Modul Laboratorium elektronika - TOLI PNJ (teknik otomasi listrik

advertisement
PRAKATA
Alhamdulillah puji syukur kepada Allah SWT atas selesainya Diktat ini
sesuai waktunya. Diktat ini disusun untuk melengkapi materi praktek
Laboratorium Elektronika yang dapat digunakan oleh mahasiswa Teknik
Elektro, khususnya program studi Teknik Otomasi Listrik Industri.
Selama ini mahasiswa hanya memperoleh petunjuk praktek (jobsheet)
dengan sedikit teori dasar. Pada diktat ini teori dasar yang diberikan jauh
lebih banyak dan lebih jelas daripada yang terdapat pada jobsheet
sebelumnya. Materi praktek laboratorium elektronika ini ada 11, yaitu :
osiloskop, mengenal terminal dioda, karakteristik dioda, mengenal terminal
transistor, karakteristik transistor, karakteristik SCR, UJT, DIAC, TRIAC,
daya pada rangkaian AC dan dasar-dasar gerbang.
Pada kesempatan ini penulis mengucapkan terima kasih kepada rakan-rekan
di Jurusan Teknik Elektro Politeknik Negeri Jakarta, yang telah membantu
hingga terwujudnya diktai ini.
Diktat ini masih jauh dari sempurna, oleh karena itu saran serta kritik yang
membangun akan penulis terima dengan sengan hati.
Depok, September 2012
Murie Dwiyaniti, ST.MT
Tardi, ST.M.Kom
ii
BAB I
OSILOSKOP
I.1. TUJUAN
Setelah selesai percobaan praktikan diharapkan dapat :
a. Mengenal Osiloskop
b. Mempergunakan Osiloskop sesuai fungsinya.
I.2. DASAR TEORI
Osiloskop atau Cathoda Ray Osiloskop (CRO) adalah instrumen
pengukuran yang tampilannya berupa grafik V=f(t) yang dapat digunakan
untuk mengetes rangkaian karena dengan osiloskop anda dapat melihat
sinyal pada titik yang berbeda dalam sebuah rangkaian. Caranya yaitu
dengan mengamati rangkaian sinyal input dan output pada masing masing
blok dari sistem atau bagian rangkaian yang terhubung, sehingga dapat
ditemukan letak kesalahan dengan cepat dan tepat.
Osiloskop dapat digunakan untuk mengukur tegangan, frekuensi,
beda phasa, dan waktu. Selain serba guna, CRO juga memiliki beberapa
sifat lain yaitu :
Mempunyai Tahanan dalam yang tinggi
Daerah frekuensinya lebar.
Osiloskop terdiri dari dua bagian utama yaitu display dan panel
kontrol. Display menyerupai tampilan layar televisi hanya saja tidak
berwarna warni dan berfungsi sebagai tempat sinyal uji ditampilkan. Pada
layar ini terdapat garis-garis melintang secara vertikal dan horizontal yang
membentuk kotak-kotak dan disebut divisi, Masing-masing kotak berukuran
1 cm x 1 cm. Seperti pada Gambar 1.1. Arah horizontal mewakili sumbu
waktu dan garis vertikal mewakili sumbu tegangan.
Laboratorium Elektronika Semester III
1
Gambar 1.1 Layar Osiloskop
Panel
kontrol
berisi
tombol-tombol
yang
bisa
digunakan
untuk
menyesuaikan tampilan di layar sehingga pembacaan gambar jelas..
Beberapa alat kontrol yang digunakan adalah :
1. Volt/Divisi digunakan untuk mengatur skala tegangan pada sumbu-Y
(vertikal). Dengan menggunakan kontrol volt/div kita dapat menghitung
tegangan DC, tegangan AC dan beda phasa.
2. Time/Div atau timebase digunakan untuk mengatur skala waktu pada
sumbu-X (horizontal), jika timebase
diset
paling kecil dari waktu
perdivisinya maka pada layar osiloskop akan terlihat grafik yang
berjalan dengan cepat. Ketika nilainya sedang maka akan terlihat seperti
garis yang kontinyu, tetapi pada dasarnya grafik ini tetap berjalan dari
kiri ke kanan.
Dengan menggunakan kontrol timebase kita dapat menghitung periode
(T) dan frekuensi (f) dari suatu gelombang.
Laboratorium Elektronika Semester III
2
Cara pembacaan gambar pada layar osiloskop :
Gambar 1.2 Tampilan tegangan DC pada layar osiloskop
Pada Gambar 1.2 terdapat 2 tegangan DC yaitu :
CH1 dengan nilai volt/div = 4 v/div, artinya 1 kotak = 4 volt. maka
tegangan DC pada CH1 adalah : 2 kotak x 4 volt/div = 8 Volt
CH2 dengan nilai volt/div = 1 v/div, artinya 1 kotak = 1 volt dan 1
kotak terdiri dari 5 strip maka 1 strip = 1/5 = 0.2 volt, sehingga tegangan
DC pada CH2 adalah : 3 strip x 0,2 volt = 0,6 volt
Gambar 1.3 Tampilan tegangan AC pada layar osiloskop
Laboratorium Elektronika Semester III
3
Pada Gambar 1.3 terdapat tegangan AC dengan nilai volt/divisi = 4 v/div
dan timebase = 5 ms/div. Untuk tegangan AC kita dapat juga menghitung T
(periode) dan f (frekuensi).
Tegangan AC =>
Vmax = 2 kotak x 4 v/div = 8 volt
Veff = 8 volt x 0,707 = 5,6 volt
Periode (T) = 4 kotak x 5 ms/div = 20 ms = 0,02 s
Frekuensi (f) = 1/T = 1/0,02 = 50 Hz
Beda phasa
Gambar 1.4 Beda phasa tegangan AC dan gambar lissajous
Sebelum osiloskop bisa dipakai untuk melihat sinyal maka osiloskop
perlu disetel dulu agar tidak terjadi kesalahan fatal dalam pengukuran. Hal
hal yang perlu diperhatikan antara lain adalah :
1. Memastikan alat yang diukur dan osiloskop ditanahkan(di-groundkan).Disamping untuk keamanan hal ini juga untuk mengurangi noise
dari frekuensi radio atau jala jala.
2. Memastikan probe dalam keadaan baik.
3. Kalibrasi tampilan bisa dilakukan dengan panel kontrol yang ada di
osiloskop.
Langkah awal pemakaian yaitu pengkalibrasian. Yang pertama kali
harus muncul di layar adalah garis lurus mendatar jika tidak ada sinyal
masukan. Yang perlu disetel adalah fokus, intensitas, kemiringan, posisi-X,
Laboratorium Elektronika Semester III
4
dan posisi-Y. Dengan menggunakan tegangan referensi yang terdapat di
osiloskop maka kita bisa melakukan pengkalibrasian sederhana. Ada dua
tegangan referensi yang bisa dijadikan acuan yaitu tegangan persegi 2 Vpp
dan 0.2 Vpp dengan frekuensi 1 KHz. Setelah probe dikalibrasi maka
dengan menempelkan probe pada terminal tegangan acuan maka akan
muncul tegangan persegi pada layar. Jika yang dijadikan acuan adalah
tegangan 2 Vpp maka pada posisi 1 volt/div ( satu kotak vertikal mewakili
tegangan 1 volt) harus terdapat nilai tegangan dari puncak ke puncak
sebanyak dua kotak dan untuk time/div 1 ms/div ( satu kotak horizontal
mewakili waktu 1 ms ) harus terdapat satu gelombang untuk satu kotak. Jika
masih belum tepat maka perlu disetel dengan potensio yang terdapat di
tengah-tengah knob pengganti Volt/div dan time/div. Atau kalau pada
gambar osiloskop diatas berupa potensio dengan label "var"
Gambar 1.5 BNC socket atau
Probe
Probe merupakan alat bantu untuk menghubungkan antara osiloskop dengan
rangkaian. Terdiri dari dua kabel yaitu :
Kabel merah untuk Line
Kabel hitam untuk Ground
“Perhatikan “ : Dalam rangkaian, kedua kabel ini antara line dan ground
tidak boleh disatukan karena akan merusak probe.
