54 DAFTAR PUSTAKA Andreas, J. (2015). Welcome to Batteries-A New Open Access Journal on Battery Technology and Systems. Batteries. Vol.1. hal: 1-2. Arif, R.H. & Anies, C. (2013). Application of Arabic Gum and Dextrin as Binder Protein of Shrimp Head Extract. JPB Kelautan dan Perikanan Vol. 8 Hal: 45–54. Berndt, D dan Kiehne, H.A,. (2003). Electrochemical Energy Storage. dalam buku Battery Technology Handbok. 2nd edition, Hal : 1-100. Marcel Dekker.Inc,. New York. Budi,H. (2016). Banyak yang Tidak Tahu Bahaya Buang Baterai Bekas. Diambil Dari Website: https://health.detik.com/. Egan, D.R. Ponce,L.C . Wood, R.J.K. Jones, R.L. Stokes, K.R. Walsh, F.C. (2013). Developments in Electrode Materials and Electrolytes for Aluminium-Air Batteries. Journal of Power Sources. Vol. 236. Hal: 293-310. Eqbal, D. & Aminah, A. (2013). Utilization of Gum Arabic For Industries And Human Health. Journal of Applied Sciences. Vol.10. Hal: 1270-1279. Gelman, D. Shvartsev, B. and Ein, E.Y. (2014). Aluminum–Air Battery Based On An Ionic Liquid Electrolyte. Journal of Materials Chemistry A. Vol.2. Hal : 20237-20242. Guntur, A.P. (2016). Pembuatan Baterai Aluminnium Udara Menggunakan Variasi Karbon Aktif. Universitas Mercu Buana. Jakarta. Tugas Akhir. Hadi, F. (2016). Pengembangan Baterai Aluminium-Udara Menggunakan Matrik Polymer Arabic Gum. Universitas Mercu Buana. Jakarta. Tugas Akhir. Jake, C. Paul, A. Roel, S.S.C. Timm, L. Boris, K. Ralf. Jasim, A. & Aleksandar, K. (2012). A Critical Review of Li/Air Batteries. Journal of The Electrochemical Society. Vol.159. Hal: R1-R30. Jang-Soo Lee, Sun Tai Kim, Ruiguo Cao, Nam-Soon Choi, Meilin Liu, Kyu Tae Lee, & Jaephil Cho, (2011), Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air. Advanced Energy Materials. Vol. 1. Hal: 34-50. Karsten Pinkwart & Jens T¨ubke. (2011) Thermodynamics and Mechanistics. dalam buku Handbook of Battery Materials. 2nd edition. Hal: 1-84. Willey. Munster. Kartawidjaja & Abdurrochman. (2008). Pencarian Parameter Bio-batere Berbasis Asam Sitrat (C6H8O7). Prosiding Seminar Nasional Sains dan Teknologi-II 2008. Universitas Lampung. Lampung. Linden, D. & Reddy, T.B. (2011) Basic Concepts. dalam buku Linden’s Handbook of Batteries. 4th edition. Hal: 1.3 - 1.17. Mc Graw Hill. New York. http://digilib.mercubuana.ac.id/ 55 Lorenzo, G. Elie, P. Guk, T.K. Simone. Stefano, P. (2014). Ionic Liquid Electrolytes for Li–Air Batteries: Lithium Metal Cycling. Int. J. Mol. Sci. Vol.15. Hal: 8122-8137. M. A. Abu-Dalo. Othman, A.A. & Al-Rawashdeh, N.A.F. (2012). Exudate Gum from Acacia Trees as Green Corrosion Inhibitor for Mild Steel in Acidic Media. Int. J. Electrochem. Sci. Vol. 7. Hal: 9303 – 9324. Mainar, L. Colmenares, C.. Olatz Leonet. Francisco Alcaide, et al. (2016). Manganese oxide catalysts for secondary zinc airbatteries: from electrocatalytic activity to bifunctional air electrode performance. Journal of Electrochimica Acta. Vol 217. Pages 80–91 Marliyana, M., Meor, Z.M.T. Edy, H.M., Siti, M. Wan, M.F.W.R. Wan, R.W.D. Jaafar, S. (2015). Recent Developments in Materials For Aluminum–Air Batteries: A Review. Journal of Industrial and Engineering Chemistry. Vol.32. Hal: 1-20. Min Ling. Yanan Xu. & Hui Zhao. (2015). Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Journal of Nano Energy. Vol 12. Hal: 178–185 Modesto Tamez. & Julie H. Yu. (2007). Aluminum–Air Battery, Journal of Chemical Education. Vol.84. Hal: 1936A-1936B. Mohamad, A.A. (2008). Electrochemical Properties Of Aluminum Anodes In Gel Electrolyte Based Aluminum-Air Batteries. Corrosion Science. Vol.50. Hal : 3475–3479. Mori,R. (2015). Addition of Ceramic Barriers to Aluminum–Air Batteriesto Suppress Byproduct Formation on Electrodes. Journal of The Electrochemical Society. Vol.162 A288-A294. Othman, R. Basirun, W.J. Yahya, A.H. & Arof, A.K. (2001). Hydroponic Gels as a New Electrolyte Gelling Agent for Alkaline Zinc-Air. Journal of Power Sources. Vol.103. Hal: 