10/31/2014 IMMORTALISASI SEL DAN TUMORIGENESIS 1 Dalam kultur sel/secara in vivo Ada sel yang masuk ke stadium senescence sederhana/ replicative senescence Sel senescence metabolisme aktif tapi tidak dapat masuk kembali ke dalam siklus sel 2 1 10/31/2014 Kapasitas pembelahan sel pada organisme menurun dengan bertambahnya umur seseorang Mekanisme penghitungan jumlah sel dalam tubuh : cell autonomous intrinsik sel dan tidak dipengaruhi oleh interaksi antar sel dengan lingkungan dan dengan tubuh secara keseluruhan ~ “generational clock” bergantung pada molekul intrasel : Disintesis pada awal tahapan perkembangan (developmental stage) dan tidak disintesis sesudah stadium perkembangan Terdapat dalam konsentrasi yang tinggi dalam sel embrio Mengalami pengenceran dengan faktor 2 kali pada keturunannya hal ini yang mungkin menyebabkan senescence karena senyawa tersebut berada di bawah nilai ambang 2 10/31/2014 PEMBATAS REPLIKASI SEL : STRESS FISIOLOGIS PADA SEL Replikasi sel dipengaruhi : Kadar oksigen Kadar oksigen yang rendah peningkatan replikasi sel Kadar oksigen yang tinggi Kemungkinan terakumulasinya kerusakan oksidatif senescence bentuk guanin teroksidasi 4 x lipat ; ROS Feeder layer (kultur sel) akibat CDK inhibitor Level CDK inhibitor : p16INK4A dan p21Cip1 meningkat pada kultur sel di atas plastik senescence 5 PEMBATAS PROLIFERASI : TELOMER DNA linear tidak stabil DNA linear yang ditransfeksikan ke dalam sel berfusi dengan DNA genom dengan bantuan nuklease dan ligase Telomer pada ujung kromosom memungkinkan DNA linear stabil dari kerja enzim Mencegah fusi ujung-ujung DNA dari kromosom mencegah fusi kromosom Barbara McClintock : kromosom yang kehilangan telomer fusi pembentukan megakromosom yang memiliki 2 atau lebih sentromer 6 3 10/31/2014 7 Telomer : Terdiri atas : hexanukleotida 5’-TTAGGG-3’, yang berulang sampai 1000 kali dan tersusun secara tandem Memendek pada keturunan sel berikutnya dalam siklus sel jadi tidak melindungi kromosom lagi 4 10/31/2014 TELOMER Terdiri dari untai kaya G & untai kaya C Untai kaya G jauh lebih panjang T-loop bantu lindungi ujung DNA linear Struktur T-loop 9 DNA Telomer berikatan dengan protein-protein : Pengontrol panjang telomer Pelindung telomer Telomerase 3 komponen telomerase • Telomerase reverse transcriptase (TERT) • Telomerase-associated protein 1 (TEP1) – regulatory function (? not known for sure) • Telomerase RNA subunit 10 5 10/31/2014 Pemendekan Telomer berkaitan dengan masalah replikasi ujung DNA 11 12 6 10/31/2014 Beberapa sel immortal dapat memelihara telomer tanpa bantuan telomerase 10-15% Gunakan mekanisme ALT (alternative lengthening of telomer Terjadi pergantian telomer tergantung pada mekanisme tipe interkromosom copy choice Gunakan polimerase biasa untuk perpanjang telomer 13 FUNCTION OF TELOMERASE AND CONSEQUENCE OF ITS ACTIVATION Function Consequence examples of telomerase activation Elongation of telomeres Elongation of cellular lifespan or immortalization Maintenance of chromosomal structure Telomerase is transiently expressed in each S phase in normal cells Addition of malignant potential Tumor formation with nontumorigenic ALT cells Promotion of stem cell proliferation e.g. increased hair growth DNA repair? Required to form DNA damage foci following irradiation Self-renewal capacity Required to reprogram fibroblasts to iPS cells 14 7 10/31/2014 Sel pada tubuh manusia mengalami mitosis 1016, mencit 1011 resiko manusia terkena kanker lebih tinggi 15 Regulation of telomerase in the hierarchy of the normal and leukemic hematopoietic stem cell 16 8 10/31/2014 Besides losing the ability to correctly determine if their environment is appropriate for division & the characteristics necessary for the immune system to remove them as damaged cells, cells on the path to tumor & cancer formation also gain several capacities: they evade apoptosis, produce their own growth factors, become insensitive to growth suppressors & cell contact signals, gain telomerase activity & overcome the Hayflick limit, & express angiogenic factors & molecules needed during metastasis. Douglas Hanahan & Robert A. Weinberg, The hallmarks of cancer, Cell 100:57–70, 2000. lung fibroblast 55 times, heart 26, kidney 40, and skin 43 SEL KANKER IMMORTAL Peningkatan jumlah sel pada kanker secara teoritis Kultur sel – 50-60 doubling 60 cells doubling 1018 sel = 109 cm3 = 106 kg (theoretically) 9 10/31/2014 Pada kanker, tidak semua sel survive, ada sel-sel apoptosis TELOMERASE 10 10/31/2014 Carcinogenesis and immortalization of human cells in vivo. Normal somatic cells, even stem