Laboratorium Elektronika Semester III
5
I.3. DAFTAR PERLATAN
1. Power Supply DC 0 - 40 V
2. Power Supply AC 4,5 V
3. Osiloskop
4. Resistor
5. Kapasitor
6. Probe
7. Kabel Penghubung
I.4. PROSEDUR PERCOBAAN
I.4.1. Mengukur dan melihat bentuk gelombang DC
1. Buatlah rangkaian seperti Gambar 1.6, ground dihubungkan dengan
salah satu probe. Berikanlah input tegangan DC mulai dari 2V sampai
10V.
2. Ukurlah tegangan pada masing masing tahanan
3. Gambarkanlah bentuk gelombang tegangan DC yang terdapat pada layar
osiloskop di kertas milimeter blok, jangan lupa tuliskan volt/divisi yang
anda pakai, masukkanlah dalam Tabel (tentukan sendiri berdasarkan
gambar).
Gambar 1.6 Rangkaian untuk pengukuran tegangan DC
Laboratorium Elektronika Semester III
6
I.4.2. Mengukur dan melihat bentuk gelombang AC
1. Buatlah rangkaian seperti Gambar 1.7, ground dihubungkan dengan
salah satu probe. Berikanlah input tegangan AC 4,5V
2. Ukurlah tegangan pada masing masing tahanan
3. Gambarkanlah bentuk gelombang tegangan AC yang terdapat pada layar
osiloskop di kertas milimeter blok, jangan lupa tuliskan volt/divisi serta
time/divisi yang anda pakai.
Gambar 1.7 Rangkaian untuk pengukuran tegangan AC
I.4.3. Mengukur dan melihat beda phasa tegangan AC
1. Buatlah rangkaian seperti Gambar 1.8, ground dihubungkan dengan
salah satu probe berikan tegangan input AC 4,5V
2. Ukurlah tegangan pada resistor dan kapasitor, nilai kapasitor anda
tentukan sendiri.
3. Gambarkanlah beda phasa tegangan AC yang terdapat pada layar
osiloskop di kertas milimeter blok, jangan lupa tuliskan nilai kapasitor,
volt/divisi serta time/divisi yang anda pakai.
4. Untuk melihat gambar Lissajous, ubah format V/t menjadi format X-Y.
Caranya yaitu : tekan tombol DISPLAY lalu tekan mode X-Y
5. Gambarkanlah grafik Lissajous tersebut pada kertas milimeter blok.
6. Ulangi sampai 2 kali percobaan dengan nilai kapasitor yang berbeda.
Laboratorium Elektronika Semester III
7
Gambar 1.8 Beda Phasa pada Tegangan AC
I.5. TUGAS DAN PERTANYAAN
1. Dapatkah CRO dipergunakan untuk mengukur besarnya arus suatu
rangkaian ?
2. Jelaskan Keuntungan CRO dengan adanya tahanan dalam yang tinggi !
3. Sebutkan berapa Frekwensi maksimum yang bisa diukur oleh CRO
tersebut !
4. Pada pengukuran beda phasa jelaskan hasil yang telah didapatkan dan
hitung beda phasanya !
Laboratorium Elektronika Semester III
8
BAB II
MENGENAL TERMINAL DIODA
II.1. TUJUAN
Setelah selesai percobaan praktikan diharapkan dapat :
a. Menentukan terminal dioda
b. Membedakan macam-macam dioda
II.2. DASAR TEORI
Hampir semua peralatan elektronika memerlukan sumber arus
searah. Penyearah digunakan untuk mendapatkan arus searah dari suatu arus
bolak-balik. Arus atau tegangan tersebut harus benar-benar rata tidak boleh
berdenyut-denyut agar tidak menimbulkan gangguan bagi peralatan yang
dicatu. Komponen yang sering digunakan sebagai penyearah adalah dioda.
Dioda memiliki fungsi yang unik yaitu hanya dapat mengalirkan
arus satu arah saja maka disebut penyearah. Dibawah ini merupakan gambar
yang melambangkan dioda penyearah.
Simbol dioda
Struktur Dioda
Gambar 2.1 Simbol dan struktur dioda
Sisi P disebut Anoda dan sisi N disebut Katoda. Lambang dioda seperti anak
panah yang arahnya dari sisi P ke sisi N. Karenanya ini mengingatkan kita
pada arus konvensional yang mudah mengalir dari sisi P ke sisi N. Dalam
pendekatan dioda ideal, dioda dianggap sebagai sebuah saklar tertutup jika
diberi bias forward (maju) dan sebagai saklar terbuka jika diberi bias
reverse (mundur). Artinya secara ideal, dioda berlaku seperti konduktor
sempurna (tegangan nol) jika dibias maju dan seperti isolator sempurna
(arus nol) saat dibias mundur.
Laboratorium Elektronika Semester III
9
II.2.1 Zener
Phenomena tegangan breakdown dioda ini mengilhami pembuatan
komponen elektronika lainnya yang dinamakan zener. Sebenarnya tidak ada
perbedaan sruktur dasar dari zener, melainkan mirip dengan dioda. Tetapi
dengan memberi jumlah doping yang lebih banyak pada sambungan P dan
N, ternyata tegangan breakdown dioda bisa makin cepat tercapai. Jika pada
dioda biasanya baru terjadi breakdown pada tegangan ratusan volt, pada
zener bisa terjadi pada angka puluhan dan satuan volt. Di datasheet ada
zener yang memiliki tegangan Vz sebesar 1.5 volt, 3.5 volt dan sebagainya.
Karakteristik zener yang unik yaitu jika dioda bekerja pada bias maju maka
zener biasanya berguna pada bias negatif (reverse bias).
II.2.2 LED
LED adalah singkatan dari Light Emiting Dioda, merupakan
komponen yang dapat mengeluarkan emisi cahaya. Strukturnya juga sama
dengan dioda, tetapi belakangan ditemukan bahwa elektron yang menerjang
sambungan P-N juga melepaskan energi berupa energi panas dan energi
cahaya. LED dibuat agar lebih efisien jika mengeluarkan cahaya. Untuk
mendapatkan emisi cahaya pada semikonduktor, doping yang pakai adalah
galium, arsenic dan phosporus. Jenis doping yang berbeda menghasilkan
warna cahaya yang berbeda pula.
II.3. DAFTAR PERALATAN
1. Power Supply DC
2. Multimeter
3. Lampu Pijar 6 V
4. Dioda : IN 60; IN 4007; 6CC13; BZX 6V8; LED.
5. Kabel Penghubung.
Laboratorium Elektronika Semester III
10
II.4. DIAGRAM RANGKAIAN.
II.5. PROSEDUR PERCOBAAN
1. Buatlah rangkaian seperti gambar diatas, berikanlah sumber tegangan
DC (Vs) 2V, 4V dan 6V.
2. Amatilah besar tegangan, arus, dan keadaan lampu. Masukanlah
hasilnya pada Tabel 1.
3. Balik Polaritas dioda (bias mundur), berikanlah sumber tegangan DC
(Vs) 2V, 4V dan 6V.
4. Amatilah besar arus, tegangan, keadaan lampu, Masukkanlah hasilnya
pada Tabel 2.
II.6. TUGAS DAN PERTANYAAN
1. Jelaskan kondisi yang dibangun oleh arah maju dan arah mundur pada
p-n dioda dan bagaimana pengaruh hasil arusnya!
2. Jelaskan bagaimana anda mengingat ketetapan arah maju dan arah
mundur dari sebuah dioda!