34-41. Prihandoko, B. & Subhan, A. (2011). Pemanfaatan Soda Lime Silica Dalam Pembuatan Komposit Elektrolit Baterai Lithium. Disertasi Fakultas Teknik: Universitas Indonesia. Rio Prasetya Halim, dkk, (2014), Pengaruh Porositas Elektroda Terhadap Tegangan Listrik Aluminium - Air Battery. Malang: Jurusan Teknik Mesin Fakultas Teknik Universitas Brawijaya. Sagir Alva & Mohd Rais Ahmad. (2011). Metal-Air Cell And Method Of Fabricating Thereof. Patents. WIPO. WO 2011/139140 A2. Sagir Alva. Heng, L.Y & M. Ahmad. (2016). Optimization of screen printed reference electrode based on charge balance and poly (butyl acrylate) photocurable membrane. Journal of Innovation in Mechanical Engineering & Advanced Materials Vol.2 (No.1). Hal: 10-15. http://digilib.mercubuana.ac.id/ 56 Sagir Alva. Utami, R.S. Shyuan, L.K. Puspasari, I. & Mohammad, A.B (2016). Synthesis and characterization of toluene sulfonic acid (tsa)-doped polypyrrole nanoparticles: effects of dopant concentrations. Journal of Innovation in Mechanical Engineering & Advanced Materials Vol.2 (No.1). Hal: 1-9. Shanshan Sun. He Miao. Yejian Xue. Qin Wang. Shihua Li. & Zhaoping Liu. (2012). Oxygen reduction reaction catalysts of manganese oxide decorated by silver nanoparticles for aluminum-air batteries. Journal of Electrochimica Acta. Vol.214. Hal: 49–55 Sheng Shui Zhang, (2007), A Review on the Separators of Liquid Electrolyte Li-Ion Batteries, Journal of Power Sources, Vol. 164, Hal: 351-364. Sukir. (2008). Pembuatan dan karakterisasi karbon aktif dari sekam padi. Departemen Kimia. FT-UI. Depok Vincenzo. C. & Benedetto.B. (2014). Materials Science Aspects of Zinc–Air Batteries: A Review. Mater Renew Sustain Energy. Vol.3. Hal 2-12. Yugang Sun. (2013). Lithium Ion Conducting Membranes for Lithium-Air Batteries. Journal of Nano Energy. Vol.2. Hal: 801-816. Zheng, J.P. Liang, R.Y. Hendrickson,M. & Plichta,E.J., (2008), Theoretical Energy Density of Li–Air Batteries, J. Electrochem. Soc. Vol. 155. Hal: A432-A437. http://digilib.mercubuana.ac.id/ 57 LAMPIRAN Tabel hasil pengujian tegangan pada sampel tanpa proses perlakuan panas Persentase Karbon Dan Matriks Pengikat 10% 20% 30% 40% 50% 60% 70% 80% 90% n=3 Tegangan (V) Sampel 1 0 0 1.09 1.31 1.22 1.14 1.44 1.30 1.03 Tegangan (V) Sampel 2 0 0 1.12 1.31 1.2 1.13 1.46 1.28 1.05 Tegangan (V) Sampel 3 0 0 1.13 1.28 1.19 1.16 1.43 1.25 0.97 Tegangan (V) Rata - rata 0 0 1.11 1.30 1.20 1.14 1.44 1.28 1.02 Standard deviasi 0 0 0.02 0.02 0.02 0.02 0.02 0.03 0.04 Tabel hasil pengujian arus listrik pada sampel tanpa proses perlakuan panas Persentase Karbon Dan Matriks Pengikat 10% 20% 30% 40% 50% 60% 70% 80% 90% n=3 Arus Listrik (mA) Sampel 1 0 0 0.20 1.44 0.36 0.69 0.34 0.22 0.56 Arus Listrik (mA) Sampel 2 0 0 0.28 1.33 0.2 0.85 0.32 0.19 0.38 Arus Listrik (mA) Sampel 3 0 0 0.22 1.36 0.14 0.89 0.53 0.18 0.46 http://digilib.mercubuana.ac.id/ Arus Listrik (mA) Rata - rata 0 0 0.23 1.38 0.23 0.81 0.40 0.20 0.47 Standard deviasi 0 0 0.04 0.06 0.11 0.11 0.12 0.02 0.09 58 Tabel hasil pengujian tegangan pada sampel dengan proses perlakuan panas Persentase Karbon Dan Matriks Pengikat 10% 20% 30% 40% 50% 60% 70% 80% 90% n=3 Tegangan (V) Sampel 1 0 0 1.43 1.5 1.28 1.61 1.79 1.31 1.01 Tegangan (V) Sampel 2 0 0 1.45 1.51 1.22 1.59 1.8 1.25 0.98 Tegangan (V) Sampel 3 0 0 1.44 1.54 1.26 1.62 1.77 1.52 1.05 Tegangan (V) Rata - rata 0 0 1.44 1.52 1.25 1.61 1.79 1.36 1.01 Standard deviasi 0 0 0.01 0.02 0.03 0.02 0.02 0.14 0.04 Tabel hasil pengujian arus listrik pada sampel dengan proses perlakuan panas Persentase Karbon Dan Matriks Pengikat 10% 20% 30% 40% 50% 60% 70% 80% 90% n=3 Arus Listrik (mA) Sampel 1 0 0 0.78 2.72 0.33 0.77 2.8 0.74 0.15 Arus Listrik (mA) Sampel 2 0 0 0.66 2.49 0.28 0.72 2.74 0.66 0.21 Arus Listrik (mA) Sampel 3 0 0 0.85 2.36 0.34 0.78 2.14 0.42 0.14 http://digilib.mercubuana.ac.id/ Arus Listrik (mA) Rata - rata 0 0 0.76 2.52 0.32 0.76 2.56 0.61 0.17 Standard deviasi 0 0 0.10 0.18 0.03 0.03 0.36 0.17 0.04