaruhi waktu induksi sesuai dengan sifat bahan anestesi dan hewan uji
yang digunakan.
Sneddon (2012) mengidentifikasi beberapa penelitian tentang suhu tinggi
yang dapat mereduksi waktu induksi dan waktu pemulihan. Sebagai contoh
penggunaan isoeugenol pada ikan salmon atlantik, penggunaan benzocaine pada
striped bass (Morone saxatilis), 2-phenoxyethanol dan isoeugenol pada ikan cod
atlantik dan isoeugenol pada rainbow trout, sedangkan menurut Coyle et al.
(2005) diacu dalam Saydmohammed dan Pal (2009), penggunaan bahan anestesi
dengan perpaduan minyak cengkeh dan AQUI-S yang diujikan pada
M. rosenbergii dapat berjalan efisien pada suhu rendah.
Kategori pingsan yang ideal untuk transportasi ikan adalah pada kondisi
pingsan (deep sedation), yaitu mengurangi respon terhadap rangsangan luar dan
mengurangi laju metabolisme namun tetap menggunakan prinsip homeostasis
(McFarland 1959 diacu dalam Farstad et al. 2008). Anestesi mencegah
hiperaktifitas ikan. Konsumsi oksigen optimal terjadi dalam pengepakan, pada
rentang waktu antara 30-60 menit dan menurun seiring dengan perubahan
lingkungan. Beberapa bahan anestesi yang telah digunakan antara lain MS-222,
asam
karbonat,
benzocaine,
dan
phenoxyethanol.
Bagaimanapun
juga,
penggunaan zat kimia untuk keperluan anestesi tidak direkomendasikan
(Sneddon 2012).
Ikan dapat menyerap bahan anestesi melalui jaringan otot, saluran
pencernaan dengan injeksi atau melalui insang. Anestesi melalui insang adalah
cara yang ideal terutama untuk jenis ikan elasmobranchi dan sebagian besar
kelompok teleostei karena konsentrasi bahan anestesi yang digunakan dapat
dikontrol dan stres dapat diminimalkan. Pada tingkat pemingsanan deep sedation
maka cara induksi melalui jaringan otot adalah lebih baik. Kualitas air yang
digunakan untuk anestesi diusahakan mendekati kualitas air yang digunakan untuk
pemeliharaan. Tahap perubahan aktifitas lobster yang mendapat perlakuan
anestesi dengan suhu dingin adalah sebagai berikut (Tabel 1) :
Tabel 1 Kriteria perubahan aktivitas lobster selama proses penurunan suhu.
Waktu
(menit)
Suhu
(oC)
0-3
26-24
3-6
24-20
6-10
19-16
10-18
15-13
18-30
12-10
30-45
9-7
Perubahan Aktivitas
Lobster bergerak aktif, tubuh tegak, kaki
jalan dan kaki renang bergerak normal,
respon sangat baik.
Lobster mulai berkurang aktivitasnya,
ekor melipat ke dalam, kaki jalan dan kaki
renang bergerak perlahan, respon terhadap
rangsang masih baik.
Lobster gelisah, namun sesaat kemudian
lobster kembali tenang, kaki renang
melemah gerakannya, respon mulai
berkurang.
Lobster mulai hilang keseimbangan, ekor
menekuk ke dalam, kaki renang dan kaki
jalan lemah gerakannya, respon semakin
lemah.
Gerakan melemah, posisi tubuh
miring/terbalik, kehilangan keseimbangan,
respon terhadap rangsangan lemah.
Lobster limbung, hilang keseimbangan,
posisi tubuh miring/terbalik, lobster
cenderung diam, dan respon sangat lemah
(hampir tidak ada).
Kriteria
Aktivitas
normal.
Tenang.
Panik.
Awal
disorientasi.
Disorientasi.
Pingsan.
Sumber : Wibowo et al. (2005) dalam Suryaningrum (2007).
Lobster pingsan ditandai dengan aktivitas hanya pada kaki renang dan kaki
jalan yang masih bergerak perlahan namun dengan posisi tubuhnya yang terbalik.
Fase setelah pingsan adalah fase kritis bagi lobster karena lobster akan mengalami
kematian bila didiamkan terlalu lama dalam media anestesi. Hal ini senada dengan
Lewbart (2012) bahwa indikator keberhasilan efikasi zat anestesi pada crustacea
berdasarkan respon fisiologsinya ditandai dengan keadaan tubuhnya yang tenang,
respon minimal terhadap stimulan (misalnya gerakan dan sentuhan), dan gerakan
antena yang minimal.