3. Jelaskan bagaimana anda menentukan terminal dioda!
4. Berikanlah contoh penggunaan dioda!
Laboratorium Elektronika Semester III
11
II.7. TABEL EVALUASI
1. Tabel 1 untuk Gambar 1
Type Dioda Vs (Volt) I (mA) Vd (Volt) Keadaan Lampu Keterangan
IN 60
IN 4007
6 CC13
BZX 6V8
LED
2
4
6
2
4
6
2
4
6
2
4
6
2
4
6
Laboratorium Elektronika Semester III
12
2. Tabel 2 untuk Gambar 1 dengan polaritas dioda dibalik
Type Dioda Vs (Volt) I (mA) Vd (Volt) Keadaan Lampu Keterangan
IN 60
IN 4007
6 CC13
BZX 6V8
LED
2
4
6
2
4
6
2
4
6
2
4
6
2
4
6
Laboratorium Elektronika Semester III
13
BAB III
KARAKTERISTIK DIODA
III.1. TUJUAN
Setelah selesai percobaan praktikan diharapkan dapat :
a. Menggambarkan karakteristik V-I dioda germanium, silikon dan zener.
b. Menentukan tengangan cut in (VC).
c. Menghitung Resistansi statis (Rs).
d. Menghitung Resistansi dinamis (rd).
e. Menampilkan
karakteristik
dioda
secara
langsung
dengan
mempergunakan osiloskop.
f. Membandingkan parameter dioda germanium, dioda silikon dan dioda
zener.
III.2. DASAR TEORI
Kita dapat menyelidiki karakteristik statik dioda, dengan cara
memasang dioda seri dengan sebuah catu daya dc dan sebuah resistor.
Kurva karakteristik statik dioda merupakan fungsi dari arus ID (arus yang
melalui dioda) terhadap tegangan VD (beda tegangan antara titik a dan b)
(lihat gambar 1 dan gambar 2)
Gambar 3.1 (a) Rangkaian dioda; (b) karakteristik dioda
Laboratorium Elektonika Semester III
14
Karakteristik statik dioda dapat diperoleh dengan mengubah VDD lalu
mengukur tegangan dioda (VD) dan arus yang melalui dioda (ID). Bila
harga VDD diubah, maka arus ID dan tegangan VD akan berubah pula. Jika
anoda berada pada tegangan lebih tinggi daripada katoda (VD positif) dioda
dikatakan mendapat bias forward atau bias maju. Bila VD negatip disebut
bias reserve atau bias mundur. Pada Gambar 3.1, VC disebut cut- in-voltage
atau tegangan hidup, IS arus saturasi dan VPIV adalah peak-inverse voltage.
Bila kita mempunyai karakteristik statik dioda dan kita tahu harga VDD dan
RL, maka harga arus ID dan VD dapat kita tentukan sebagai berikut. Dari
Gambar 2.1.
VDD
VD
I .RL
atau
I
VD
RL
VDD
RL
III.2.1 DC atau Resistansi statis dioda
Aplikasi
tegangan
dc
pada
rangkaian
yang
berisi
dioda
semikonduktor akan menghasilkan titik operasi pada kurva karakteristik
yang tidak akan berubah terhadap waktu atau disebut resistansi statis.
Resistansi statis dioda pada titik operasi dapat dicari dengan rumus sebagai
berikut :
RD
VD
ID
Gambar 3.2 Menentukan resistansi statik pada titik operasi
III.2.2 AC atau Resistansi dinamis dioda
Pada input sinusoidal terjadi variasi Input yang akan menggerakkan
titik operasi naik dan turun pada daerah karakteristik dan menetapkan
perubahan yang spesifik pada arus dan tegangan seperti pada Gambar 3.3.
jika tidak ada variasi sinyal, titik operasi adalah Q-point.
Laboratorium Elektonika Semester III
15
Gambar 3.3 Definisi
resistansi dinamik
Garis lurus membentuk tangen pada kurva melalui Q-point seperti
pada Gambar 3.4, akan menentukan perubahan tegangan dan arus yang
dapat digunakan untuk menentukan resistansi dinamik dari karakteristik
dioda. Resistansi dinamik dioda dapat dicari dengan rumus sebagai berikut :
VD
ID
rD
Dimana
menandakan perubahan nilai
Gambar 3.4 Menentukan resistansi dinamik pada titik Q
III.3. DAFTAR PERALATAN
1. Power Supply DC
2. Power Supply AC
3. Osiloskop
4. Multimeter
5. Dioda germanium, silicon dan Zener.
6. Resistor 100
.
Laboratorium Elektonika Semester III
16
III.4. DIAGRAM RANGKAIAN
III.5. PROSEDUR PERCOBAAN
1. Buatlah rangkaian seperti Gambar 1, pergunakanlah dioda germanium,
catatlah hasil pengukuran pada Tabel 1!
2. Buatlah rangkaian seperti Gambar 2, pergunakanlah dioda germanium,
catatlah hasil pengukuran pada Tabel 1!
3. Ulangi prosedur 1 dan 2 pergunakanlah dioda silikon, catatlah hasil
pengukuran pada Tabel 2 !
Laboratorium Elektonika Semester III
17
4. Ulangi prosedur 1 dan 2 pergunakanlah dioda zener, catatlah hasil
pengukuran pada Tabel 3 !
5. Buatlah rangkaian seperti Gambar 3,. Hidupkanlah osiloskop pada
format DISPLAY X-Y, naikkanlah tegangan sumber DC secara
perlahan-lahan sampai maksimum. Gambarlah pada kertas grafik yang
nampak pada layar !. Pergunakanlah dioda germanium, silicon dan zener
secara bergantian.
III.6. PERTANYAAN DAN TUGAS
1. Berapakah nilai tegangan cut in dioda Silikon, dioda Germanium dan
dioda Zener?
2. Hitunglah resistansi statik (Rs) dan dinamik (rd) dioda silikon dan dioda
germanium pada saat bias maju di 2 mA!
3. Adakah perbedaan antara dioda silikon, dioda germanium dan dioda
zener? Jika ada sebutkan perbedaan tersebut!
III.7. TABEL EVALUASI
Tabel 1 : Dioda germanium
Bias Maju
VF(Volt)
IF(mA)
0,5
2
5
7
10
15
20
30
40
50
Laboratorium Elektonika Semester III
Bias Mundur
VR(Volt)
IR(mA)
1
3
6
8
10
12
14
16
18
20
18
Tabel 2 : Dioda Silikon
Bias Maju
VF(Volt)
IF(mA)
0,5
2
5
7
10
15
20
30
40
50
Bias Mundur
VR(Volt)
IR(mA)
1
3
6
8
10
12
14
16
18
20
Tabel 3 : Dioda Zener
Bias Maju
VF(Volt)
IF(mA)
0,5
2
5
7
10
15
20
30
40
50
Laboratorium Elektonika Semester III
Bias Mundur
VR(Volt)
IR(mA)
1
3
6
8
10
12
14
16
18
20
19
BAB IV
MENGENAL TERMINAL TRANSISTOR
IV.1. TUJUAN
Setelah selesai percobaan praktikan diharapkan dapat :
a. Mencari dan menentukan terminal transistor yaitu basis, kolektor dan
emitor.
b. Membedakan macam-macam transistor dan penggunaannya.
IV.2. PENDAHULUAN
Transistor merupakan salah satu komponen elektronika paling penting.
Terdapat dua jenis transistor berdasarkan jenis muatan penghantar listriknya,
yaitu bipolar dan unipolar. Dalam hal ini akan kita pelajari transistor bipolar.
Transistor bipolar terdiri atas dua jenis, bergantung susunan bahan yang
digunakan, yaitu jenis NPN dan PNP. Sebuah transistor memiliki tiga buah
kaki yaitu emitter, basis dan kolektor. Transistor memiliki dua sambungan:
satu antara emitter dan basis, dan yang lain antara kolektor dan basis.
Karena itu, sebuah transistor seperti dua buah dioda yang saling bertolak
belakang yaitu dioda emitter-basis, atau disingkat dengan emitter dioda dan
dioda kolektor-basis, atau disingkat dengan dioda kolektor.
P
N
P
(a)
N
P
N
(b)
Gambar 4.1 Analogi susunan dioda transistor : (a) PNP dan (b) NPN
Laboratorium Elektronika Semester III
20
C (Colector)
E (Emitor)
B (Basis)
(a)
C (Colector)
E (Emitor)
B (Basis)
(b)
Gambar 4.2 Lambang transistor: (a) PNP dan (b) NPN
Dalam praktek kita dapat mengetahui terminal-terminal komponen
transistor dengan melihat pada: “ Buku Data” atau pada beberapa komponen
dapat diketahui secara langsung dengan membaca tanda-tanda yang ada
pada komponen tersebut.
