Limit pada Ketakhinggaan lim Untuk semua n > 0, Dan diberikan Ex. xlim →∞ = x →∞ x→∞ x →∞ ( x ) − lim 4 ⎛ ⎞ 4 x 2 5 x 21 − 3+ 3 ⎜ ⎟ 3 x = lim ⎜ 3 x 2 x ⎟ x →∞ 7 x 5 x 10 x 1 ⎟ ⎜ ⎜ 3 + 3 − 3 + 3⎟ x x x ⎠ ⎝ x 5 21 ⎛ 4 − 2 + 3 ⎜ x = lim ⎜ x x x→ ∞ 5 10 1 ⎜7+ − 2 + 3 x x x ⎝ =0 ⎞ ⎟ ⎟ ⎟ ⎠ ⎛ 2 x3 3x 2 2 − 3 + 3 ⎜ 3 x = lim ⎜ 3 x 2 x x →∞ x ⎜ − x − 100 x + 1 ⎜ 3 x3 x3 x3 ⎝x 2 2 0−4 = 4 x →∞ 3. ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 3 2 ⎛ ⎞ ⎜ 2 − x + x3 ⎟ = lim ⎜ x→∞ 1 100 1 ⎟ ⎜1− − 2 + 3 ⎟ x x x ⎠ ⎝ Bagi dgn x 2 ( x ) + lim ( 1 x ) = 3 + 0 + 0 = − 3 lim 3 + lim 5 x →∞ ⎛ 4 x 2 − 5 x + 21 ⎞ lim ⎜ 3 ⎟ x →∞ 7 x + 5 x 2 − 10 x + 1 ⎝ ⎠ 0 7 1 1 = lim =0 x n x →−∞ x n 3+ 5 + 1 2 3x 2 + 5 x + 1 x x = lim 2 2 −4 x →∞ 2 − 4x 2 x lim 2 = ⎛ 2 x3 − 3x2 + 2 ⎞ 1. lim ⎜ 3 ⎟ 2 x→ ∞ ⎝ x − x − 100 x + 1 ⎠ 1 terdefinisi. xn x →∞ 2. Contoh lain ⎛ x2 + 2x − 4 ⎞ lim ⎜ ⎟ x →∞ ⎝ 12 x + 31 ⎠ ⎛ x2 2 x 4 ⎞ − ⎟ ⎜ + x x⎟ = lim ⎜ x x →∞ ⎜ 12 x + 31 ⎟ ⎜ x x ⎟⎠ ⎝ 4⎞ ⎛ ⎜ x+2− x ⎟ = lim ⎜ ⎟ x →∞ ⎜ 12 + 31 ⎟ x ⎠ ⎝ ∞ + 2 = 12 =∞ 4. ⎛ = lim ⎜⎜ x →∞ ⎜ ⎝ lim x →∞ ( ( x2 + 1 − x x2 + 1 − x 1 ) 2 =2 1 ) ⎞ x2 + 1 + x ⎟ ⎟ x2 + 1 + x ⎟ ⎠ ⎛ x2 + 1 − x2 ⎞ = lim ⎜ ⎟ 2 x →∞ ⎝ x +1 + x ⎠ ⎛ ⎞ 1 = lim ⎜ ⎟ 2 x →∞ x + + x 1 ⎝ ⎠ 1 1 = = =0 ∞+∞ ∞ 1 Limit Tak Hingga Contoh 20 Untuk semua n > 0, 15 Temukan limitnya 10 lim+ x→a 1 ( x − a) n 5 =∞ -8 -6 -4 -2 2 -5 -10 1. -15 1 lim− =∞ x →a ( x − a ) n ⎛ 3x2 + 2 x + 1 ⎞ lim+ ⎜ ⎟ x →0 2x2 ⎝ ⎠ -20 ⎛ 2x +1 ⎞ ⎛ 2x +1 ⎞ lim ⎜ ⎟ = lim 2 x + 6 ⎠ x→−3+ ⎜⎝ 2( x + 3) ⎟⎠ 40 2. 30 20 x →−3+ ⎝ 10 jika n genap -2 2 4 ⎛ 3+ 2 + 1 2 ⎞ x x ⎟ = lim+ ⎜ ⎟⎟ x →0 ⎜ 2 ⎜ ⎝ ⎠ = 3+∞ + ∞ =∞ 2 = −∞ 40 6 -10 lim − x→ a 1 = −∞ ( x − a)n 20 -20 20 15 10 -8 -6 -4 -2 2 5 -20 -8 -6 -4 -2 2 -5 jika n ganjil -10 -15 20 Tangent and Secant Limit dan Fungsi Trigonometri Tangent dan secant kontinu disemua