2.6 Toksisitas
Toksisitas merupakan daya racun suatu bahan yang dapat menyebabkan
keracunan. Toksikan adalah agen yang mampu menghasilkan efek merugikan
pada sistem biologi yang dapat menyebabkan kematian (Koeman 2006).
Toksisitas suatu bahan dapat ditentukan dengan mengkaji besarnya kematian
populasi organisme uji. Salah satunya dengan menggunakan uji toksisitas bahan
uji terhadap hewan uji yaitu pada konsentrasi terkecil pada saat kematian 100 %
hewan uji. Namun, untuk mengetahui tingkat toksisitas suatu bahan sering
digunakan tingkat kematian populasi 50 % hewan uji pada berbagai waktu dedah
(LC50) (Cassaret dan Donev 1975).
Toksisitas dapat disebabkan karena faktor kimia, fisika, maupun biologi.
Faktor kimia terdiri dari bahan kimia anorganik (amonia, klorin dan logam berat),
bahan kimia organik misalnya dioksin, dan pestisida. Faktor fisika misalnya suhu
dan padatan terlarut, sedangkan faktor biologi misalnya bakteri, fungi, dan parasit
(Anonim 2004). Uji toksisitas dibagi menjadi tiga golongan yaitu uji toksisitas
akut, kronis, dan subkronis (Loomis 1978). Uji toksisitas akut bertujuan
mengetahui respon umum suatu populasi ketika terjadi perubahan lingkungan, uji
toksisitas akut berlangsung dalam waktu yang relatif lebih singkat dibandingkan
dengan uji toksisitas kronis, yaitu 2 - 4 hari, sedangkan uji toksisitas kronis
digunakan untuk mengetahui pertumbuhan dan daya tahan organisme terhadap
toksikan. Uji toksisitas subkronis dilakasanakan dalam waktu 6 bulan. Umumnya
uji toksistas kronis dilakukan dengan dosis toksikan yang relatif lebih kecil
dibandingkan dengan dosis toksikan yang digunkakan pada uji toksisitas akut.
Waktu yang diperlukan untuk mengetahui efek toksikan terhadap hewan uji
berkisar antara 7- 18 bulan (Keith 1996).
2.7 Kualitas Air
Pemantauan kualitas air memiliki berbagai tujuan, salah satunya
mendeteksi dan mengukur pengaruh yang ditimbulkan oleh suatu pencemar
terhadap kualitas lingkungan dan mengetahui perbaikan kualitas lingkungan
setelah pencemar tersebut dihilangkan (Masson 1993 diacu dalam Effendi 2003).
Dalam kaitannya dengan kepentingan uji
toksisitas, pengukuran kulitas air
berhubungan dengan parameter-parameter fisik maupun kimia yang menjadi
kondisi ideal bagi kelangsungan hidup biota.
2.7.1 DO (dissolved oxigen)
DO (dissoved oxigen) atau oksigen terlarut merupakan kualitas air yang
bersifat kritis dalam pemeliharaan organisme akuatik. Kelarutan oksigen menurun
seiring dengan meningkatnya suhu perairan (Boyd dan Lichtkoppler 1979). Secara
alami, lobster air tawar lebih menyukai tinggal didasar perairan dan masih
bertahan pada DO sebesar 1 ppm (Lukito dan Prayugo 2007).
2.7.2 Suhu
Suhu mempunyai efek yang krusial terhadap proses – proses kimia dan
biologi. Pada umumnya reaksi kimia rata-rata meningkat setiap kenaikan suhu
sebesar 10 oC. Hal ini berarti organisme akuatik akan menggunakan dua kali lebih
banyak oksigen terlarut pada suhu 20 oC dan 30 oC, dan reaksi-reaksi kimia
memiliki laju yang lebih cepat pada suhu 30 oC begitu pula pada suhu 20 oC
(Boyd dan Lichtkoppler 1979).
2.7.3 pH
pH merupakan ukuran dari konsentrasi ion hidrogen dan mengindikasikan
tingkat asam dan basa suatu perairan (Boyd dan Lichtkoppler 1979). pH penting
digunakan sebagai parameter kualitas air karena dapat mengontrol tipe dan laju
reaksi beberapa bahan di dalam air. pH yang ideal untuk kehidupan lobster
berkisar antara 6,5 - 9 (Lukito dan Prayugo 2007). Amonium bersifat tidak toksik
(innocuos). Namun pada suasana alkalis (pH tinggi) lebih banyak ditemukan
amoniak yang tidak terionisasi dan bersifat toksik. Amonia tak terionisasi ini lebih
mudah terserap ke dalam tubuh organisme akuatik dibandingkan dengan amonium
(Tebut 1992 diacu dalam Effendi 2003).