Selain cara tersebut di atas, kita dapat juga menentukan terminal-terminal
transistor dengan bantuan multimeter, resistor, dan sumber tegangan.
IV.3. DAFTAR PERALATAN
1. Power supply DC
2. Multimeter
3. Transistor : BC 109; AD 161; 2N 3055; 2SB 56; MJ 2955; MPS 4355
4. Resistor
5. Lampu
Laboratorium Elektronika Semester III
21
IV.4. DIAGRAM RANGKAIAN
IV.4.1 Mencari terminal basis dan menentukan jenis transistor NPN atau
PNP
A
A
A
+
-
Tr
C
A
+
Tr
C
B
(1)
A
C
Tr
B
A
Tr
C
B
(2)
(3)
A
B
(4)
A
A
+
-
Tr
C
A
A
C
B
Tr
+
Tr
C
C
B
B
(5)
A
(6)
Tr
B
(7)
(8)
A
A
A
+
-
Tr
C
A
A
C
B
+
Tr
Tr
C
C
B
B
(10)
(9)
A
(11)
Tr
B
(12)
IV.4.2 Menentukan terminal kolektor dan emitor transistor NPN
A
D
+
-
D'
D
Basis
Basis
D'
Basis
Basis
D'
(1)
Laboratorium Elektronika Semester III
D
(2)
D'
(3)
D
(4)
22
IV.4.3 Menentukan terminal kolektor dan emitor transistor PNP
A
D
+
D'
D
Basis
Basis
D'
Basis
Basis
D'
(1)
D
(2)
D'
(3)
D
(4)
IV.5. PROSEDUR PERCOBAAN
1. Hubungkanlah rangkaian tersebut di atas dengan tegangan sumber dc
Vs = 2 volt.
2. Ukurlah nilai arus, lihat kondisi lampu dan tentukan jenis transistor
Catatlah hasilnya pada tabel!
IV.6. PERTANYAAN DAN TUGAS
1. Bandingkanlah antara transistor PNP dengan NPN, terangkan bedanya!
2. Berikan contoh pemakaian transistor PNP dan transistor NPN!
Laboratorium Elektronika Semester III
23
IV.7. TABEL EVALUASI
Menentukan Basis dan jenis Transistor NPN/PNP
No Rangkaian Transistor
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
Arus I
(mA)
Kondisi
Lampu
Jenis
Transistor
BC 109
Menentukan terminal kolektor dan emitor transistor NPN
No
Transistor
Rangkaian
IC + IB
(mA)
Kondisi
Lampu
1
2
3
4
Menentukan terminal kolektor dan emitor transistor PNP
No
Transistor
Rangkaian
IC + IB
(mA)
Kondisi
Lampu
1
2
3
4
Laboratorium Elektronika Semester III
24
BAB V
KARAKTERISTIK TRANSISTOR
V.1.
TUJUAN
Setelah selesai percobaan praktikan diharapkan dapat :
a. Menggambarkan karakteristik transistor
b. Menampilkan karakteristik input dan output dengan osiloskop
c. Memanfaatkan rangkaian–rangkaian transistor dan prinsip dasarnya
dalam dunia elektronik.
V.2.
DASAR TEORI
Transistor adalah komponen aktif yang menggunakan aliran elektron
sebagai prinsip kerjanya. Transistor ada dua jenis yaitu NPN dan PNP,
konstruksi transistor dapat dilihat pada Gambar 5.1.
Gambar 5.1 Konstruksi transistor tipe NPN dan PNP
Karakteristik sebuah transistor biasanya dilihat dari karakteristik
rangkaian dengan konfigurasi common emitter (kaki emitter terhubung dengan
ground), seperti ditunjukkan pada Gambar 5.2.
Laboratorium Elektronika Semester III
25
Gambar 5.2 Rangkaian pengukuran karakteristik transistor
Terdapat dua buah kurva karakteristik yang dapat diukur dari
rangkaian Gambar 5.2, yaitu :
1. Karakteristik input transistor, arus basis IB sebagai fungsi V BE .
Gambar 5.3 Grafik I B fungsi V BE pada transistor NPN
Grafik diatas terlihat seperti grafik dioda biasa, hal ini dikarenakan
dioda emitter-basis dibias maju sehingga perubahan arus emitter
menurut tegangan emitter ke basis akan serupa dengan karakteristik
maju dari dioda hubungan p-n.
Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (I B ) akan kecil. Ketika tegangan dioda melebihi
potensial barrier-nya, arus basis (I B ) akan naik secara cepat.
Laboratorium Elektronika Semester III
26
2. Karakteristik output transistor, arus I C sebagai fungsi V CE
Gambar 5.4 Grafik I C fungsi V CE pada transistor NPN
Dari kurva ini terlihat ada beberapa region yang menunjukkan
daerah kerja transistor. Pertama adalah daerah saturasi, lalu daerah cut-off,
kemudian daerah aktif dan seterusnya daerah breakdown.
Daerah Aktif
Daerah kerja transistor yang normal adalah pada daerah aktif,
dimana arus I C konstans terhadap berapapun nilai VCE . Dari kurva ini
diperlihatkan bahwa arus I C hanya tergantung dari besar arus IB . Daerah
kerja ini biasa juga disebut daerah linear (linear region).
Jika hukum Kirchhoff mengenai tegangan dan arus diterapkan pada loop
kolektor (rangkaian CE), maka dapat diperoleh hubungan :
V CE = V CC - I C R C
Dapat dihitung dissipasi daya transistor adalah :
P D = VCE .I C
Dissipasi daya ini berupa panas yang menyebabkan naiknya temperatur
transistor. Umumnya untuk transistor power sangat perlu untuk mengetahui
spesifikasi
P D max.
Spesifikasi
ini
menunjukkan
temperatur
kerja
maksimum yang diperbolehkan agar transistor masih bekerja normal. Sebab
Laboratorium Elektronika Semester III
27
jika transistor bekerja melebihi kapasitas daya PD max, maka transistor dapat
rusak atau terbakar.
Daerah Saturasi
Daerah saturasi adalah mulai dari VCE = 0 volt sampai kira-kira 0.7
volt (transistor silikon), yaitu akibat dari efek dioda kolektor-base karena
tegangan V CE belum mencukupi untuk dapat menyebabkan aliran elektron.
Daerah Cut-Off
Jika kemudian tegangan V CC dinaikkan perlahan-lahan, sampai
tegangan VCE tertentu tiba-tiba arus IC mulai konstan. Pada saat perubahan
ini, daerah kerja transistor berada pada daerah cut-off yaitu dari keadaan
saturasi (OFF) lalu menjadi aktif (ON). Perubahan ini dipakai pada sistem
digital yang hanya mengenal angka biner 1 dan 0 yang tidak lain dapat
direpresentasikan oleh status transistor OFF dan ON.
Aplikasi transistor tidak dibatasi sebagai rangkaian penguat signal
saja, transistor juga dapat dimanfaatkan sebagai saklar elektronik untuk
komputer dan aplikasi kontrol.
V.3.
DAFTAR PERALATAN
1.
Power supply DC
2.
Power supply AC
3.
Multimeter
4.
Dioda Silikon
5.
Potensiometer 10k ; 1k ; 470k
Resistor 33k ; 100 ; 3k3; 10
7.
Transistor BC109; 2N3055
8.
Osiloskop
Laboratorium Elektronika Semester III
28
V.4.
DIAGRAM RANGKAIAN
Gambar 5.5 Rangkaian transistor NPN BC109
Gambar 5.6 Rangkaian transistor PNP 2N3055
Gambar 5.7 Skema Rangkaian transistor NPN BC109 untuk melihat
karakteristik I C sebagai fungsi V CE (karakteristik output)
Laboratorium Elektronika Semester III
29
Gambar 5.8 Skema Rangkaian transistor PNP 2N3055 untuk melihat
karakteristik I C sebagai fungsi VCE (karakteristik output)
V.5.
1.
PROSEDUR PERCOBAAN
Rangkailah Gambar 5.5, buatlah agar V CE tetap 5 volt. Ubahlah nilai
IB I B mulai dari 10
Hitunglah HFE
C
dan V BE .
IC
.