titik kecuali Gambar dari fungsi trig memberikan x ≠±π , ±3π , ±5π , ±7π ,L 2 2 2 2 f ( x) = sin x and g ( x) = cos x y = sec x 1 1 15 y = tan x 0.5 0.5 30 10 20 5 10 -10 -5 5 10 -10 -5 5 10 -6 -6 -0.5 -0.5 -4 -2 2 4 6 -4 -2 2 4 6 -5 -10 -10 -20 -1 -1 -15 -30 Jadi fungsinya kontinu pada sebarang titik lim sin x = sin c and lim cos x = cos c x →c x →c 2 Limit dan Fungsi Exponential Contoh a) lim + sec x = ( 2) x→ π c) lim ( x → −3π 2 ) + −∞ tan x = −∞ e) lim− cot x = −∞ b) lim − sec x ( 2) x→ π d) ( lim cot x = ( x → −3π 2 ) lim ( x → −3π 10 10 6 2 x →π cos x 2 ) sin x = ) − tan x = ∞ 4 0 =0 1 4 4 2 2 -6 -4 -2 2 4 • Garis y = L disebut asimtot horisontal pada kurva y = f(x) jika salah satu dibawah ini benar lim f ( x) = L or lim f ( x) = L. x →−∞ -6 6 x →c x →c 2 4 6 Gambar diatas menunjukkan bahwa fungsi exponential kontinu disemua. lim a x = a c x →c Contoh Tentukan Asimtot fungsi berikut x2 + 1 x2 −1 (i) lim− f ( x) = −∞ 1. f ( x) = (iii) lim f ( x) = 1. x →∞ Shg garis y = 1 adl asimtot horisontal Shg garis x = 1 adl asimtot vertical (ii) lim− f ( x) = +∞. x →−1 lim− f ( x) = ±∞ or lim+ f ( x) = ±∞. -2 -2 x →1 • Garis x = c disebut asimtot vertikal pada kurva y = f(x) jika salah satu dibawah ini benar -4 -2 Asimptot x →∞ y = ax , 0 < a < 1 8 8 f) lim tan x = 1 x →π g) y = a , a >1 6 lim x → −3π =∞ x 10 7.5 5 2.5 -4 -2 2 4 -2.5 Shg garis x = -1 adl asimtot vertical -5 -7.5 -10 3 2. f ( x) = x −1 x2 − 1 ⎛ x −1 ⎞ (i) lim f ( x) = lim ⎜ 2 ⎟ x →1 x →1 ⎝ x −1 ⎠ ⎛ ⎞ x −1 ⎛ 1 ⎞ 1 = lim ⎜ ⎟ = lim ⎜ ⎟= . x →1 ⎝ ( x − 1)( x + 1) ⎠ x →1 ⎝ x + 1 ⎠ 2 (iii) lim f ( x) = 0. x →∞ Shg garis y = 0 adl asimtot horisontal Shg garis x = 1 bukan merupakan asimtot vertical (ii) lim+ f ( x) = +∞. x →−1 10 7.5 5 2.5 -4 -2 2 4 -2.5 -5 Shg garis x = -1 adl asimtot vertical -7.5 -10 4