2.7.4 Amonia dan TAN
TAN merupakan jumlah amonia total yang ada di perairan. TAN meliputi
amonia yang terionisasi (NH4+) dan amonia yang tidak terionisasi (NH3). Amonia
pada perairan diproduksi sebagai produk metabolit organisme akuatik dan
dekomposisi material organik oleh bakteri. Dalam perairan, nitrogen pada amonia
terdiri dari dua bentuk yaitu amonia yang tidak terionisasi dan amonia yang
terionisasi. Tingkat toksisitas amonia yang tidak terionisasi berada antara 0,6 dan
2 mg/L dan efek subletal dapat terjadi pada konsentrasi 0,1 hingga 0,3 mg/L. pH
dan temperatur air akan mengatur proporsi amonia total yang tedapat pada amonia
yang tidak terionisasi (Boyd dan Lichtkoppler 1979).
2.8 Pengemasan dan Uji Penyimpanan
Pengemasan terdiri dari dua unsur, yaitu kemasan dan media kemasan.
Kemasan yang digunakan dalam pengangkutan dengan media non-air dapat terdiri
dari styrofoam sebagai kemasan primer dan kotak kardus sebagai kemasan
sekunder. Kotak karton kardus yang digunakan sebaiknya berdinding ganda yang
dilaminasi dengan lapisan lilin. Lapisan lilin berguna untuk mencegah kerusakan
kotak karton karena kelembaban tinggi selama transportasi. Styrofoam sebagai
kemasan primer berfungsi sebagai isolator panas (Junianto 2003).
Pengepakan yang sering digunakan pada pengangkutan lobster air tawar
adalah pengepakan kering. Pengepakan kering dilakukan tanpa media air karena
pada dasarnya lobster air tawar mampu bertahan hidup beberapa jam tanpa air.
Dibandingkan pengepakan sistem basah, pengepakan sistem kering jauh lebih
baik karena terbukti lebih tahan lama (Lukito dan Prayogo 2007).
Jenis bahan pengisi yang dapat digunakan dalam pengangkutan ikan
dengan sistem kering antara lain sekam, serutan kayu, serbuk gergaji, dan rumput
laut (Junianto 2003). Selain itu spons juga telah dikaji sebagai bahan pengisi.
Menurut penelitian Nirwansyah (2012), penggunaan media spons dapat
mempertahankan kelangsungan hidup lobster hingga 100% dalam waktu
penyimpanan 60 jam. Beberapa fungsi bahan pengisi dalam sistem pengangkutan
hidup adalah mencegah biota agar tidak bergeser dalam kemasan, menjaga
lingkungan suhu tetap rendah, dan memberi lingkungan udara yang memadai
untuk kelangsungan hidup biota yang ditransportasikan (Junianto 2003)
Suhu media kemasan harus dipertahankan serendah mungkin mendekati
titik immotile, yaitu pada kisaran 10 – 21 oC. Pada suhu 21 oC, udang galah atau
udang kembali normal dan suhu dibawah 10 oC dapat menyebabkan kematian
pada udang atau udang galah. Suhu media kemasan berperan dalam
mempertahankan tingkat terbiusnya udang galah atau udang selama pengangkutan
sehingga ikut mempertahankan kelangsungan hidup udang galah atau udang
dalam media non-air (Junianto 2003).
Pengangkutan ikan dengan media non air menggunakan prinsip hibernasi.
Hibernasi adalah usaha untuk menekan metabolisme suatu organisme sehingga
dalam kondisi yang minimum organisme tersebut mampu bertahan hidup.
Umumnya pengangkutan hidup dengan media non-air terbatas untuk hasil-hasil
perikanan laut seperti udang, udang galah, kepiting, dan rajungan. Secara anatomi,
hewan-hewan tersebut mempunyai rongga karapas. Rongga karapas dapat
membantu menyediakan oksigen terlarut selama hewan tersebut berada di darat.
Pada transportasi kering, suhu diatur sedemikian rupa sehingga kecepatan
metabolisme ikan berada dalam taraf metabolisme basal, karena pada taraf
tersebut, oksigen yang dikonsumsi ikan sangat sedikit sekedar untuk
mempertahankan hidup saja.
Crustacea merupakan hewan yang mempunyai alat pernapasan tambahan
yang disebut labirinth. Dengan adanya alat pernapasan tambahan ini, krustasea
mampu beradaptasi untuk hidup tanpa air selama beberapa jam dalam lingkungan
yang lembab pada suhu rendah. Dengan memanfaatkan sifat fisiologis yang unik
tersebut, maka crustacea dapat diangkut dengan menggunakan sistem kering
(Suryaningrum et al. 2001).
Download