IB
Catat hasil pengukuran dan perhitungan pada Tabel 1.
2.
Perhatikan cara mengukur parameter dengan menggunakan satu
multimeter sebagai berikut:
Titik-titik pengukuran arus harus di hubung singkat pada saat
multimeter digunakan untuk mengukur titik yang lain.
Titik-titik pengukuran tegangan harus dibiarkan terbuka pada saat
multimeter digunakan untuk mengukur titik yang lain.
3.
Masih dengan gambar yang sama Gambar 5.5, ubahlah VCE mulai dari
0,1V sampai 5V dan ubahlah nilai I B dari 25
Tabel 2). Ukurlah nilai I C . Catat hasil pengukuran pada Tabel 2.
4.
Ulangi langkah 1,2,3 untuk rangkaian Gambar 5.6. Catat hasil
pengukuran pada Tabel 3 dan 4.
Perhatikan : polaritas pada multimeter harus disesuaikan.
Laboratorium Elektronika Semester III
30
5.
Rangkailah Gambar 5.7, ubahlah VCE mulai dari 0,1V sampai 5V dan
ubahlah nilai I B dari 25
5). Ukurlah
nilai I C . Catat hasil pengukuran pada Tabel 5
6.
Untuk menampilkan karakteristik, ubahlah format YT menjadi XY.
Gambarkanlah grafik yang tampak pada layar osiloskop di kertas
milimeter blok.
7.
V.6.
1.
Ulangi langkah 5 dan 6 untuk rangkaian Gambar 5.8.
TUGAS DAN PERTANYAAN
Berdasarkan Tabel 1, buatlah grafik karakteristik :
IC = f (IB)
IB = f (VBE)
IC = f (VCE)
2.
Apa yang dimaksud dengan karakteristik input dan karakteristik output
pada rangkaian transistor!
3.
Mengapa Kurva karakteristik output transistor IC = f (VCE) mempunyai
beda panjang?
4.
Apa yang dimaksud dengan disipasi daya? Pada grafik IC = f (VCE),
gambarkanlah daerah kerja transistor yang diperbolehkan jika
P Dmax =100 mW!
5.
Jelaskan bagaimana menentukan baik tidaknya transistor dan
menentukan jenis NPN/PNP transistor!
6.
Buatlah rangkaian transistor untuk menghidupkan lampu dan jelaskan
cara kerjanya!
Laboratorium Elektronika Semester III
31
V.7.
TABEL EVALUASI
Tabel 1 = Tabel 3
VCE = 5 Volt Tetap
IC (mA)
HFE (IC/IB)
VBE (volt)
10
20
30
40
50
60
70
80
90
100
Tabel 2 = Tabel 4 = Tabel 5
VCE (volt)
IC (mA)
0,1
0,2
0,3
0,5
1
Laboratorium Elektronika Semester III
32
BAB VI
KARAKTERISTIK SCR
VI.1. TUJUAN
Setelah selesai percobaan praktikan diharapkan dapat :
a. Menentukan terminal SCR
b. Menentukan baik atau tidaknya SCR
c. Menerangkan karakteristik SCR
d. Mempergunakan SCR dalam praktek
VI.2. DASAR TEORI
Sebuah SCR terdiri dari tiga terminal yaitu anoda, katoda, dan gate.
SCR berbeda dengan dioda rectifier biasanya karena dibuat dari empat buah
lapis dioda, lihat Gambar 6.1.
Gambar 6.1 (a) Simbol SCR; (b) Konstruksi dasar SCR
Komponen SCR akan di trigger menjadi ON jika diberi arus gate melalui
kaki (pin) gate. Dengan memberi arus gate I GT yang semakin besar dapat
menurunkan tegangan breakover (V BR) sebuah SCR. Dimana tegangan ini
adalah tegangan minimum yang diperlukan SCR untuk menjadi ON. Sampai
pada suatu besar arus gate tertentu, ternyata akan sangat mudah membuat
SCR menjadi ON. Bahkan dengan tegangan forward yang kecil sekalipun,
Laboratorium Elektronika Semester III
33
misalnya 1 volt saja atau lebih kecil lagi. Kurva tegangan dan arus dari
sebuah SCR adalah seperti yang ada pada Gambar 6.2.
Gambar 6.2 Karakteristik SCR
Pada Gambar 6.2 dapat dilihat ada tegangan breakover V (BR)F , yang
jika tegangan forward SCR mencapai titik ini, maka SCR akan ON. Lebih
penting lagi adalah arus I G yang dapat menyebabkan tegangan V (BR)F turun
menjadi lebih kecil. Pada Gambar 6.2 ditunjukkan beberapa arus I G dan
korelasinya terhadap tegangan breakover. Pada datasheet SCR, arus trigger
gate ini sering ditulis dengan notasi I GT (gate trigger current). Pada Gambar
6.2 ada ditunjukkan juga arus I H yaitu arus holding yang mempertahankan
SCR tetap ON. Jadi agar SCR tetap ON maka arus forward dari anoda
menuju katoda harus berada di atas parameter ini.
Sejauh ini yang dikemukakan adalah bagaimana membuat SCR
menjadi ON. Pada kenyataannya, sekali SCR mencapai keadaan ON maka
selamanya akan ON, walaupun tegangan gate dilepas atau di short ke
katoda. Satu-satunya cara untuk membuat SCR menjadi OFF adalah dengan
membuat arus anoda-katoda turun dibawah arus I H (holding current). Pada
Laboratorium Elektronika Semester III
34
Gambar 6.2 kurva I-V SCR, jika arus forward berada dibawah titik I H , maka
SCR kembali pada keadaan OFF. Berapa besar arus holding ini, umumnya
ada di dalam datasheet SCR.
Cara membuat SCR menjadi OFF tersebut adalah sama saja dengan
menurunkan tegangan anoda-katoda ke titik nol. Karena inilah SCR atau
thyristor pada umumnya tidak cocok digunakan untuk aplikasi DC.
Komponen ini lebih banyak digunakan untuk aplikasi-aplikasi tegangan AC,
dimana SCR bisa OFF pada saat gelombang tegangan AC berada di titik
nol.
Ada satu parameter penting lain dari SCR, yaitu V GT . Parameter ini
adalah tegangan trigger pada gate yang menyebabkan SCR ON. V GT seperti
halnya V BE besarnya kira-kira 0.7 volt.
Contoh rangkaian pada Gambar 6.3, Sebuah SCR diketahui memiliki
I GT =10mA dan V GT =0,7 volt. Maka dapat dihitung tegangan Vin yang
diperlukan agar SCR ini ON adalah
sebesar :
V in = V r + V GT
V in = I GT (R) + V GT = 4.9 volt
Gambar 6.3 Rangkaian SCR
Aplikasi SCR banyak digunakan pada suatu rangkaian elekronika
karena lebih efisien dibandingkan komponen lainnya terutama pada
pemakaian saklar elektronik. SCR juga biasanya digunakan untuk
mengontrol daya khususnya pada tegangan tinggi karena SCR dapat
dilewatkan tegangan dari 0 sampai 220 Volt tergantung pada spesifik dan
tipe dari SCR tersebut.
Laboratorium Elektronika Semester III
35
VI.3. DAFTAR PERALATAN
1.
Power Supply DC
2.
Power Supply AC
3.
Multimeter
4.
SCR
5.
Dioda
6.
Resistor 10
7.
Potensiometer
8.
Osiloskop
9.
Kabel Penghubung.
VI.4. DIAGRAM RANGKAIAN.
Gambar 6.4 Skema Rangkaian SCR untuk melihat karakteristik dengan Vs
tegangan DC
Laboratorium Elektronika Semester III
36
Gambar 6.5 Skema Skema Rangkaian SCR untuk melihat karakteristik
dengan Vs tegangan AC
VI.5. LANGKAH PERCOBAAN
1. Buatlah rangkaian seperti Gambar 6.4, berilah sumber tegangan DC
10V.
2. Tetapkanlah arus gate (I G ), mulai dari 0V. Aturlah potensio 1k
dari 0 sampai SCR tertriger, amati dan catat hasil pengukuran pada
Tabel 1. Ulangi langkah ini dengan arus gate (IG ) yang berbeda.