cells or lymphocytes that have a capacity of telomerase activation upon proliferation, cannot be immortalized in vivo. On the contrary, once telomerase activation occurs in cancer cells, it is usually irreversible and such cancer cells are easily immortalized. Whereas key genes responsible for cellular transformation are heterogenous among the individuals, those for cellular immortalization are considered to be relatively monotonous, mostly ‘‘telomerase’’ except for ALT (alternative lengthening of telomeres) or other rare events 21 22 11 10/31/2014 TELOMERASE AND POSSIBLE CAUSES TO ITS ACTIVITY IN CANCER p53 inactivation C-myc expression Steroid hormones www.biocarta.com/pathfiles/h_tertPathway.gif Sel kanker mengekspresikan telomerase crisis dapat diatasi Sel embrionik diferensiasi telomerase menurun 12 10/31/2014 Telomere biology in CML model: Biological properties of CML cells in three hematologically different stages (normal, chronic phase, and blastic phase) are shown in the triangle. The peak telomere lengths in each stage are shown in the lower part of the figure, showing the telomere attrition and disease progression in LSC. 25 26 13 10/31/2014 TELOMERASE AND CANCER Normal Cells little to no Telomerase activity Limited life span Exception: highly proliferative tissues Cancer Cells High telomerase Activity Immortalized X Yuan, et al. 1999 HAYFLICK LIMIT AND CRISIS William C. Hahn, 2003 14 10/31/2014 Clinical significance: Cancer or absent telomere due to progressive shortening with DNA replication 30 15 10/31/2014 MEKANISME SIKLUS PEMATAHAN-FUSI KROMOSOM (BREAKAGE-FUSION-BRIDGE / BFB CYCLE) Kromosom disentrik Pada manusia terjadi pula BFB cycles pada saat fungsi p53 hilang 16 10/31/2014 CLINICAL SIGNIFICANCE: CANCER SELF-RENEWAL OF EPITHELIAL CELL POPULATION BY REPEATED CELL DIVISION Telomeres shorten and uncap Normal p53 cell cycle checkpoint control Normal senescent cells stop dividing Loss of p53 and cell cycle checkpoint control Mutant cell survives and proliferates Chromosome translocation Cell dies due to catastrophic genomic instability and DNA damage Chromosome fusion Chromosome bridge Chromosome breakage Massive chromosomal damage Telomerase reactivated CHROMOSOME BREAKGE-FUSIONBRIDGE CYCLE Chromosomes are partially stabilized and cell survives with many mutations CANCER Pada sel kanker, telomerase ~ onkogen 34 TA = telomerase activity 17 10/31/2014 35 Tidak ada telomerase bisa menurunkan dan sekaligus meningkatkan kerentanan terhadap kanker 36 18 10/31/2014 37 Hypothetical model of telomeres and telomerase in primary and metastatic lesions of human cancer. Human cancers may be developed from telomerase-negative normal cells (upper) and telomerase-positive normal cells, typically from normal stem cells through cancer stem cells (lower). In the former mechanism, the population of cancer cells that have activated telomerase in mutational manner increases according to tumor development through clonal selections, while in the latter, cancer cells have high 38 telomerase activity from an early stage 19 10/31/2014 Transformation and immortalization of human cells in vitro. TERT alone transfection sometimes immortalizes normal fibroblasts but not normal epithelial cells. SV40 early region (SV40ER) immortalizes neither. Although cotransfection of TERT and SV40ER can immortalize both, they do not have tumorigenicity. Addition of oncogenic ras, mutated H-ras or K-ras, makes them genuine immortal cancer cells with tumorigenicity 39 40 20 10/31/2014 41 a, p53-/- mice. The number of tumours identified (t) and the total number of mice (n) in each cohort is indicated. Hatched line, G1–G2 mTERC-/-; triangles, G5–G6 mTERC-/-; circles, G7–G8 mTERC-/-. b, p53+/- mice. Hatched line, mTERC+/+, mTERC+/- or G1– G2 mTERC-/-; triangles, G5–G6 mTERC-/-; circles, G7–G8 mTERC-/- . a, Breast cancer, G5 mTERC-/- p53+/-mouse; b, squamous cell carcinoma, G6 mTERC-/- p53+/mouse. c, Gross view of caeca from mTERC+/ - p53+/- (left), G6 mTERC -/- p53+/- (middle), and G5 mTERC-/- p53+/- (right). d, Histology of normal caecum, mTERC +/- p53+/-, shows typical colonic villi and ordered nuclei. . e, Adenomatous polyp in the caecum, G5 mTERC-/- p53 +/-. Inset, glands remain 42 round with basal nuclei. f, Caecal adenocarcinoma, G5 mTERC-/- p53+/-. Inset, disordered glands and pleiomorphic nuclei. . g, Invasive adenocarcinoma of colon, G5 mTERC-/- p53 +/-. Inset, tumour cells (t) with poor glandular organization invading muscle fibres (m) Nature 406, 641-645(10 August 2000) 21 10/31/2014 Karyotype chaos in cancer cells 22