3. Amati pergeseran titik pada layar osiloskop dan gambarkan pada kertas
milimeter. Ingat : untuk melihat karakteristik ubah format Y-T menjadi
X-Y
4. Tetap dengan rangkaian Gambar 6.4, berilah sumber tegangan DC 30V,
ulangi langkah 2 dan 3.
5. Buatlah rangkaian seperti Gambar 6.5, berilah sumber tegangan AC
48V, lakukanlah seperti pada langkah 2 dan 3.
VI.6. TUGAS DAN PERTANYAAN
1. Dari Tabel 1, buatlah grafik karakteristik SCR I AK = f (V AK )!
2. Samakah grafik dari Tabel 1 dengan grafik yang tampak pada layer
osiloskop?
Laboratorium Elektronika Semester III
37
3. Jelaskan cara menguji baik tidaknya SCR dengan menggunakan
multimeter sekaligus tentukan terminal anoda, katoda dan gate!
VI.7. TABEL EVALUASI
Tabel 1, Vs = 10 volt
IG
I AK (mA)
V AK (volt)
V GK(volt)
Keterangan
V AK (volt)
V GK(volt)
Keterangan
V AK (volt)
V GK(volt)
Keterangan
Tabel 2, Vs = 30 volt
IG
I AK (mA)
Tabel 3, Vs = 48 volt
IG
I AK (mA)
Laboratorium Elektronika Semester III
38
BAB VII
UJT ( UNI JUNCTION TRANSISTOR)
VII.1. TUJUAN
Setelah selesai percobaan praktikan diharapkan dapat :
a. Menentukan terminal UJT
b. Menentukan baik atau tidaknya UJT
c. Menerangkan karakteristik UJT
d. Mempergunakan UJT dalam praktek
VII.2 DASAR TEORI
Transistor
Uni
junction
(UJT)
biasanya
digunakan
untuk
membangkitkan sinyal trigger untuk SCR. UJT memiliki tiga terminal yaitu:
emiter E, base-1 B1 dan base-2 B2. Antara B1 dan B 2 , UJT memiliki
karakteristik resistansi biasa. Resistansi ini disebut resistansi interbase RBB
dan nilainya berada pada daerah 4,7 sampai 9,1 K ohm.
Salah satu penggunaan UJT antara lain :
Rangkaian penentu waktu (timing) .
Rangkaian Osilator.
Gambar 7.1 (a) Konstruksi dasar UJT; (b) Rangkaian Ekivalen UJT;
(c) Simbol UJT
Laboratorium Elektronika Semester III
39
Besar tegangan pada titik sambung RB1dan RB2 adalah :
V1
VB1B 2 x
RB1
RB1 RB 2
V1
VB1B 2 x
RB1
RB1 RB 2
Dimana RBB = RB1 + RB2
Bila Emitter terbuka, arus yang mengalir adalah :
I B2
V B1 B 2
RBB
Harga RBB dengan disipasi daya maksimum PD menentukan harga VB1B2
dengan keadaan IE = 0, maka daya yang didisipasikan oleh UJT adalah :
PD
(VB1 B 2 ) 2
RBB
VB1 B 2 max
RBB xPD
Instrinsic stand off ratio ( ) adalah perbandingan RB1 dengan RBB.
Hubungan antara V1 dan VB1B2 dapat dinyatakan oleh :
VB1B 2 x
RB1
R BB
V B1 B 2
Tegangan puncak Vp = VD + V1
VD = tegangan dioda sehingga Vp = VD +
VB1B2
VII.3. DAFTAR PERALATAN
1. Power supply DC
2. Multimeter.
3. Osciloscope.
4. UJT 2N 2646
5. Dioda
6. Resistor
7. Dioda Zener BZX 10V
Laboratorium Elektronika Semester III
40
VII.4 DIAGRAM RANGKAIAN
Gambar 7.2 Skema rangkaian UJT
Gambar 7.3 Skema rangkaian UJT
VII.5 PROSEDUR PERCOBAAN
1. Buat rangkaian seperti Gambar 7.2, V BB 6 Volt, aturlah V EB1 dari 0
sampai Vp kemudian hasil pengukurannya masukkan dalam Tabel 1
Berdasarkan Tabel 1 buat gambar grafik IE = f(VEB1).
2. Amati pergeseran titik pada layar osiloskop dan gambar pada kertas
milimeter.
3. Ulangi langkah 1 dan 2, dengan VBB 8 Volt.
4. Rangkailah seperti Gambar 7.3, dengan menggunakan osiloskop
gambarlah bentuk gelombang pada :
a. Tegangan Input (Vin)
b. Dioda zener.
Laboratorium Elektronika Semester III
41
c. Kapasitor.
d. Beban
e. Kondisi SCR ON
f. Kondisi SCR OFF
VII.6 TUGAS DAN PERTANYAAN
1. Jelaskan kegunaan masing-masing komponen pada Gambar 7.3, dan
jelaskan cara kerjanya!
2. Jelaskan apakah Vp UJT bisa berubah!
3. Jelaskan bagaimana menguji baik tidaknya UJT sekaligus menentukan
terminalnya!
VII.7 TABEL EVALUASI
Tabel 1
VEB1
(volt)
IEB1
(mA)
VB1B2
IEB1
(mA)
VB1B2
(volt)
IB2
(mA)
Vp =
VD + VB1B2
PD saat
IE = 0
Ket
IB2
(mA)
Vp =
VD + VB1B2
PD saat
IE = 0
Ket
Tabel 2
VEB1
(volt)
(volt)
Laboratorium Elektronika Semester III
42
BAB VIII
DIAC
VIII.1. TUJUAN
Setelah selesai percobaan praktikan diharapkan dapat :
a. Menentukan terminal DIAC
b. Menentukan baik atau tidaknya DIAC
c. Menerangkan karakteristik DIAC
d. Mempergunakan DIAC dalam praktek
VIII.2. DASAR TEORI
Kalau dilihat strukturnya seperti Gambar 8.1, DIAC bukanlah
termasuk keluarga thyristor, namun prisip kerjanya membuat ia digolongkan
sebagai thyristor. DIAC dibuat dengan struktur PNP mirip seperti transistor.
Lapisan N pada transistor dibuat sangat tipis sehingga elektron dengan
mudah dapat menyeberang menembus lapisan ini. Sedangkan pada DIAC,
lapisan N di buat cukup tebal sehingga elektron cukup sukar untuk
menembusnya. Struktur DIAC yang demikian dapat juga dipandang sebagai
dua buah dioda PN dan NP, sehingga dalam beberapa literatur DIAC
digolongkan sebagai dioda.
Gambar 8.1 Stuktur dan simbol DIAC
Laboratorium Elektronika Semester III
43
Sukar dilewati oleh arus dua arah, DIAC memang dimaksudkan untuk
tujuan ini. Hanya dengan tegangan breakdown tertentu barulah DIAC dapat
menghantarkan arus. Arus yang dihantarkan tentu saja bisa bolak-balik dari
anoda menuju katoda dan sebaliknya.
Simbol dari DIAC adalah seperti yang ditunjukkan pada Gambar
8.1(b). DIAC umumnya dipakai sebagai pemicu TRIAC agar ON pada
tegangan input tertentu yang relatif tinggi.
Gambar 8.2 Karakteristik DIAC
VIII.3. DAFTAR PERALATAN
1.
Power supply DC
2.
Power supply AC
3.
Multimeter.
4.
Osciloscope.
5.
DIAC
6.
Resistor 10
7.
Kabel penghubung
Laboratorium Elektronika Semester III
44
VIII.4 DIAGRAM RANGKAIAN
Gambar 8.3 Skema rangkaian DIAC dengan sumber tegangan DC
Gambar 8.4 Skema rangkaian DIAC dengan sumber tegangan DC (dibalik)
Laboratorium Elektronika Semester III
45
Gambar 8.5 Skema rangkaian DIAC dengan tegangan AC
VIII.5 PROSEDUR PERCOBAAN
1. Buat rangkaian seperti Gambar 8.3, aturlah sumber tegangan Vs dari 0
sampai 40volt, kemudian hasil pengukurannya masukkan dalam Tabel 1
2. Amati pergeseran titik pada layar osiloskop dan gambar pada kertas
milimeter.
3. Rangkailah seperti Gambar 8.4, ulangi langkah 1 dan 2. hasil
pengukuran masukkan dalam Tabel 2.
4. Rangkailah seperti Gambar 8.5, gambarlah grafik yang nampak pada
layar osiloskop di kertas milimeter
VIII.6 TUGAS DAN PERTANYAAN
1. Berdasarkan Tabel 1dan Tabel 2 buatlah grafik karakteristik I = f (V AK)!
2. Jelaskan bagaimana menguji baik tidaknya DIAC!
3. Buatlah satu contoh aplikasi DIAC dan jelaskan cara kerjanya!
Laboratorium Elektronika Semester III
46
VIII.7 TABEL EVALUASI
Tabel 1 Rangkaian Gambar 8.3
Vs (volt)
I (mA)
V (volt)
Keterangan
V (volt)
Keterangan
Tabel 2 Rangkaian Gambar 8.4
Vs (volt)
I (mA)
Laboratorium Elektronika Semester III
47
BAB IX
TRIAC
IX.1. TUJUAN
Setelah selesai percobaan praktikan diharapkan dapat :
a. Menentukan terminal TRIAC
b. Menentukan baik atau tidaknya TRIAC
c. Menerangkan karakteristik TRIAC
d. Mempergunakan TRIAC dalam praktek
IX.2. DASAR TEORI
TRIAC tersusun dari lima buah lapis semikonduktor yang banyak
digunakan pada pensaklaran elektronik. Struktur TRIAC sebenarnya adalah
sama dengan dua buah SCR yang arahnya bolak-balik dan kedua gate-nya
disatukan . TRIAC biasa juga disebut thyristor bi-directional.
Berbeda dengan SCR yang hanya melewatkan tegangan dengan
polaritas positif saja, TRIAC dapat dipicu dengan tegangan polaritas positif
dan negatif, serta dapat dihidupkan dengan menggunakan tegangan bolakbalik pada Gate. TRIAC banyak digunakan pada rangkaian pengedali dan
pensaklaran. Gambar 9.1 digambarkan simbol, dan konstruksi dari sebuah
TRIAC.
Gambar 9.1 Simbol dan kontruksi TRIAC
Laboratorium Elektronika Semester III
48
TRIAC hanya akan aktif ketika polaritas pada Anoda lebih positif
dibandingkan Katodanya dan gate-nya diberi polaritas positif, begitu juga
sebaliknya. Setelah terkonduksi, sebuah TRIAC akan tetap bekerja selama
arus yang mengalir pada TRIAC (IT) lebih besar dari arus penahan (IH)
walaupun arus gate dihilangkan. Satu-satunya cara untuk membuka (mengoff-kan) TRIAC adalah dengan mengurangi arus IT di bawah arus IH.
Gambar 9.2 Karakteristik TRIAC
Pada datasheet akan lebih detail diberikan besar parameterparameter seperti V BR dan –V BR , lalu I GT dan -I GT , I H serta –I H dan
sebagainya. Umumnya besar parameter ini simetris antara yang positif dan
yang negatif. Dalam perhitungan desain, bisa dianggap parameter ini
simetris sehingga lebih mudah di hitung.
Besaran karakteristik :
Tegangan breakdown untuk dU/dt = 10 V/ms
Rugi tegangan untuk
dU/dt = 10 V/ms
Arus breakdown untuk
0,98U (BR)
U (BR) F,R = 28 … 36V
U
I (BR)
Harga (besaran) batas :
Arus puncak maksimum yang diijinkan
I max = 2A
Rugi daya maksimum yang diijinkan
P max = 150 mW
Laboratorium Elektronika Semester III
49
IX.3. DAFTAR PERALATAN
1.
Power supply DC
2.
Power supply AC
3.
Multimeter.
4.
Osciloscope.
5.
TRIAC
6.
DIAC
7.
Resistor 10
8.
Potensio meter 500 k
9.
Lampu
10.
Saklar satu kutub
11.
Kabel penghubung
12.
Papan penghubung
IX.4
3k3
DIAGRAM RANGKAIAN
Gambar 9.3 Skema rangkaian TRIAC dengan sumber tegangan DC
Laboratorium Elektronika Semester III
50
Gambar 9.4 Skema rangkaian TRIAC dengan polaritas
sumber tegangan DC dibalik
Gambar 9.5 Skema rangkaian TRIAC dengan polaritas sumber tegangan AC
IX.5
PROSEDUR PERCOBAAN
1. Buat rangkaian seperti Gambar 9.3, aturlah sumber tegangan Vs
pertahap dari 0 sampai 40 volt. Atur potensiometer, kemudian hasil
pengukurannya masukkan dalam Tabel 1
2. Amati pergeseran titik pada layar osiloskop dan gambar pada kertas
milimeter.
3. Rangkailah seperti Gambar 9.4, ulangi langkah 1 dan 2
Laboratorium Elektronika Semester III
51
4. Rangkailah seperti Gambar 9.5 dengan sumber tegangan AC dengan
tegangan input 48 volt.
5. Amatilah dan gambarkanlah karakteristik TRIAC yang tampak pada
layar osiloskop di kertas milimeter.
IX.6
PERTANYAAN
1. Berdasarkan Tabel 1, buatlah grafik karakteristik TRIAC!
2. Jelaskan bagaimana menguji baik tidaknya TRIAC!
3. Buatlah satu contoh aplikasi TRIAC dan jelaskan cara kerjanya!
IX.7
TABEL EVALUASI
Tabel 1
Vs (volt)
IG (mA)
IA (mA)
V (volt)
Keterangan
IG (mA)
IA (mA)
V (volt)
Keterangan
Tabel 2
Vs (volt)
Laboratorium Elektronika Semester III
52
BAB X
DAYA PADA RANGKAIAN AC
X.1.
TUJUAN
Setelah selesai percobaan praktikan diharapkan dapat :
a. Menentukan Daya listrik beban RESISTIP, INDUKTIP, KAPASITIP.
b. Menentukan Faktor Daya ( Cos
) dan Faktor Daya Reaktip ( Sin
)
c. Menentukan ketiga komponen daya dalam Segitiga Daya beserta vektor
arus dan tegangan.
X.2.
DASAR TEORI
Rangkaian arus bolak-balik adalah suatu sumber arus bolak-balik yang
dihubungkan dengan peralatan (beban). Beban peralatan listrik mempunyai
3 sifat yaitu :
1. Resistif
Peralatan yang bersifat resistif adalah resistor, dimana arus sephasa
dengan tegangan. Daya pada beban resistip adalah :
P
V2
R
atau
P
I 2R
2. Induktif
Peralatan yang bersifat induktif sangat banyak antara lain: ballast
lampu, motor listrik, pendingin ruangan (AC), dan lain-lain. Sifat beban
induktif adalah tegangan mendahului 90o terhadap arus.
Gambar 10.1 Tegangan mendahului arus 90o
Laboratorium Elektronika Semester III
53
Daya pada rangkaian induktor ideal adalah nol. Daya pada beban induktif
dapat dihitung dengan rumus :
P
I V cos
Dimana sudut dari rangkaian induktor ideal adalah 90o.
Daya reaktif
Q I V sin
Gambar 10.2 Diagram phasor arus dan tegangan untuk rangkaian
induktor ideal
3. Kapasitif
Arus pada rangkaian kapasitor ideal akan mencapai nilai puncak
ketika tegangannya nol. Sifat bebannya adalah arus mendahului tegangan
90o, karena arus akan mencapai puncak sebelum tegangan mencapai
puncak. Hubungan antara arus dan tegangan dalam diagram phasor dapat
dilihat pada Gambar 10.3 (c). Daya pada rangkaian AC dapat dihitung
dengan rumus :
P
I V cos
P
Laboratorium Elektronika Semester III
I 2R
54
Gambar 10.3 (a) Slope kurva tegangan; (b) Arus mendahului tegangan 90o;
(c) diagram phasor arus dan tegangan
X.3.
DAFTAR PERALATAN
1. Variabel power supply 0 - 220 V
2. Lampu pijar 220V/100 watt.
3. Balast
4. Kapasitor 4,5 uF
5. Multimeter
6. Wattmeter
7. Kabel penghubung
8. Papan penghubung
Laboratorium Elektronika Semester III
55
IX.4
DIAGRAM RANGKAIAN
Gambar 10.4 Skema rangkaian AC
X.5
PROSEDUR PERCOBAAN
1. Buatlah rangkaian seperti pada Gambar 10.4, posisi power supply 0 volt.
Beri beban Resistip (Lampu Pijar). Lakukan pengukuran secara bertahap
dari 0 volt sampai tegangan 180 volt. Catatlah hasil pengukuran pada
Tabel 1.
2. Dengan rangkaian yang sama, gantilah beban resistip dengan beban
Induktip L, lakukan seperti langkah 1. Catatlah hasil pengukuran pada
Tabel 2.
3. Dengan rangkaian yang sama, gantilah beban resistip dengan beban
kapasitip C, lakukan seperti langkah 1. Catatlah hasil pengukuran pada
Tabel 3.
4. Ulangi percobaan secara bergantian untuk beban campuran sebagai
berikut :
Paralel R//L
Paralel R//C
Paralel L//C
Paralel R//L//C
R seri L
R seri C
R seri L seri C
Catat semua data yang diperoleh dalam tabel.
Laboratorium Elektronika Semester III
56
X.6
PERTANYAAN
1. Bagaimanakah efek induktansi dan kapasitansi dalam rangkaian AC?
Berikan penjelasan berdasarkan data yang anda dapat!
2. Gambarlah vektor diagram arus-tegangan dan diagram Segitiga Daya
untuk beban RL dan RC!
X.7
TABEL EVALUASI
Tabel 1 Beban R
Vs
(volt)
30
60
90
120
150
180
I
(mA)
V
(volt)
P
(Watt)
Q
(VA)
Cos
Sin
Ket
V
(volt)
P
(Watt)
Q
(VA)
Cos
Sin
Ket
V
(volt)
P
(Watt)
Q
(VA)
Cos
Sin
Ket
Tabel 2 Beban L
Vs
(volt)
30
60
90
120
150
180
I
(mA)
Tabel 3 Beban C
Vs
(volt)
30
60
90
120
150
180
I
(mA)
Laboratorium Elektronika Semester III
57
Tabel 4 Beban R\\L
Vs
(volt)
30
60
90
120
150
180
I
(mA)
V
(volt)
P
(Watt)
Q
(VA)
Cos
Sin
Ket
V
(volt)
P
(Watt)
Q
(VA)
Cos
Sin
Ket
V
(volt)
P
(Watt)
Q
(VA)
Cos
Sin
Ket
P
(Watt)
Q
(VA)
Cos
Sin
Ket
Tabel 5 Beban R\\C
Vs
(volt)
30
60
90
120
150
180
I
(mA)
Tabel 6 Beban L\\C
Vs
(volt)
30
60
90
120
150
180
I
(mA)
Tabel 7 Beban paralel R\\L\\C
Vs
(volt)
30
60
90
120
150
180
I
(mA)
V
(volt)
Laboratorium Elektronika Semester III
58
Tabel 8 Beban R seri L
Vs
(volt)
30
60
90
120
150
180
I
(mA)
V
(volt)
P
(Watt)
Q
(VA)
Cos
Sin
Ket
V
(volt)
P
(Watt)
Q
(VA)
Cos
Sin
Ket
V
(volt)
P
(Watt)
Q
(VA)
Cos
Sin
Ket
P
(Watt)
Q
(VA)
Cos
Sin
Ket
Tabel 9 Beban R seri C
Vs
(volt)
30
60
90
120
150
180
I
(mA)
Tabel 10 Beban L seri C
Vs
(volt)
30
60
90
120
150
180
I
(mA)
Tabel 11 Beban R seri L seri C
Vs
(volt)
30
60
90
120
150
180
I
(mA)
V
(volt)
Laboratorium Elektronika Semester III
59
BAB XI
DASAR-DASAR GERBANG
XI.1. TUJUAN
Setelah selesai percobaan praktikan diharapkan dapat :
a. Menerangkan fungsi gerbang AND, OR, dan NOT
b. Merangkai gerbang-gerbang dengan rangkaian tahanan, dioda dan
transistor.
c. Membuat tabel kebenaran
d. Merangkai fungsi gerbang NAND dan NOR
XI.2. DASAR TEORI
Gerbang AND, OR dan NOT serta kombinasinya merupakan
realisasi dari aljabar Boolean yang mempergunakan notasi (.), (+), (- baca
invers) untuk hubungan antar variabelnya. Tiga simbol dasar digambarkan
pada Gambar 11.1.
Gambar 11.1 Simbol dasar gerbang logika
Fungsi dari masing-masing gerbang dapat direalisasikan dengan
rangkaian tahanan, dioda, dan transistor, tetapi pemakaian yang umum
dipakai dalam bentuk IC (rangkaian terintegrasi). Operator yang
dipergunakan adalah bilangan biner, oleh sebab itu di dalam teknik digital
hanya dikenal logika 0 dan 1. logika ini diwujudkan dengan besar tegangan,
bila logika 1 sama dengan tegangan tinggi (High) = 5 V, dan logika 0 sama
dengan tegangan rendah (Low) = 0 V.
Laboratorium Elektronika Semester III
60
LOGIKA NOT (Inverse)
Gerbang logika NOT akan memberikan output yang berkebalikan dengan
input yang diberikan :
LOGIKA AND
Gerbang logika AND akan memberikan output high untuk 2 input yang high
LOGIKA NAND
Gerbang logika memiliki arti NOT AND
LOGIKA OR
Gerbang logika OR akan memberikan output low untuk 2 input yang low
LOGIKA NOR
Gerbang logika memiliki arti NOT OR
Laboratorium Elektronika Semester III
61
XI.3. DAFTAR PERALATAN
1. Power supply DC
2. Tahanan 100
3. Transistor
4. dioda IN 4007
5. Led
6. Saklar
7. Multimeter
8. Kabel penghubung
9. Papan penghubung
XI.4
DIAGRAM RANGKAIAN
Gambar 11.2 Skema rangkaian gerbang
Laboratorium Elektronika Semester III
62
Gambar 11.3 Skema rangkaian gerbang
Gambar 11.4 Skema rangkaian gerbang
Laboratorium Elektronika Semester III
63
Gambar 11.5 Skema rangkaian gerbang
Gambar 11.6 Skema rangkaian gerbang
XI.5
PROSEDUR PERCOBAAN
1. Buatlah rangkaian seperti Gambar 11.2, 11.3, 11.4, 11.5, dan 11.6
2. Beri tegangan DC masukkan pada A dan B dengan variasi H-H , H-L,
L-H , L-L dengan H (high) adalah tegangan 5 V dan L (low) adalah
tegangan rendah.
Laboratorium Elektronika Semester III
64
3. Amati dan catat keluaran dari setiap variasi tegangan masukkan diatas.
X.6
PERTANYAAN
1. Terangkan cara kerja masing-masing rangkaian (Gambar 11.2, 11.3,
11.4, 11.5 dan 11.6)!
2. Sebutkan fungsi masing-masing rangkaian dan tuliskan persamaan
booleannya!
3. Jelaskan cara kerja rangkaian dibawah ini lengkap dengan simbol dan
persamaan booleannya!
4. Buatlah rangkaian NAND dan NOR tiga input!
Laboratorium Elektronika Semester III
65
XI.7
TABEL EVALUASI
Tabel 1. Tabel kebenaran untuk Rangkaian 11.2
A
B
F
Tabel 2. Tabel kebenaran untuk Rangkaian 11.3
A
B
F
Tabel 3. Tabel kebenaran untuk Rangkaian 11.4
A
Laboratorium Elektronika Semester III
B
F
66
Tabel 4. Tabel kebenaran untuk Rangkaian 11.5
A
B
F
Tabel 5. Tabel kebenaran untuk Rangkaian 11.6
A
Laboratorium Elektronika Semester III
B
F
67
Download